package vault import ( "context" "crypto/ecdsa" "crypto/rand" "crypto/subtle" "crypto/tls" "crypto/x509" "encoding/json" "errors" "fmt" "io" "net" "net/http" "net/url" "os" "path/filepath" "strings" "sync" "sync/atomic" "time" "github.com/armon/go-metrics" "github.com/hashicorp/errwrap" log "github.com/hashicorp/go-hclog" wrapping "github.com/hashicorp/go-kms-wrapping" aeadwrapper "github.com/hashicorp/go-kms-wrapping/wrappers/aead" "github.com/hashicorp/go-multierror" "github.com/hashicorp/go-secure-stdlib/mlock" "github.com/hashicorp/go-secure-stdlib/reloadutil" "github.com/hashicorp/go-secure-stdlib/strutil" "github.com/hashicorp/go-secure-stdlib/tlsutil" "github.com/hashicorp/go-uuid" "github.com/hashicorp/vault/api" "github.com/hashicorp/vault/audit" "github.com/hashicorp/vault/command/server" "github.com/hashicorp/vault/helper/metricsutil" "github.com/hashicorp/vault/helper/namespace" "github.com/hashicorp/vault/physical/raft" "github.com/hashicorp/vault/sdk/helper/certutil" "github.com/hashicorp/vault/sdk/helper/consts" "github.com/hashicorp/vault/sdk/helper/jsonutil" "github.com/hashicorp/vault/sdk/helper/logging" "github.com/hashicorp/vault/sdk/logical" "github.com/hashicorp/vault/sdk/physical" sr "github.com/hashicorp/vault/serviceregistration" "github.com/hashicorp/vault/shamir" "github.com/hashicorp/vault/vault/cluster" "github.com/hashicorp/vault/vault/quotas" vaultseal "github.com/hashicorp/vault/vault/seal" "github.com/patrickmn/go-cache" uberAtomic "go.uber.org/atomic" "google.golang.org/grpc" ) const ( // CoreLockPath is the path used to acquire a coordinating lock // for a highly-available deploy. CoreLockPath = "core/lock" // The poison pill is used as a check during certain scenarios to indicate // to standby nodes that they should seal poisonPillPath = "core/poison-pill" poisonPillDRPath = "core/poison-pill-dr" // coreLeaderPrefix is the prefix used for the UUID that contains // the currently elected leader. coreLeaderPrefix = "core/leader/" // coreKeyringCanaryPath is used as a canary to indicate to replicated // clusters that they need to perform a rekey operation synchronously; this // isn't keyring-canary to avoid ignoring it when ignoring core/keyring coreKeyringCanaryPath = "core/canary-keyring" indexHeaderHMACKeyPath = "core/index-header-hmac-key" ) var ( // ErrAlreadyInit is returned if the core is already // initialized. This prevents a re-initialization. ErrAlreadyInit = errors.New("Vault is already initialized") // ErrNotInit is returned if a non-initialized barrier // is attempted to be unsealed. ErrNotInit = errors.New("Vault is not initialized") // ErrInternalError is returned when we don't want to leak // any information about an internal error ErrInternalError = errors.New("internal error") // ErrHANotEnabled is returned if the operation only makes sense // in an HA setting ErrHANotEnabled = errors.New("Vault is not configured for highly-available mode") // manualStepDownSleepPeriod is how long to sleep after a user-initiated // step down of the active node, to prevent instantly regrabbing the lock. // It's var not const so that tests can manipulate it. manualStepDownSleepPeriod = 10 * time.Second // Functions only in the Enterprise version enterprisePostUnseal = enterprisePostUnsealImpl enterprisePreSeal = enterprisePreSealImpl enterpriseSetupFilteredPaths = enterpriseSetupFilteredPathsImpl enterpriseSetupQuotas = enterpriseSetupQuotasImpl startReplication = startReplicationImpl stopReplication = stopReplicationImpl LastWAL = lastWALImpl LastPerformanceWAL = lastPerformanceWALImpl PerformanceMerkleRoot = merkleRootImpl DRMerkleRoot = merkleRootImpl LastRemoteWAL = lastRemoteWALImpl LastRemoteUpstreamWAL = lastRemoteUpstreamWALImpl WaitUntilWALShipped = waitUntilWALShippedImpl storedLicenseCheck = func(c *Core, conf *CoreConfig) error { return nil } LicenseAutoloaded = func(*Core) bool { return false } LicenseInitCheck = func(*Core) error { return nil } LicenseSummary = func(*Core) (*LicenseState, error) { return nil, nil } LicenseReload = func(*Core) error { return nil } ) // NonFatalError is an error that can be returned during NewCore that should be // displayed but not cause a program exit type NonFatalError struct { Err error } func (e *NonFatalError) WrappedErrors() []error { return []error{e.Err} } func (e *NonFatalError) Error() string { return e.Err.Error() } // NewNonFatalError returns a new non-fatal error. func NewNonFatalError(err error) *NonFatalError { return &NonFatalError{Err: err} } // IsFatalError returns true if the given error is a fatal error. func IsFatalError(err error) bool { return !errwrap.ContainsType(err, new(NonFatalError)) } // ErrInvalidKey is returned if there is a user-based error with a provided // unseal key. This will be shown to the user, so should not contain // information that is sensitive. type ErrInvalidKey struct { Reason string } func (e *ErrInvalidKey) Error() string { return fmt.Sprintf("invalid key: %v", e.Reason) } type RegisterAuthFunc func(context.Context, time.Duration, string, *logical.Auth) error type activeAdvertisement struct { RedirectAddr string `json:"redirect_addr"` ClusterAddr string `json:"cluster_addr,omitempty"` ClusterCert []byte `json:"cluster_cert,omitempty"` ClusterKeyParams *certutil.ClusterKeyParams `json:"cluster_key_params,omitempty"` } type unlockInformation struct { Parts [][]byte Nonce string } type raftInformation struct { challenge *wrapping.EncryptedBlobInfo leaderClient *api.Client leaderBarrierConfig *SealConfig nonVoter bool joinInProgress bool } type migrationInformation struct { // seal to use during a migration operation. It is the // seal we're migrating *from*. seal Seal // unsealKey was the unseal key provided for the migration seal. // This will be set as the recovery key when migrating from shamir to auto-seal. // We don't need to do anything with it when migrating auto->shamir because // we don't store the shamir combined key for shamir seals, nor when // migrating auto->auto because then the recovery key doesn't change. unsealKey []byte } // Core is used as the central manager of Vault activity. It is the primary point of // interface for API handlers and is responsible for managing the logical and physical // backends, router, security barrier, and audit trails. type Core struct { entCore // The registry of builtin plugins is passed in here as an interface because // if it's used directly, it results in import cycles. builtinRegistry BuiltinRegistry // N.B.: This is used to populate a dev token down replication, as // otherwise, after replication is started, a dev would have to go through // the generate-root process simply to talk to the new follower cluster. devToken string // HABackend may be available depending on the physical backend ha physical.HABackend // storageType is the the storage type set in the storage configuration storageType string // redirectAddr is the address we advertise as leader if held redirectAddr string // clusterAddr is the address we use for clustering clusterAddr *atomic.Value // physical backend is the un-trusted backend with durable data physical physical.Backend // serviceRegistration is the ServiceRegistration network serviceRegistration sr.ServiceRegistration // underlyingPhysical will always point to the underlying backend // implementation. This is an un-trusted backend with durable data underlyingPhysical physical.Backend // seal is our seal, for seal configuration information seal Seal // raftJoinDoneCh is used by the raft retry join routine to inform unseal process // that the join is complete raftJoinDoneCh chan struct{} // postUnsealStarted informs the raft retry join routine that unseal key // validation is completed and post unseal has started so that it can complete // the join process when Shamir seal is in use postUnsealStarted *uint32 // raftInfo will contain information required for this node to join as a // peer to an existing raft cluster raftInfo *raftInformation // migrationInfo is used during (and possibly after) a seal migration. // This contains information about the seal we are migrating *from*. Even // post seal migration, provided the old seal is still in configuration // migrationInfo will be populated, which on enterprise may be necessary for // seal rewrap. migrationInfo *migrationInformation sealMigrationDone *uint32 // barrier is the security barrier wrapping the physical backend barrier SecurityBarrier // router is responsible for managing the mount points for logical backends. router *Router // logicalBackends is the mapping of backends to use for this core logicalBackends map[string]logical.Factory // credentialBackends is the mapping of backends to use for this core credentialBackends map[string]logical.Factory // auditBackends is the mapping of backends to use for this core auditBackends map[string]audit.Factory // stateLock protects mutable state stateLock DeadlockRWMutex sealed *uint32 standby bool perfStandby bool standbyDoneCh chan struct{} standbyStopCh *atomic.Value manualStepDownCh chan struct{} keepHALockOnStepDown *uint32 heldHALock physical.Lock // shutdownDoneCh is used to notify when Shutdown() completes shutdownDoneCh chan struct{} // unlockInfo has the keys provided to Unseal until the threshold number of parts is available, as well as the operation nonce unlockInfo *unlockInformation // generateRootProgress holds the shares until we reach enough // to verify the master key generateRootConfig *GenerateRootConfig generateRootProgress [][]byte generateRootLock sync.Mutex // These variables holds the config and shares we have until we reach // enough to verify the appropriate master key. Note that the same lock is // used; this isn't time-critical so this shouldn't be a problem. barrierRekeyConfig *SealConfig recoveryRekeyConfig *SealConfig rekeyLock sync.RWMutex // mounts is loaded after unseal since it is a protected // configuration mounts *MountTable // mountsLock is used to ensure that the mounts table does not // change underneath a calling function mountsLock sync.RWMutex // auth is loaded after unseal since it is a protected // configuration auth *MountTable // authLock is used to ensure that the auth table does not // change underneath a calling function authLock sync.RWMutex // audit is loaded after unseal since it is a protected // configuration audit *MountTable // auditLock is used to ensure that the audit table does not // change underneath a calling function auditLock sync.RWMutex // auditBroker is used to ingest the audit events and fan // out into the configured audit backends auditBroker *AuditBroker // auditedHeaders is used to configure which http headers // can be output in the audit logs auditedHeaders *AuditedHeadersConfig // systemBackend is the backend which is used to manage internal operations systemBackend *SystemBackend // cubbyholeBackend is the backend which manages the per-token storage cubbyholeBackend *CubbyholeBackend // systemBarrierView is the barrier view for the system backend systemBarrierView *BarrierView // expiration manager is used for managing LeaseIDs, // renewal, expiration and revocation expiration *ExpirationManager // rollback manager is used to run rollbacks periodically rollback *RollbackManager // policy store is used to manage named ACL policies policyStore *PolicyStore // token store is used to manage authentication tokens tokenStore *TokenStore // identityStore is used to manage client entities identityStore *IdentityStore // activityLog is used to track active client count activityLog *ActivityLog // metricsCh is used to stop the metrics streaming metricsCh chan struct{} // metricsMutex is used to prevent a race condition between // metrics emission and sealing leading to a nil pointer metricsMutex sync.Mutex // metricSink is the destination for all metrics that have // a cluster label. metricSink *metricsutil.ClusterMetricSink defaultLeaseTTL time.Duration maxLeaseTTL time.Duration // baseLogger is used to avoid ResetNamed as it strips useful prefixes in // e.g. testing baseLogger log.Logger logger log.Logger // Disables the trace display for Sentinel checks sentinelTraceDisabled bool // cachingDisabled indicates whether caches are disabled cachingDisabled bool // Cache stores the actual cache; we always have this but may bypass it if // disabled physicalCache physical.ToggleablePurgemonster // reloadFuncs is a map containing reload functions reloadFuncs map[string][]reloadutil.ReloadFunc // reloadFuncsLock controls access to the funcs reloadFuncsLock sync.RWMutex // wrappingJWTKey is the key used for generating JWTs containing response // wrapping information wrappingJWTKey *ecdsa.PrivateKey // // Cluster information // // Name clusterName string // ID clusterID uberAtomic.String // Specific cipher suites to use for clustering, if any clusterCipherSuites []uint16 // Used to modify cluster parameters clusterParamsLock sync.RWMutex // The private key stored in the barrier used for establishing // mutually-authenticated connections between Vault cluster members localClusterPrivateKey *atomic.Value // The local cluster cert localClusterCert *atomic.Value // The parsed form of the local cluster cert localClusterParsedCert *atomic.Value // The TCP addresses we should use for clustering clusterListenerAddrs []*net.TCPAddr // The handler to use for request forwarding clusterHandler http.Handler // Write lock used to ensure that we don't have multiple connections adjust // this value at the same time requestForwardingConnectionLock sync.RWMutex // Lock for the leader values, ensuring we don't run the parts of Leader() // that change things concurrently leaderParamsLock sync.RWMutex // Current cluster leader values clusterLeaderParams *atomic.Value // Info on cluster members clusterPeerClusterAddrsCache *cache.Cache // The context for the client rpcClientConnContext context.Context // The function for canceling the client connection rpcClientConnCancelFunc context.CancelFunc // The grpc ClientConn for RPC calls rpcClientConn *grpc.ClientConn // The grpc forwarding client rpcForwardingClient *forwardingClient // The UUID used to hold the leader lock. Only set on active node leaderUUID string // CORS Information corsConfig *CORSConfig // The active set of upstream cluster addresses; stored via the Echo // mechanism, loaded by the balancer atomicPrimaryClusterAddrs *atomic.Value atomicPrimaryFailoverAddrs *atomic.Value // replicationState keeps the current replication state cached for quick // lookup; activeNodeReplicationState stores the active value on standbys replicationState *uint32 activeNodeReplicationState *uint32 // uiConfig contains UI configuration uiConfig *UIConfig // rawEnabled indicates whether the Raw endpoint is enabled rawEnabled bool // pluginDirectory is the location vault will look for plugin binaries pluginDirectory string // pluginCatalog is used to manage plugin configurations pluginCatalog *PluginCatalog enableMlock bool // This can be used to trigger operations to stop running when Vault is // going to be shut down, stepped down, or sealed activeContext context.Context activeContextCancelFunc *atomic.Value // Stores the sealunwrapper for downgrade needs sealUnwrapper physical.Backend // unsealwithStoredKeysLock is a mutex that prevents multiple processes from // unsealing with stored keys are the same time. unsealWithStoredKeysLock sync.Mutex // Stores any funcs that should be run on successful postUnseal postUnsealFuncs []func() // Stores any funcs that should be run on successful barrier unseal in // recovery mode postRecoveryUnsealFuncs []func() error // replicationFailure is used to mark when replication has entered an // unrecoverable failure. replicationFailure *uint32 // disablePerfStanby is used to tell a standby not to attempt to become a // perf standby disablePerfStandby bool licensingStopCh chan struct{} // Stores loggers so we can reset the level allLoggers []log.Logger allLoggersLock sync.RWMutex // Can be toggled atomically to cause the core to never try to become // active, or give up active as soon as it gets it neverBecomeActive *uint32 // loadCaseSensitiveIdentityStore enforces the loading of identity store // artifacts in a case sensitive manner. To be used only in testing. loadCaseSensitiveIdentityStore bool // clusterListener starts up and manages connections on the cluster ports clusterListener *atomic.Value // Telemetry objects metricsHelper *metricsutil.MetricsHelper // raftFollowerStates tracks information about all the raft follower nodes. raftFollowerStates *raft.FollowerStates // Stop channel for raft TLS rotations raftTLSRotationStopCh chan struct{} // Stores the pending peers we are waiting to give answers pendingRaftPeers *sync.Map // rawConfig stores the config as-is from the provided server configuration. rawConfig *atomic.Value coreNumber int // secureRandomReader is the reader used for CSP operations secureRandomReader io.Reader recoveryMode bool clusterNetworkLayer cluster.NetworkLayer // PR1103disabled is used to test upgrade workflows: when set to true, // the correct behaviour for namespaced cubbyholes is disabled, so we // can test an upgrade to a version that includes the fixes from // https://github.com/hashicorp/vault-enterprise/pull/1103 PR1103disabled bool quotaManager *quotas.Manager clusterHeartbeatInterval time.Duration activityLogConfig ActivityLogCoreConfig // activeTime is set on active nodes indicating the time at which this node // became active. activeTime time.Time // KeyRotateGracePeriod is how long we allow an upgrade path // for standby instances before we delete the upgrade keys keyRotateGracePeriod *int64 autoRotateCancel context.CancelFunc // number of workers to use for lease revocation in the expiration manager numExpirationWorkers int IndexHeaderHMACKey uberAtomic.Value // disableAutopilot is used to disable the autopilot subsystem in raft storage disableAutopilot bool // enable/disable identifying response headers enableResponseHeaderHostname bool enableResponseHeaderRaftNodeID bool } func (c *Core) HAState() consts.HAState { switch { case c.perfStandby: return consts.PerfStandby case c.standby: return consts.Standby default: return consts.Active } } // CoreConfig is used to parameterize a core type CoreConfig struct { entCoreConfig DevToken string BuiltinRegistry BuiltinRegistry LogicalBackends map[string]logical.Factory CredentialBackends map[string]logical.Factory AuditBackends map[string]audit.Factory Physical physical.Backend StorageType string // May be nil, which disables HA operations HAPhysical physical.HABackend ServiceRegistration sr.ServiceRegistration // Seal is the configured seal, or if none is configured explicitly, a // shamir seal. In migration scenarios this is the new seal. Seal Seal // Unwrap seal is the optional seal marked "disabled"; this is the old // seal in migration scenarios. UnwrapSeal Seal SecureRandomReader io.Reader Logger log.Logger // Disables the trace display for Sentinel checks DisableSentinelTrace bool // Disables the LRU cache on the physical backend DisableCache bool // Disables mlock syscall DisableMlock bool // Custom cache size for the LRU cache on the physical backend, or zero for default CacheSize int // Set as the leader address for HA RedirectAddr string // Set as the cluster address for HA ClusterAddr string DefaultLeaseTTL time.Duration MaxLeaseTTL time.Duration ClusterName string ClusterCipherSuites string EnableUI bool // Enable the raw endpoint EnableRaw bool PluginDirectory string DisableSealWrap bool RawConfig *server.Config ReloadFuncs *map[string][]reloadutil.ReloadFunc ReloadFuncsLock *sync.RWMutex // Licensing License string LicensePath string LicensingConfig *LicensingConfig DisablePerformanceStandby bool DisableIndexing bool DisableKeyEncodingChecks bool AllLoggers []log.Logger // Telemetry objects MetricsHelper *metricsutil.MetricsHelper MetricSink *metricsutil.ClusterMetricSink RecoveryMode bool ClusterNetworkLayer cluster.NetworkLayer ClusterHeartbeatInterval time.Duration // Activity log controls ActivityLogConfig ActivityLogCoreConfig // number of workers to use for lease revocation in the expiration manager NumExpirationWorkers int // DisableAutopilot is used to disable autopilot subsystem in raft storage DisableAutopilot bool // Whether to send headers in the HTTP response showing hostname or raft node ID EnableResponseHeaderHostname bool EnableResponseHeaderRaftNodeID bool } // GetServiceRegistration returns the config's ServiceRegistration, or nil if it does // not exist. func (c *CoreConfig) GetServiceRegistration() sr.ServiceRegistration { // Check whether there is a ServiceRegistration explicitly configured if c.ServiceRegistration != nil { return c.ServiceRegistration } // Check if HAPhysical is configured and implements ServiceRegistration if c.HAPhysical != nil && c.HAPhysical.HAEnabled() { if disc, ok := c.HAPhysical.(sr.ServiceRegistration); ok { return disc } } // No service discovery is available. return nil } // CreateCore conducts static validations on the Core Config // and returns an uninitialized core. func CreateCore(conf *CoreConfig) (*Core, error) { if conf.HAPhysical != nil && conf.HAPhysical.HAEnabled() { if conf.RedirectAddr == "" { return nil, fmt.Errorf("missing API address, please set in configuration or via environment") } } if conf.DefaultLeaseTTL == 0 { conf.DefaultLeaseTTL = defaultLeaseTTL } if conf.MaxLeaseTTL == 0 { conf.MaxLeaseTTL = maxLeaseTTL } if conf.DefaultLeaseTTL > conf.MaxLeaseTTL { return nil, fmt.Errorf("cannot have DefaultLeaseTTL larger than MaxLeaseTTL") } // Validate the advertise addr if its given to us if conf.RedirectAddr != "" { u, err := url.Parse(conf.RedirectAddr) if err != nil { return nil, fmt.Errorf("redirect address is not valid url: %w", err) } if u.Scheme == "" { return nil, fmt.Errorf("redirect address must include scheme (ex. 'http')") } } // Make a default logger if not provided if conf.Logger == nil { conf.Logger = logging.NewVaultLogger(log.Trace) } // Make a default metric sink if not provided if conf.MetricSink == nil { conf.MetricSink = metricsutil.BlackholeSink() } // Instantiate a non-nil raw config if none is provided if conf.RawConfig == nil { conf.RawConfig = new(server.Config) } // secureRandomReader cannot be nil if conf.SecureRandomReader == nil { conf.SecureRandomReader = rand.Reader } clusterHeartbeatInterval := conf.ClusterHeartbeatInterval if clusterHeartbeatInterval == 0 { clusterHeartbeatInterval = 5 * time.Second } if conf.NumExpirationWorkers == 0 { conf.NumExpirationWorkers = numExpirationWorkersDefault } // Setup the core c := &Core{ entCore: entCore{}, devToken: conf.DevToken, physical: conf.Physical, serviceRegistration: conf.GetServiceRegistration(), underlyingPhysical: conf.Physical, storageType: conf.StorageType, redirectAddr: conf.RedirectAddr, clusterAddr: new(atomic.Value), clusterListener: new(atomic.Value), seal: conf.Seal, router: NewRouter(), sealed: new(uint32), sealMigrationDone: new(uint32), standby: true, standbyStopCh: new(atomic.Value), baseLogger: conf.Logger, logger: conf.Logger.Named("core"), defaultLeaseTTL: conf.DefaultLeaseTTL, maxLeaseTTL: conf.MaxLeaseTTL, sentinelTraceDisabled: conf.DisableSentinelTrace, cachingDisabled: conf.DisableCache, clusterName: conf.ClusterName, clusterNetworkLayer: conf.ClusterNetworkLayer, clusterPeerClusterAddrsCache: cache.New(3*clusterHeartbeatInterval, time.Second), enableMlock: !conf.DisableMlock, rawEnabled: conf.EnableRaw, shutdownDoneCh: make(chan struct{}), replicationState: new(uint32), atomicPrimaryClusterAddrs: new(atomic.Value), atomicPrimaryFailoverAddrs: new(atomic.Value), localClusterPrivateKey: new(atomic.Value), localClusterCert: new(atomic.Value), localClusterParsedCert: new(atomic.Value), activeNodeReplicationState: new(uint32), keepHALockOnStepDown: new(uint32), replicationFailure: new(uint32), disablePerfStandby: true, activeContextCancelFunc: new(atomic.Value), allLoggers: conf.AllLoggers, builtinRegistry: conf.BuiltinRegistry, neverBecomeActive: new(uint32), clusterLeaderParams: new(atomic.Value), metricsHelper: conf.MetricsHelper, metricSink: conf.MetricSink, secureRandomReader: conf.SecureRandomReader, rawConfig: new(atomic.Value), recoveryMode: conf.RecoveryMode, postUnsealStarted: new(uint32), raftJoinDoneCh: make(chan struct{}), clusterHeartbeatInterval: clusterHeartbeatInterval, activityLogConfig: conf.ActivityLogConfig, keyRotateGracePeriod: new(int64), numExpirationWorkers: conf.NumExpirationWorkers, raftFollowerStates: raft.NewFollowerStates(), disableAutopilot: conf.DisableAutopilot, enableResponseHeaderHostname: conf.EnableResponseHeaderHostname, enableResponseHeaderRaftNodeID: conf.EnableResponseHeaderRaftNodeID, } c.standbyStopCh.Store(make(chan struct{})) atomic.StoreUint32(c.sealed, 1) c.metricSink.SetGaugeWithLabels([]string{"core", "unsealed"}, 0, nil) c.allLoggers = append(c.allLoggers, c.logger) c.router.logger = c.logger.Named("router") c.allLoggers = append(c.allLoggers, c.router.logger) c.SetConfig(conf.RawConfig) atomic.StoreUint32(c.replicationState, uint32(consts.ReplicationDRDisabled|consts.ReplicationPerformanceDisabled)) c.localClusterCert.Store(([]byte)(nil)) c.localClusterParsedCert.Store((*x509.Certificate)(nil)) c.localClusterPrivateKey.Store((*ecdsa.PrivateKey)(nil)) c.clusterLeaderParams.Store((*ClusterLeaderParams)(nil)) c.clusterAddr.Store(conf.ClusterAddr) c.activeContextCancelFunc.Store((context.CancelFunc)(nil)) atomic.StoreInt64(c.keyRotateGracePeriod, int64(2*time.Minute)) switch conf.ClusterCipherSuites { case "tls13", "tls12": // Do nothing, let Go use the default case "": // Add in forward compatible TLS 1.3 suites, followed by handpicked 1.2 suites c.clusterCipherSuites = []uint16{ // 1.3 tls.TLS_AES_128_GCM_SHA256, tls.TLS_AES_256_GCM_SHA384, tls.TLS_CHACHA20_POLY1305_SHA256, // 1.2 tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, } default: suites, err := tlsutil.ParseCiphers(conf.ClusterCipherSuites) if err != nil { return nil, fmt.Errorf("error parsing cluster cipher suites: %w", err) } c.clusterCipherSuites = suites } // Load CORS config and provide a value for the core field. c.corsConfig = &CORSConfig{ core: c, Enabled: new(uint32), } if c.seal == nil { c.seal = NewDefaultSeal(&vaultseal.Access{ Wrapper: aeadwrapper.NewShamirWrapper(&wrapping.WrapperOptions{ Logger: c.logger.Named("shamir"), }), }) } c.seal.SetCore(c) return c, nil } // NewCore is used to construct a new core func NewCore(conf *CoreConfig) (*Core, error) { var err error c, err := CreateCore(conf) if err != nil { return nil, err } if err = coreInit(c, conf); err != nil { return nil, err } if !conf.DisableMlock { // Ensure our memory usage is locked into physical RAM if err := mlock.LockMemory(); err != nil { return nil, fmt.Errorf( "Failed to lock memory: %v\n\n"+ "This usually means that the mlock syscall is not available.\n"+ "Vault uses mlock to prevent memory from being swapped to\n"+ "disk. This requires root privileges as well as a machine\n"+ "that supports mlock. Please enable mlock on your system or\n"+ "disable Vault from using it. To disable Vault from using it,\n"+ "set the `disable_mlock` configuration option in your configuration\n"+ "file.", err) } } // Construct a new AES-GCM barrier c.barrier, err = NewAESGCMBarrier(c.physical) if err != nil { return nil, fmt.Errorf("barrier setup failed: %w", err) } if err := storedLicenseCheck(c, conf); err != nil { return nil, err } // We create the funcs here, then populate the given config with it so that // the caller can share state conf.ReloadFuncsLock = &c.reloadFuncsLock c.reloadFuncsLock.Lock() c.reloadFuncs = make(map[string][]reloadutil.ReloadFunc) c.reloadFuncsLock.Unlock() conf.ReloadFuncs = &c.reloadFuncs // All the things happening below this are not required in // recovery mode if c.recoveryMode { return c, nil } if conf.PluginDirectory != "" { c.pluginDirectory, err = filepath.Abs(conf.PluginDirectory) if err != nil { return nil, fmt.Errorf("core setup failed, could not verify plugin directory: %w", err) } } createSecondaries(c, conf) if conf.HAPhysical != nil && conf.HAPhysical.HAEnabled() { c.ha = conf.HAPhysical } logicalBackends := make(map[string]logical.Factory) for k, f := range conf.LogicalBackends { logicalBackends[k] = f } _, ok := logicalBackends["kv"] if !ok { logicalBackends["kv"] = PassthroughBackendFactory } logicalBackends["cubbyhole"] = CubbyholeBackendFactory logicalBackends[systemMountType] = func(ctx context.Context, config *logical.BackendConfig) (logical.Backend, error) { sysBackendLogger := conf.Logger.Named("system") c.AddLogger(sysBackendLogger) b := NewSystemBackend(c, sysBackendLogger) if err := b.Setup(ctx, config); err != nil { return nil, err } return b, nil } logicalBackends["identity"] = func(ctx context.Context, config *logical.BackendConfig) (logical.Backend, error) { identityLogger := conf.Logger.Named("identity") c.AddLogger(identityLogger) return NewIdentityStore(ctx, c, config, identityLogger) } addExtraLogicalBackends(c, logicalBackends) c.logicalBackends = logicalBackends credentialBackends := make(map[string]logical.Factory) for k, f := range conf.CredentialBackends { credentialBackends[k] = f } credentialBackends["token"] = func(ctx context.Context, config *logical.BackendConfig) (logical.Backend, error) { tsLogger := conf.Logger.Named("token") c.AddLogger(tsLogger) return NewTokenStore(ctx, tsLogger, c, config) } addExtraCredentialBackends(c, credentialBackends) c.credentialBackends = credentialBackends auditBackends := make(map[string]audit.Factory) for k, f := range conf.AuditBackends { auditBackends[k] = f } c.auditBackends = auditBackends uiStoragePrefix := systemBarrierPrefix + "ui" c.uiConfig = NewUIConfig(conf.EnableUI, physical.NewView(c.physical, uiStoragePrefix), NewBarrierView(c.barrier, uiStoragePrefix)) c.clusterListener.Store((*cluster.Listener)(nil)) quotasLogger := conf.Logger.Named("quotas") c.allLoggers = append(c.allLoggers, quotasLogger) c.quotaManager, err = quotas.NewManager(quotasLogger, c.quotaLeaseWalker, c.metricSink) if err != nil { return nil, err } err = c.adjustForSealMigration(conf.UnwrapSeal) if err != nil { return nil, err } return c, nil } // HostnameHeaderEnabled determines whether to add the X-Vault-Hostname header // to HTTP responses. func (c *Core) HostnameHeaderEnabled() bool { return c.enableResponseHeaderHostname } // RaftNodeIDHeaderEnabled determines whether to add the X-Vault-Raft-Node-ID header // to HTTP responses. func (c *Core) RaftNodeIDHeaderEnabled() bool { return c.enableResponseHeaderRaftNodeID } // Shutdown is invoked when the Vault instance is about to be terminated. It // should not be accessible as part of an API call as it will cause an availability // problem. It is only used to gracefully quit in the case of HA so that failover // happens as quickly as possible. func (c *Core) Shutdown() error { c.logger.Debug("shutdown called") err := c.sealInternal() c.stateLock.Lock() defer c.stateLock.Unlock() if c.shutdownDoneCh != nil { close(c.shutdownDoneCh) c.shutdownDoneCh = nil } return err } // ShutdownDone returns a channel that will be closed after Shutdown completes func (c *Core) ShutdownDone() <-chan struct{} { return c.shutdownDoneCh } // CORSConfig returns the current CORS configuration func (c *Core) CORSConfig() *CORSConfig { return c.corsConfig } func (c *Core) GetContext() (context.Context, context.CancelFunc) { c.stateLock.RLock() defer c.stateLock.RUnlock() return context.WithCancel(namespace.RootContext(c.activeContext)) } // Sealed checks if the Vault is current sealed func (c *Core) Sealed() bool { return atomic.LoadUint32(c.sealed) == 1 } // SecretProgress returns the number of keys provided so far func (c *Core) SecretProgress() (int, string) { c.stateLock.RLock() defer c.stateLock.RUnlock() switch c.unlockInfo { case nil: return 0, "" default: return len(c.unlockInfo.Parts), c.unlockInfo.Nonce } } // ResetUnsealProcess removes the current unlock parts from memory, to reset // the unsealing process func (c *Core) ResetUnsealProcess() { c.stateLock.Lock() defer c.stateLock.Unlock() c.unlockInfo = nil } func (c *Core) UnsealMigrate(key []byte) (bool, error) { err := c.unsealFragment(key, true) return !c.Sealed(), err } // Unseal is used to provide one of the key parts to unseal the Vault. func (c *Core) Unseal(key []byte) (bool, error) { err := c.unsealFragment(key, false) return !c.Sealed(), err } // unseal takes a key fragment and attempts to use it to unseal Vault. // Vault may remain unsealed afterwards even when no error is returned, // depending on whether enough key fragments were provided to meet the // target threshold. // // The provided key should be a recovery key fragment if the seal // is an autoseal, or a regular seal key fragment for shamir. In // migration scenarios "seal" in the preceding sentance refers to // the migration seal in c.migrationInfo.seal. // // We use getUnsealKey to work out if we have enough fragments, // and if we don't have enough we return early. Otherwise we get // back the combined key. // // For legacy shamir the combined key *is* the master key. For // shamir the combined key is used to decrypt the master key // read from storage. For autoseal the combined key isn't used // except to verify that the stored recovery key matches. // // In migration scenarios a side-effect of unsealing is that // the members of c.migrationInfo are populated (excluding // .seal, which must already be populated before unseal is called.) func (c *Core) unsealFragment(key []byte, migrate bool) error { defer metrics.MeasureSince([]string{"core", "unseal"}, time.Now()) c.stateLock.Lock() defer c.stateLock.Unlock() ctx := context.Background() if migrate && c.migrationInfo == nil { return fmt.Errorf("can't perform a seal migration, no migration seal found") } if migrate && c.isRaftUnseal() { return fmt.Errorf("can't perform a seal migration while joining a raft cluster") } if !migrate && c.migrationInfo != nil { done, err := c.sealMigrated(ctx) if err != nil { return fmt.Errorf("error checking to see if seal is migrated: %w", err) } if !done { return fmt.Errorf("migrate option not provided and seal migration is pending") } } c.logger.Debug("unseal key supplied", "migrate", migrate) // Explicitly check for init status. This also checks if the seal // configuration is valid (i.e. non-nil). init, err := c.Initialized(ctx) if err != nil { return err } if !init && !c.isRaftUnseal() { return ErrNotInit } // Verify the key length min, max := c.barrier.KeyLength() max += shamir.ShareOverhead if len(key) < min { return &ErrInvalidKey{fmt.Sprintf("key is shorter than minimum %d bytes", min)} } if len(key) > max { return &ErrInvalidKey{fmt.Sprintf("key is longer than maximum %d bytes", max)} } // Check if already unsealed if !c.Sealed() { return nil } sealToUse := c.seal if migrate { c.logger.Info("unsealing using migration seal") sealToUse = c.migrationInfo.seal } newKey, err := c.recordUnsealPart(key) if !newKey || err != nil { return err } // getUnsealKey returns either a recovery key (in the case of an autoseal) // or a master key (legacy shamir) or an unseal key (new-style shamir). combinedKey, err := c.getUnsealKey(ctx, sealToUse) if err != nil || combinedKey == nil { return err } if migrate { c.migrationInfo.unsealKey = combinedKey } if c.isRaftUnseal() { return c.unsealWithRaft(combinedKey) } masterKey, err := c.unsealKeyToMasterKeyPreUnseal(ctx, sealToUse, combinedKey) if err != nil { return err } return c.unsealInternal(ctx, masterKey) } func (c *Core) unsealWithRaft(combinedKey []byte) error { ctx := context.Background() if c.seal.BarrierType() == wrapping.Shamir { // If this is a legacy shamir seal this serves no purpose but it // doesn't hurt. err := c.seal.GetAccess().Wrapper.(*aeadwrapper.ShamirWrapper).SetAESGCMKeyBytes(combinedKey) if err != nil { return err } } switch c.raftInfo.joinInProgress { case true: // JoinRaftCluster is already trying to perform a join based on retry_join configuration. // Inform that routine that unseal key validation is complete so that it can continue to // try and join possible leader nodes, and wait for it to complete. atomic.StoreUint32(c.postUnsealStarted, 1) c.logger.Info("waiting for raft retry join process to complete") <-c.raftJoinDoneCh default: // This is the case for manual raft join. Send the answer to the leader node and // wait for data to start streaming in. if err := c.joinRaftSendAnswer(ctx, c.seal.GetAccess(), c.raftInfo); err != nil { return err } // Reset the state c.raftInfo = nil } go func() { var masterKey []byte keyringFound := false // Wait until we at least have the keyring before we attempt to // unseal the node. for { if !keyringFound { keys, err := c.underlyingPhysical.List(ctx, keyringPrefix) if err != nil { c.logger.Error("failed to list physical keys", "error", err) return } if strutil.StrListContains(keys, "keyring") { keyringFound = true } } if keyringFound && len(masterKey) == 0 { var err error masterKey, err = c.unsealKeyToMasterKeyPreUnseal(ctx, c.seal, combinedKey) if err != nil { c.logger.Error("failed to read master key", "error", err) return } } if keyringFound && len(masterKey) > 0 { err := c.unsealInternal(ctx, masterKey) if err != nil { c.logger.Error("failed to unseal", "error", err) } return } time.Sleep(1 * time.Second) } }() return nil } // recordUnsealPart takes in a key fragment, and returns true if it's a new fragment. func (c *Core) recordUnsealPart(key []byte) (bool, error) { // Check if we already have this piece if c.unlockInfo != nil { for _, existing := range c.unlockInfo.Parts { if subtle.ConstantTimeCompare(existing, key) == 1 { return false, nil } } } else { uuid, err := uuid.GenerateUUID() if err != nil { return false, err } c.unlockInfo = &unlockInformation{ Nonce: uuid, } } // Store this key c.unlockInfo.Parts = append(c.unlockInfo.Parts, key) return true, nil } // getUnsealKey uses key fragments recorded by recordUnsealPart and // returns the combined key if the key share threshold is met. // If the key fragments are part of a recovery key, also verify that // it matches the stored recovery key on disk. func (c *Core) getUnsealKey(ctx context.Context, seal Seal) ([]byte, error) { var config *SealConfig var err error switch { case seal.RecoveryKeySupported(): config, err = seal.RecoveryConfig(ctx) case c.isRaftUnseal(): // Ignore follower's seal config and refer to leader's barrier // configuration. config = c.raftInfo.leaderBarrierConfig default: config, err = seal.BarrierConfig(ctx) } if err != nil { return nil, err } // Check if we don't have enough keys to unlock, proceed through the rest of // the call only if we have met the threshold if len(c.unlockInfo.Parts) < config.SecretThreshold { if c.logger.IsDebug() { c.logger.Debug("cannot unseal, not enough keys", "keys", len(c.unlockInfo.Parts), "threshold", config.SecretThreshold, "nonce", c.unlockInfo.Nonce) } return nil, nil } defer func() { c.unlockInfo = nil }() // Recover the split key. recoveredKey is the shamir combined // key, or the single provided key if the threshold is 1. var unsealKey []byte if config.SecretThreshold == 1 { unsealKey = make([]byte, len(c.unlockInfo.Parts[0])) copy(unsealKey, c.unlockInfo.Parts[0]) } else { unsealKey, err = shamir.Combine(c.unlockInfo.Parts) if err != nil { return nil, fmt.Errorf("failed to compute combined key: %w", err) } } if seal.RecoveryKeySupported() { if err := seal.VerifyRecoveryKey(ctx, unsealKey); err != nil { return nil, err } } return unsealKey, nil } // sealMigrated must be called with the stateLock held. It returns true if // the seal configured in HCL and the seal configured in storage match. // For the auto->auto same seal migration scenario, it will return false even // if the preceding conditions are true but we cannot decrypt the master key // in storage using the configured seal. func (c *Core) sealMigrated(ctx context.Context) (bool, error) { if atomic.LoadUint32(c.sealMigrationDone) == 1 { return true, nil } existBarrierSealConfig, existRecoverySealConfig, err := c.PhysicalSealConfigs(ctx) if err != nil { return false, err } if existBarrierSealConfig.Type != c.seal.BarrierType() { return false, nil } if c.seal.RecoveryKeySupported() && existRecoverySealConfig.Type != c.seal.RecoveryType() { return false, nil } if c.seal.BarrierType() != c.migrationInfo.seal.BarrierType() { return true, nil } // The above checks can handle the auto->shamir and shamir->auto // and auto1->auto2 cases. For auto1->auto1, we need to actually try // to read and decrypt the keys. keysMig, errMig := c.migrationInfo.seal.GetStoredKeys(ctx) keys, err := c.seal.GetStoredKeys(ctx) switch { case len(keys) > 0 && err == nil: return true, nil case len(keysMig) > 0 && errMig == nil: return false, nil case errors.Is(err, &ErrDecrypt{}) && errors.Is(errMig, &ErrDecrypt{}): return false, fmt.Errorf("decrypt error, neither the old nor new seal can read stored keys: old seal err=%v, new seal err=%v", errMig, err) default: return false, fmt.Errorf("neither the old nor new seal can read stored keys: old seal err=%v, new seal err=%v", errMig, err) } } // migrateSeal must be called with the stateLock held. func (c *Core) migrateSeal(ctx context.Context) error { if c.migrationInfo == nil { return nil } ok, err := c.sealMigrated(ctx) if err != nil { return fmt.Errorf("error checking if seal is migrated or not: %w", err) } if ok { c.logger.Info("migration is already performed") return nil } c.logger.Info("seal migration initiated") switch { case c.migrationInfo.seal.RecoveryKeySupported() && c.seal.RecoveryKeySupported(): c.logger.Info("migrating from one auto-unseal to another", "from", c.migrationInfo.seal.BarrierType(), "to", c.seal.BarrierType()) // Set the recovery and barrier keys to be the same. recoveryKey, err := c.migrationInfo.seal.RecoveryKey(ctx) if err != nil { return fmt.Errorf("error getting recovery key to set on new seal: %w", err) } if err := c.seal.SetRecoveryKey(ctx, recoveryKey); err != nil { return fmt.Errorf("error setting new recovery key information during migrate: %w", err) } barrierKeys, err := c.migrationInfo.seal.GetStoredKeys(ctx) if err != nil { return fmt.Errorf("error getting stored keys to set on new seal: %w", err) } if err := c.seal.SetStoredKeys(ctx, barrierKeys); err != nil { return fmt.Errorf("error setting new barrier key information during migrate: %w", err) } case c.migrationInfo.seal.RecoveryKeySupported(): c.logger.Info("migrating from one auto-unseal to shamir", "from", c.migrationInfo.seal.BarrierType()) // Auto to Shamir, since recovery key isn't supported on new seal recoveryKey, err := c.migrationInfo.seal.RecoveryKey(ctx) if err != nil { return fmt.Errorf("error getting recovery key to set on new seal: %w", err) } // We have recovery keys; we're going to use them as the new shamir KeK. err = c.seal.GetAccess().Wrapper.(*aeadwrapper.ShamirWrapper).SetAESGCMKeyBytes(recoveryKey) if err != nil { return fmt.Errorf("failed to set master key in seal: %w", err) } barrierKeys, err := c.migrationInfo.seal.GetStoredKeys(ctx) if err != nil { return fmt.Errorf("error getting stored keys to set on new seal: %w", err) } if err := c.seal.SetStoredKeys(ctx, barrierKeys); err != nil { return fmt.Errorf("error setting new barrier key information during migrate: %w", err) } case c.seal.RecoveryKeySupported(): c.logger.Info("migrating from shamir to auto-unseal", "to", c.seal.BarrierType()) // Migration is happening from shamir -> auto. In this case use the shamir // combined key that was used to store the master key as the new recovery key. if err := c.seal.SetRecoveryKey(ctx, c.migrationInfo.unsealKey); err != nil { return fmt.Errorf("error setting new recovery key information: %w", err) } // Generate a new master key newMasterKey, err := c.barrier.GenerateKey(c.secureRandomReader) if err != nil { return fmt.Errorf("error generating new master key: %w", err) } // Rekey the barrier. This handles the case where the shamir seal we're // migrating from was a legacy seal without a stored master key. if err := c.barrier.Rekey(ctx, newMasterKey); err != nil { return fmt.Errorf("error rekeying barrier during migration: %w", err) } // Store the new master key if err := c.seal.SetStoredKeys(ctx, [][]byte{newMasterKey}); err != nil { return fmt.Errorf("error storing new master key: %w", err) } default: return errors.New("unhandled migration case (shamir to shamir)") } err = c.migrateSealConfig(ctx) if err != nil { return fmt.Errorf("error storing new seal configs: %w", err) } // Flag migration performed for seal-rewrap later atomic.StoreUint32(c.sealMigrationDone, 1) c.logger.Info("seal migration complete") return nil } // unsealInternal takes in the master key and attempts to unseal the barrier. // N.B.: This must be called with the state write lock held. func (c *Core) unsealInternal(ctx context.Context, masterKey []byte) error { // Attempt to unlock if err := c.barrier.Unseal(ctx, masterKey); err != nil { return err } if err := preUnsealInternal(ctx, c); err != nil { return err } if err := c.startClusterListener(ctx); err != nil { return err } if err := c.startRaftBackend(ctx); err != nil { return err } if err := c.setupReplicationResolverHandler(); err != nil { c.logger.Warn("failed to start replication resolver server", "error", err) } // Do post-unseal setup if HA is not enabled if c.ha == nil { // We still need to set up cluster info even if it's not part of a // cluster right now. This also populates the cached cluster object. if err := c.setupCluster(ctx); err != nil { c.logger.Error("cluster setup failed", "error", err) c.barrier.Seal() c.logger.Warn("vault is sealed") return err } if err := c.migrateSeal(ctx); err != nil { c.logger.Error("seal migration error", "error", err) c.barrier.Seal() c.logger.Warn("vault is sealed") return err } ctx, ctxCancel := context.WithCancel(namespace.RootContext(nil)) if err := c.postUnseal(ctx, ctxCancel, standardUnsealStrategy{}); err != nil { c.logger.Error("post-unseal setup failed", "error", err) c.barrier.Seal() c.logger.Warn("vault is sealed") return err } // Force a cache bust here, which will also run migration code if c.seal.RecoveryKeySupported() { c.seal.SetRecoveryConfig(ctx, nil) } c.standby = false } else { // Go to standby mode, wait until we are active to unseal c.standbyDoneCh = make(chan struct{}) c.manualStepDownCh = make(chan struct{}, 1) c.standbyStopCh.Store(make(chan struct{})) go c.runStandby(c.standbyDoneCh, c.manualStepDownCh, c.standbyStopCh.Load().(chan struct{})) } // Success! atomic.StoreUint32(c.sealed, 0) c.metricSink.SetGaugeWithLabels([]string{"core", "unsealed"}, 1, nil) if c.logger.IsInfo() { c.logger.Info("vault is unsealed") } if c.serviceRegistration != nil { if err := c.serviceRegistration.NotifySealedStateChange(false); err != nil { if c.logger.IsWarn() { c.logger.Warn("failed to notify unsealed status", "error", err) } } if err := c.serviceRegistration.NotifyInitializedStateChange(true); err != nil { if c.logger.IsWarn() { c.logger.Warn("failed to notify initialized status", "error", err) } } } return nil } // SealWithRequest takes in a logical.Request, acquires the lock, and passes // through to sealInternal func (c *Core) SealWithRequest(httpCtx context.Context, req *logical.Request) error { defer metrics.MeasureSince([]string{"core", "seal-with-request"}, time.Now()) if c.Sealed() { return nil } c.stateLock.RLock() // This will unlock the read lock // We use background context since we may not be active ctx, cancel := context.WithCancel(namespace.RootContext(nil)) defer cancel() go func() { select { case <-ctx.Done(): case <-httpCtx.Done(): cancel() } }() // This will unlock the read lock return c.sealInitCommon(ctx, req) } // Seal takes in a token and creates a logical.Request, acquires the lock, and // passes through to sealInternal func (c *Core) Seal(token string) error { defer metrics.MeasureSince([]string{"core", "seal"}, time.Now()) if c.Sealed() { return nil } c.stateLock.RLock() req := &logical.Request{ Operation: logical.UpdateOperation, Path: "sys/seal", ClientToken: token, } // This will unlock the read lock // We use background context since we may not be active return c.sealInitCommon(namespace.RootContext(nil), req) } // sealInitCommon is common logic for Seal and SealWithRequest and is used to // re-seal the Vault. This requires the Vault to be unsealed again to perform // any further operations. Note: this function will read-unlock the state lock. func (c *Core) sealInitCommon(ctx context.Context, req *logical.Request) (retErr error) { defer metrics.MeasureSince([]string{"core", "seal-internal"}, time.Now()) var unlocked bool defer func() { if !unlocked { c.stateLock.RUnlock() } }() if req == nil { return errors.New("nil request to seal") } // Since there is no token store in standby nodes, sealing cannot be done. // Ideally, the request has to be forwarded to leader node for validation // and the operation should be performed. But for now, just returning with // an error and recommending a vault restart, which essentially does the // same thing. if c.standby { c.logger.Error("vault cannot seal when in standby mode; please restart instead") return errors.New("vault cannot seal when in standby mode; please restart instead") } err := c.PopulateTokenEntry(ctx, req) if err != nil { if errwrap.Contains(err, logical.ErrPermissionDenied.Error()) { return logical.ErrPermissionDenied } return logical.ErrInvalidRequest } acl, te, entity, identityPolicies, err := c.fetchACLTokenEntryAndEntity(ctx, req) if err != nil { return err } // Audit-log the request before going any further auth := &logical.Auth{ ClientToken: req.ClientToken, Accessor: req.ClientTokenAccessor, } if te != nil { auth.IdentityPolicies = identityPolicies[te.NamespaceID] delete(identityPolicies, te.NamespaceID) auth.ExternalNamespacePolicies = identityPolicies auth.TokenPolicies = te.Policies auth.Policies = append(te.Policies, identityPolicies[te.NamespaceID]...) auth.Metadata = te.Meta auth.DisplayName = te.DisplayName auth.EntityID = te.EntityID auth.TokenType = te.Type } logInput := &logical.LogInput{ Auth: auth, Request: req, } if err := c.auditBroker.LogRequest(ctx, logInput, c.auditedHeaders); err != nil { c.logger.Error("failed to audit request", "request_path", req.Path, "error", err) return errors.New("failed to audit request, cannot continue") } if entity != nil && entity.Disabled { c.logger.Warn("permission denied as the entity on the token is disabled") return logical.ErrPermissionDenied } if te != nil && te.EntityID != "" && entity == nil { c.logger.Warn("permission denied as the entity on the token is invalid") return logical.ErrPermissionDenied } // Attempt to use the token (decrement num_uses) // On error bail out; if the token has been revoked, bail out too if te != nil { te, err = c.tokenStore.UseToken(ctx, te) if err != nil { c.logger.Error("failed to use token", "error", err) return ErrInternalError } if te == nil { // Token is no longer valid return logical.ErrPermissionDenied } } // Verify that this operation is allowed authResults := c.performPolicyChecks(ctx, acl, te, req, entity, &PolicyCheckOpts{ RootPrivsRequired: true, }) if !authResults.Allowed { retErr = multierror.Append(retErr, authResults.Error) if authResults.Error.ErrorOrNil() == nil || authResults.DeniedError { retErr = multierror.Append(retErr, logical.ErrPermissionDenied) } return retErr } if te != nil && te.NumUses == tokenRevocationPending { // Token needs to be revoked. We do this immediately here because // we won't have a token store after sealing. leaseID, err := c.expiration.CreateOrFetchRevocationLeaseByToken(c.activeContext, te) if err == nil { err = c.expiration.Revoke(c.activeContext, leaseID) } if err != nil { c.logger.Error("token needed revocation before seal but failed to revoke", "error", err) retErr = multierror.Append(retErr, ErrInternalError) } } // Unlock; sealing will grab the lock when needed unlocked = true c.stateLock.RUnlock() sealErr := c.sealInternal() if sealErr != nil { retErr = multierror.Append(retErr, sealErr) } return } // UIEnabled returns if the UI is enabled func (c *Core) UIEnabled() bool { return c.uiConfig.Enabled() } // UIHeaders returns configured UI headers func (c *Core) UIHeaders() (http.Header, error) { return c.uiConfig.Headers(context.Background()) } // sealInternal is an internal method used to seal the vault. It does not do // any authorization checking. func (c *Core) sealInternal() error { return c.sealInternalWithOptions(true, false, true) } func (c *Core) sealInternalWithOptions(grabStateLock, keepHALock, performCleanup bool) error { // Mark sealed, and if already marked return if swapped := atomic.CompareAndSwapUint32(c.sealed, 0, 1); !swapped { return nil } c.metricSink.SetGaugeWithLabels([]string{"core", "unsealed"}, 0, nil) c.logger.Info("marked as sealed") // Clear forwarding clients c.requestForwardingConnectionLock.Lock() c.clearForwardingClients() c.requestForwardingConnectionLock.Unlock() activeCtxCancel := c.activeContextCancelFunc.Load().(context.CancelFunc) cancelCtxAndLock := func() { doneCh := make(chan struct{}) go func() { select { case <-doneCh: // Attempt to drain any inflight requests case <-time.After(DefaultMaxRequestDuration): if activeCtxCancel != nil { activeCtxCancel() } } }() c.stateLock.Lock() close(doneCh) // Stop requests from processing if activeCtxCancel != nil { activeCtxCancel() } } // Do pre-seal teardown if HA is not enabled if c.ha == nil { if grabStateLock { cancelCtxAndLock() defer c.stateLock.Unlock() } // Even in a non-HA context we key off of this for some things c.standby = true // Stop requests from processing if activeCtxCancel != nil { activeCtxCancel() } if err := c.preSeal(); err != nil { c.logger.Error("pre-seal teardown failed", "error", err) return fmt.Errorf("internal error") } } else { // If we are keeping the lock we already have the state write lock // held. Otherwise grab it here so that when stopCh is triggered we are // locked. if keepHALock { atomic.StoreUint32(c.keepHALockOnStepDown, 1) } if grabStateLock { cancelCtxAndLock() defer c.stateLock.Unlock() } // If we are trying to acquire the lock, force it to return with nil so // runStandby will exit // If we are active, signal the standby goroutine to shut down and wait // for completion. We have the state lock here so nothing else should // be toggling standby status. close(c.standbyStopCh.Load().(chan struct{})) c.logger.Debug("finished triggering standbyStopCh for runStandby") // Wait for runStandby to stop <-c.standbyDoneCh atomic.StoreUint32(c.keepHALockOnStepDown, 0) c.logger.Debug("runStandby done") } c.teardownReplicationResolverHandler() // Perform additional cleanup upon sealing. if performCleanup { if raftBackend := c.getRaftBackend(); raftBackend != nil { if err := raftBackend.TeardownCluster(c.getClusterListener()); err != nil { c.logger.Error("error stopping storage cluster", "error", err) return err } } // Stop the cluster listener c.stopClusterListener() } c.logger.Debug("sealing barrier") if err := c.barrier.Seal(); err != nil { c.logger.Error("error sealing barrier", "error", err) return err } if c.serviceRegistration != nil { if err := c.serviceRegistration.NotifySealedStateChange(true); err != nil { if c.logger.IsWarn() { c.logger.Warn("failed to notify sealed status", "error", err) } } } if c.quotaManager != nil { if err := c.quotaManager.Reset(); err != nil { c.logger.Error("error resetting quota manager", "error", err) } } postSealInternal(c) c.logger.Info("vault is sealed") return nil } type UnsealStrategy interface { unseal(context.Context, log.Logger, *Core) error } type standardUnsealStrategy struct{} func (s standardUnsealStrategy) unseal(ctx context.Context, logger log.Logger, c *Core) error { // Clear forwarding clients; we're active c.requestForwardingConnectionLock.Lock() c.clearForwardingClients() c.requestForwardingConnectionLock.Unlock() // Mark the active time. We do this first so it can be correlated to the logs // for the active startup. c.activeTime = time.Now().UTC() if err := postUnsealPhysical(c); err != nil { return err } if err := enterprisePostUnseal(c, false); err != nil { return err } if !c.ReplicationState().HasState(consts.ReplicationPerformanceSecondary | consts.ReplicationDRSecondary) { // Only perf primarys should write feature flags, but we do it by // excluding other states so that we don't have to change it when // a non-replicated cluster becomes a primary. if err := c.persistFeatureFlags(ctx); err != nil { return err } } if c.autoRotateCancel == nil { var autoRotateCtx context.Context autoRotateCtx, c.autoRotateCancel = context.WithCancel(c.activeContext) go c.autoRotateBarrierLoop(autoRotateCtx) } if !c.IsDRSecondary() { if err := c.ensureWrappingKey(ctx); err != nil { return err } } if err := c.setupPluginCatalog(ctx); err != nil { return err } if err := c.loadMounts(ctx); err != nil { return err } if err := enterpriseSetupFilteredPaths(c); err != nil { return err } if err := c.setupMounts(ctx); err != nil { return err } if err := c.setupPolicyStore(ctx); err != nil { return err } if err := c.loadCORSConfig(ctx); err != nil { return err } if err := c.loadCredentials(ctx); err != nil { return err } if err := enterpriseSetupFilteredPaths(c); err != nil { return err } if err := c.setupCredentials(ctx); err != nil { return err } if err := c.setupQuotas(ctx, false); err != nil { return err } if !c.IsDRSecondary() { if err := c.startRollback(); err != nil { return err } var expirationStrategy ExpireLeaseStrategy if os.Getenv("VAULT_LEASE_USE_LEGACY_REVOCATION_STRATEGY") != "" { expirationStrategy = expireLeaseStrategyRevoke } else { expirationStrategy = expireLeaseStrategyFairsharing } if err := c.setupExpiration(expirationStrategy); err != nil { return err } if err := c.loadAudits(ctx); err != nil { return err } if err := c.setupAudits(ctx); err != nil { return err } if err := c.loadIdentityStoreArtifacts(ctx); err != nil { return err } if err := loadMFAConfigs(ctx, c); err != nil { return err } if err := c.setupAuditedHeadersConfig(ctx); err != nil { return err } // not waiting on wg to avoid changing existing behavior var wg sync.WaitGroup if err := c.setupActivityLog(ctx, &wg); err != nil { return err } } else { c.auditBroker = NewAuditBroker(c.logger) } if !c.ReplicationState().HasState(consts.ReplicationPerformanceSecondary | consts.ReplicationDRSecondary) { // Cannot do this above, as we need other resources like mounts to be setup if err := c.setupPluginReload(); err != nil { return err } } if c.getClusterListener() != nil && (c.ha != nil || shouldStartClusterListener(c)) { if err := c.setupRaftActiveNode(ctx); err != nil { return err } if err := c.startForwarding(ctx); err != nil { return err } } c.clusterParamsLock.Lock() defer c.clusterParamsLock.Unlock() if err := startReplication(c); err != nil { return err } return nil } // postUnseal is invoked on the active node, and performance standby nodes, // after the barrier is unsealed, but before // allowing any user operations. This allows us to setup any state that // requires the Vault to be unsealed such as mount tables, logical backends, // credential stores, etc. func (c *Core) postUnseal(ctx context.Context, ctxCancelFunc context.CancelFunc, unsealer UnsealStrategy) (retErr error) { defer metrics.MeasureSince([]string{"core", "post_unseal"}, time.Now()) // Clear any out c.postUnsealFuncs = nil // Create a new request context c.activeContext = ctx c.activeContextCancelFunc.Store(ctxCancelFunc) defer func() { if retErr != nil { ctxCancelFunc() c.preSeal() } }() c.logger.Info("post-unseal setup starting") // Enable the cache c.physicalCache.Purge(ctx) if !c.cachingDisabled { c.physicalCache.SetEnabled(true) } // Purge these for safety in case of a rekey c.seal.SetBarrierConfig(ctx, nil) if c.seal.RecoveryKeySupported() { c.seal.SetRecoveryConfig(ctx, nil) } if err := unsealer.unseal(ctx, c.logger, c); err != nil { return err } // Automatically re-encrypt the keys used for auto unsealing when the // seal's encryption key changes. The regular rotation of cryptographic // keys is a NIST recommendation. Access to prior keys for decryption // is normally supported for a configurable time period. Re-encrypting // the keys used for auto unsealing ensures Vault and its data will // continue to be accessible even after prior seal keys are destroyed. if seal, ok := c.seal.(*autoSeal); ok { if err := seal.UpgradeKeys(c.activeContext); err != nil { c.logger.Warn("post-unseal upgrade seal keys failed", "error", err) } } c.metricsCh = make(chan struct{}) go c.emitMetrics(c.metricsCh) // This is intentionally the last block in this function. We want to allow // writes just before allowing client requests, to ensure everything has // been set up properly before any writes can have happened. for _, v := range c.postUnsealFuncs { v() } if atomic.LoadUint32(c.sealMigrationDone) == 1 { if err := c.postSealMigration(ctx); err != nil { c.logger.Warn("post-unseal post seal migration failed", "error", err) } } c.logger.Info("post-unseal setup complete") return nil } // preSeal is invoked before the barrier is sealed, allowing // for any state teardown required. func (c *Core) preSeal() error { defer metrics.MeasureSince([]string{"core", "pre_seal"}, time.Now()) c.logger.Info("pre-seal teardown starting") // Clear any pending funcs c.postUnsealFuncs = nil c.activeTime = time.Time{} // Clear any rekey progress c.barrierRekeyConfig = nil c.recoveryRekeyConfig = nil if c.metricsCh != nil { close(c.metricsCh) c.metricsCh = nil } var result error c.stopForwarding() c.stopRaftActiveNode() c.clusterParamsLock.Lock() if err := stopReplication(c); err != nil { result = multierror.Append(result, fmt.Errorf("error stopping replication: %w", err)) } c.clusterParamsLock.Unlock() if err := c.teardownAudits(); err != nil { result = multierror.Append(result, fmt.Errorf("error tearing down audits: %w", err)) } if err := c.stopExpiration(); err != nil { result = multierror.Append(result, fmt.Errorf("error stopping expiration: %w", err)) } c.stopActivityLog() if err := c.teardownCredentials(context.Background()); err != nil { result = multierror.Append(result, fmt.Errorf("error tearing down credentials: %w", err)) } if err := c.teardownPolicyStore(); err != nil { result = multierror.Append(result, fmt.Errorf("error tearing down policy store: %w", err)) } if err := c.stopRollback(); err != nil { result = multierror.Append(result, fmt.Errorf("error stopping rollback: %w", err)) } if err := c.unloadMounts(context.Background()); err != nil { result = multierror.Append(result, fmt.Errorf("error unloading mounts: %w", err)) } if err := enterprisePreSeal(c); err != nil { result = multierror.Append(result, err) } if c.autoRotateCancel != nil { c.autoRotateCancel() c.autoRotateCancel = nil } preSealPhysical(c) c.logger.Info("pre-seal teardown complete") return result } func enterprisePostUnsealImpl(c *Core, isStandby bool) error { return nil } func enterprisePreSealImpl(c *Core) error { return nil } func enterpriseSetupFilteredPathsImpl(c *Core) error { return nil } func enterpriseSetupQuotasImpl(ctx context.Context, c *Core) error { return nil } func startReplicationImpl(c *Core) error { return nil } func stopReplicationImpl(c *Core) error { return nil } func (c *Core) ReplicationState() consts.ReplicationState { return consts.ReplicationState(atomic.LoadUint32(c.replicationState)) } func (c *Core) ActiveNodeReplicationState() consts.ReplicationState { return consts.ReplicationState(atomic.LoadUint32(c.activeNodeReplicationState)) } func (c *Core) SealAccess() *SealAccess { return NewSealAccess(c.seal) } // StorageType returns a string equal to the storage configuration's type. func (c *Core) StorageType() string { return c.storageType } func (c *Core) Logger() log.Logger { return c.logger } func (c *Core) BarrierKeyLength() (min, max int) { min, max = c.barrier.KeyLength() max += shamir.ShareOverhead return } func (c *Core) AuditedHeadersConfig() *AuditedHeadersConfig { return c.auditedHeaders } func waitUntilWALShippedImpl(ctx context.Context, c *Core, index uint64) bool { return true } func merkleRootImpl(c *Core) string { return "" } func lastWALImpl(c *Core) uint64 { return 0 } func lastPerformanceWALImpl(c *Core) uint64 { return 0 } func lastRemoteWALImpl(c *Core) uint64 { return 0 } func lastRemoteUpstreamWALImpl(c *Core) uint64 { return 0 } func (c *Core) PhysicalSealConfigs(ctx context.Context) (*SealConfig, *SealConfig, error) { pe, err := c.physical.Get(ctx, barrierSealConfigPath) if err != nil { return nil, nil, fmt.Errorf("failed to fetch barrier seal configuration at migration check time: %w", err) } if pe == nil { return nil, nil, nil } barrierConf := new(SealConfig) if err := jsonutil.DecodeJSON(pe.Value, barrierConf); err != nil { return nil, nil, fmt.Errorf("failed to decode barrier seal configuration at migration check time: %w", err) } err = barrierConf.Validate() if err != nil { return nil, nil, fmt.Errorf("failed to validate barrier seal configuration at migration check time: %w", err) } // In older versions of vault the default seal would not store a type. This // is here to offer backwards compatibility for older seal configs. if barrierConf.Type == "" { barrierConf.Type = wrapping.Shamir } var recoveryConf *SealConfig pe, err = c.physical.Get(ctx, recoverySealConfigPlaintextPath) if err != nil { return nil, nil, fmt.Errorf("failed to fetch seal configuration at migration check time: %w", err) } if pe != nil { recoveryConf = &SealConfig{} if err := jsonutil.DecodeJSON(pe.Value, recoveryConf); err != nil { return nil, nil, fmt.Errorf("failed to decode seal configuration at migration check time: %w", err) } err = recoveryConf.Validate() if err != nil { return nil, nil, fmt.Errorf("failed to validate seal configuration at migration check time: %w", err) } // In older versions of vault the default seal would not store a type. This // is here to offer backwards compatibility for older seal configs. if recoveryConf.Type == "" { recoveryConf.Type = wrapping.Shamir } } return barrierConf, recoveryConf, nil } // adjustForSealMigration takes the unwrapSeal, which is nil if (a) we're not // configured for seal migration or (b) we might be doing a seal migration away // from shamir. It will only be non-nil if there is a configured seal with // the config key disabled=true, which implies a migration away from autoseal. // // For case (a), the common case, we expect that the stored barrier // config matches the seal type, in which case we simply return nil. If they // don't match, and the stored seal config is of type Shamir but the configured // seal is not Shamir, that is case (b) and we make an unwrapSeal of type Shamir. // Any other unwrapSeal=nil scenario is treated as an error. // // Given a non-nil unwrapSeal or case (b), we setup c.migrationInfo to prepare // for a migration upon receiving a valid migration unseal request. We cannot // check at this time for already performed (or incomplete) migrations because // we haven't yet been unsealed, so we have no way of checking whether a // shamir seal works to read stored seal-encrypted data. // // The assumption throughout is that the very last step of seal migration is // to write the new barrier/recovery stored seal config. func (c *Core) adjustForSealMigration(unwrapSeal Seal) error { ctx := context.Background() existBarrierSealConfig, existRecoverySealConfig, err := c.PhysicalSealConfigs(ctx) if err != nil { return fmt.Errorf("Error checking for existing seal: %s", err) } // If we don't have an existing config or if it's the deprecated auto seal // which needs an upgrade, skip out if existBarrierSealConfig == nil || existBarrierSealConfig.Type == wrapping.HSMAutoDeprecated { return nil } if unwrapSeal == nil { // With unwrapSeal==nil, either we're not migrating, or we're migrating // from shamir. switch { case existBarrierSealConfig.Type == c.seal.BarrierType(): // We have the same barrier type and the unwrap seal is nil so we're not // migrating from same to same, IOW we assume it's not a migration. return nil case c.seal.BarrierType() == wrapping.Shamir: // The stored barrier config is not shamir, there is no disabled seal // in config, and either no configured seal (which equates to Shamir) // or an explicitly configured Shamir seal. return fmt.Errorf("cannot seal migrate from %q to Shamir, no disabled seal in configuration", existBarrierSealConfig.Type) case existBarrierSealConfig.Type == wrapping.Shamir: // The configured seal is not Shamir, the stored seal config is Shamir. // This is a migration away from Shamir. unwrapSeal = NewDefaultSeal(&vaultseal.Access{ Wrapper: aeadwrapper.NewShamirWrapper(&wrapping.WrapperOptions{ Logger: c.logger.Named("shamir"), }), }) default: // We know at this point that there is a configured non-Shamir seal, // that it does not match the stored non-Shamir seal config, and that // there is no explicit disabled seal stanza. return fmt.Errorf("cannot seal migrate from %q to %q, no disabled seal in configuration", existBarrierSealConfig.Type, c.seal.BarrierType()) } } else { // If we're not coming from Shamir we expect the previous seal to be // in the config and disabled. if unwrapSeal.BarrierType() == wrapping.Shamir { return errors.New("Shamir seals cannot be set disabled (they should simply not be set)") } } // If we've reached this point it's a migration attempt and we should have both // c.migrationInfo.seal (old seal) and c.seal (new seal) populated. unwrapSeal.SetCore(c) // No stored recovery seal config found, what about the legacy recovery config? if existBarrierSealConfig.Type != wrapping.Shamir && existRecoverySealConfig == nil { entry, err := c.physical.Get(ctx, recoverySealConfigPath) if err != nil { return fmt.Errorf("failed to read %q recovery seal configuration: %w", existBarrierSealConfig.Type, err) } if entry == nil { return errors.New("Recovery seal configuration not found for existing seal") } return errors.New("Cannot migrate seals while using a legacy recovery seal config") } c.migrationInfo = &migrationInformation{ seal: unwrapSeal, } if existBarrierSealConfig.Type != c.seal.BarrierType() { // It's unnecessary to call this when doing an auto->auto // same-seal-type migration, since they'll have the same configs before // and after migration. c.adjustSealConfigDuringMigration(existBarrierSealConfig, existRecoverySealConfig) } c.initSealsForMigration() c.logger.Warn("entering seal migration mode; Vault will not automatically unseal even if using an autoseal", "from_barrier_type", c.migrationInfo.seal.BarrierType(), "to_barrier_type", c.seal.BarrierType()) return nil } func (c *Core) migrateSealConfig(ctx context.Context) error { existBarrierSealConfig, existRecoverySealConfig, err := c.PhysicalSealConfigs(ctx) if err != nil { return fmt.Errorf("failed to read existing seal configuration during migration: %v", err) } var bc, rc *SealConfig switch { case c.migrationInfo.seal.RecoveryKeySupported() && c.seal.RecoveryKeySupported(): // Migrating from auto->auto, copy the configs over bc, rc = existBarrierSealConfig, existRecoverySealConfig case c.migrationInfo.seal.RecoveryKeySupported(): // Migrating from auto->shamir, clone auto's recovery config and set // stored keys to 1. bc = existRecoverySealConfig.Clone() bc.StoredShares = 1 case c.seal.RecoveryKeySupported(): // Migrating from shamir->auto, set a new barrier config and set // recovery config to a clone of shamir's barrier config with stored // keys set to 0. bc = &SealConfig{ Type: c.seal.BarrierType(), SecretShares: 1, SecretThreshold: 1, StoredShares: 1, } rc = existBarrierSealConfig.Clone() rc.StoredShares = 0 } if err := c.seal.SetBarrierConfig(ctx, bc); err != nil { return fmt.Errorf("error storing barrier config after migration: %w", err) } if c.seal.RecoveryKeySupported() { if err := c.seal.SetRecoveryConfig(ctx, rc); err != nil { return fmt.Errorf("error storing recovery config after migration: %w", err) } } else if err := c.physical.Delete(ctx, recoverySealConfigPlaintextPath); err != nil { return fmt.Errorf("failed to delete old recovery seal configuration during migration: %w", err) } return nil } func (c *Core) adjustSealConfigDuringMigration(existBarrierSealConfig, existRecoverySealConfig *SealConfig) { switch { case c.migrationInfo.seal.RecoveryKeySupported() && existRecoverySealConfig != nil: // Migrating from auto->shamir, clone auto's recovery config and set // stored keys to 1. Unless the recover config doesn't exist, in which // case the migration is assumed to already have been performed. newSealConfig := existRecoverySealConfig.Clone() newSealConfig.StoredShares = 1 c.seal.SetCachedBarrierConfig(newSealConfig) case !c.migrationInfo.seal.RecoveryKeySupported() && c.seal.RecoveryKeySupported(): // Migrating from shamir->auto, set a new barrier config and set // recovery config to a clone of shamir's barrier config with stored // keys set to 0. newBarrierSealConfig := &SealConfig{ Type: c.seal.BarrierType(), SecretShares: 1, SecretThreshold: 1, StoredShares: 1, } c.seal.SetCachedBarrierConfig(newBarrierSealConfig) newRecoveryConfig := existBarrierSealConfig.Clone() newRecoveryConfig.StoredShares = 0 c.seal.SetCachedRecoveryConfig(newRecoveryConfig) } } func (c *Core) unsealKeyToMasterKeyPostUnseal(ctx context.Context, combinedKey []byte) ([]byte, error) { return c.unsealKeyToMasterKey(ctx, c.seal, combinedKey, true, false) } func (c *Core) unsealKeyToMasterKeyPreUnseal(ctx context.Context, seal Seal, combinedKey []byte) ([]byte, error) { return c.unsealKeyToMasterKey(ctx, seal, combinedKey, false, true) } // unsealKeyToMasterKey takes a key provided by the user, either a recovery key // if using an autoseal or an unseal key with Shamir. It returns a nil error // if the key is valid and an error otherwise. It also returns the master key // that can be used to unseal the barrier. // If useTestSeal is true, seal will not be modified; this is used when not // invoked as part of an unseal process. Otherwise in the non-legacy shamir // case the combinedKey will be set in the seal, which means subsequent attempts // to use the seal to read the master key will succeed, assuming combinedKey is // valid. // If allowMissing is true, a failure to find the master key in storage results // in a nil error and a nil master key being returned. func (c *Core) unsealKeyToMasterKey(ctx context.Context, seal Seal, combinedKey []byte, useTestSeal bool, allowMissing bool) ([]byte, error) { switch seal.StoredKeysSupported() { case vaultseal.StoredKeysSupportedGeneric: if err := seal.VerifyRecoveryKey(ctx, combinedKey); err != nil { return nil, fmt.Errorf("recovery key verification failed: %w", err) } storedKeys, err := seal.GetStoredKeys(ctx) if storedKeys == nil && err == nil && allowMissing { return nil, nil } if err == nil && len(storedKeys) != 1 { err = fmt.Errorf("expected exactly one stored key, got %d", len(storedKeys)) } if err != nil { return nil, fmt.Errorf("unable to retrieve stored keys: %w", err) } return storedKeys[0], nil case vaultseal.StoredKeysSupportedShamirMaster: if useTestSeal { testseal := NewDefaultSeal(&vaultseal.Access{ Wrapper: aeadwrapper.NewShamirWrapper(&wrapping.WrapperOptions{ Logger: c.logger.Named("testseal"), }), }) testseal.SetCore(c) cfg, err := seal.BarrierConfig(ctx) if err != nil { return nil, fmt.Errorf("failed to setup test barrier config: %w", err) } testseal.SetCachedBarrierConfig(cfg) seal = testseal } err := seal.GetAccess().Wrapper.(*aeadwrapper.ShamirWrapper).SetAESGCMKeyBytes(combinedKey) if err != nil { return nil, fmt.Errorf("failed to setup unseal key: %w", err) } storedKeys, err := seal.GetStoredKeys(ctx) if storedKeys == nil && err == nil && allowMissing { return nil, nil } if err == nil && len(storedKeys) != 1 { err = fmt.Errorf("expected exactly one stored key, got %d", len(storedKeys)) } if err != nil { return nil, fmt.Errorf("unable to retrieve stored keys: %w", err) } return storedKeys[0], nil case vaultseal.StoredKeysNotSupported: return combinedKey, nil } return nil, fmt.Errorf("invalid seal") } // IsInSealMigrationMode returns true if we're configured to perform a seal migration, // meaning either that we have a disabled seal in HCL configuration or the seal // configuration in storage is Shamir but the seal in HCL is not. In this // mode we should not auto-unseal (even if the migration is done) and we will // accept unseal requests with and without the `migrate` option, though the migrate // option is required if we haven't yet performed the seal migration. func (c *Core) IsInSealMigrationMode() bool { c.stateLock.RLock() defer c.stateLock.RUnlock() return c.migrationInfo != nil } // IsSealMigrated returns true if we're in seal migration mode but migration // has already been performed (possibly by another node, or prior to this node's // current invocation.) func (c *Core) IsSealMigrated() bool { if !c.IsInSealMigrationMode() { return false } c.stateLock.RLock() defer c.stateLock.RUnlock() done, _ := c.sealMigrated(context.Background()) return done } func (c *Core) BarrierEncryptorAccess() *BarrierEncryptorAccess { return NewBarrierEncryptorAccess(c.barrier) } func (c *Core) PhysicalAccess() *physical.PhysicalAccess { return physical.NewPhysicalAccess(c.physical) } func (c *Core) RouterAccess() *RouterAccess { return NewRouterAccess(c) } // IsDRSecondary returns if the current cluster state is a DR secondary. func (c *Core) IsDRSecondary() bool { return c.ReplicationState().HasState(consts.ReplicationDRSecondary) } func (c *Core) IsPerfSecondary() bool { return c.ReplicationState().HasState(consts.ReplicationPerformanceSecondary) } func (c *Core) AddLogger(logger log.Logger) { c.allLoggersLock.Lock() defer c.allLoggersLock.Unlock() c.allLoggers = append(c.allLoggers, logger) } func (c *Core) SetLogLevel(level log.Level) { c.allLoggersLock.RLock() defer c.allLoggersLock.RUnlock() for _, logger := range c.allLoggers { logger.SetLevel(level) } } // SetConfig sets core's config object to the newly provided config. func (c *Core) SetConfig(conf *server.Config) { c.rawConfig.Store(conf) bz, err := json.Marshal(c.SanitizedConfig()) if err != nil { c.logger.Error("error serializing sanitized config", "error", err) return } c.logger.Debug("set config", "sanitized config", string(bz)) } // SanitizedConfig returns a sanitized version of the current config. // See server.Config.Sanitized for specific values omitted. func (c *Core) SanitizedConfig() map[string]interface{} { conf := c.rawConfig.Load() if conf == nil { return nil } return conf.(*server.Config).Sanitized() } // LogFormat returns the log format current in use. func (c *Core) LogFormat() string { conf := c.rawConfig.Load() return conf.(*server.Config).LogFormat } // MetricsHelper returns the global metrics helper which allows external // packages to access Vault's internal metrics. func (c *Core) MetricsHelper() *metricsutil.MetricsHelper { return c.metricsHelper } // MetricSink returns the metrics wrapper with which Core has been configured. func (c *Core) MetricSink() *metricsutil.ClusterMetricSink { return c.metricSink } // BuiltinRegistry is an interface that allows the "vault" package to use // the registry of builtin plugins without getting an import cycle. It // also allows for mocking the registry easily. type BuiltinRegistry interface { Contains(name string, pluginType consts.PluginType) bool Get(name string, pluginType consts.PluginType) (func() (interface{}, error), bool) Keys(pluginType consts.PluginType) []string } func (c *Core) AuditLogger() AuditLogger { return &basicAuditor{c: c} } type FeatureFlags struct { NamespacesCubbyholesLocal bool `json:"namespace_cubbyholes_local"` } func (c *Core) persistFeatureFlags(ctx context.Context) error { if !c.PR1103disabled { c.logger.Debug("persisting feature flags") json, err := jsonutil.EncodeJSON(&FeatureFlags{NamespacesCubbyholesLocal: !c.PR1103disabled}) if err != nil { return err } return c.barrier.Put(ctx, &logical.StorageEntry{ Key: consts.CoreFeatureFlagPath, Value: json, }) } return nil } func (c *Core) readFeatureFlags(ctx context.Context) (*FeatureFlags, error) { entry, err := c.barrier.Get(ctx, consts.CoreFeatureFlagPath) if err != nil { return nil, err } var flags FeatureFlags if entry != nil { err = jsonutil.DecodeJSON(entry.Value, &flags) if err != nil { return nil, err } } return &flags, nil } // MatchingMount returns the path of the mount that will be responsible for // handling the given request path. func (c *Core) MatchingMount(ctx context.Context, reqPath string) string { return c.router.MatchingMount(ctx, reqPath) } func (c *Core) setupQuotas(ctx context.Context, isPerfStandby bool) error { if c.quotaManager == nil { return nil } return c.quotaManager.Setup(ctx, c.systemBarrierView, isPerfStandby, c.IsDRSecondary()) } // ApplyRateLimitQuota checks the request against all the applicable quota rules. // If the given request's path is exempt, no rate limiting will be applied. func (c *Core) ApplyRateLimitQuota(ctx context.Context, req *quotas.Request) (quotas.Response, error) { req.Type = quotas.TypeRateLimit resp := quotas.Response{ Allowed: true, Headers: make(map[string]string), } if c.quotaManager != nil { // skip rate limit checks for paths that are exempt from rate limiting if c.quotaManager.RateLimitPathExempt(req.Path) { return resp, nil } return c.quotaManager.ApplyQuota(ctx, req) } return resp, nil } // RateLimitAuditLoggingEnabled returns if the quota configuration allows audit // logging of request rejections due to rate limiting quota rule violations. func (c *Core) RateLimitAuditLoggingEnabled() bool { if c.quotaManager != nil { return c.quotaManager.RateLimitAuditLoggingEnabled() } return false } // RateLimitResponseHeadersEnabled returns if the quota configuration allows for // rate limit quota HTTP headers to be added to responses. func (c *Core) RateLimitResponseHeadersEnabled() bool { if c.quotaManager != nil { return c.quotaManager.RateLimitResponseHeadersEnabled() } return false } func (c *Core) KeyRotateGracePeriod() time.Duration { return time.Duration(atomic.LoadInt64(c.keyRotateGracePeriod)) } func (c *Core) SetKeyRotateGracePeriod(t time.Duration) { atomic.StoreInt64(c.keyRotateGracePeriod, int64(t)) } // Periodically test whether to automatically rotate the barrier key func (c *Core) autoRotateBarrierLoop(ctx context.Context) { t := time.NewTicker(autoRotateCheckInterval) for { select { case <-t.C: c.checkBarrierAutoRotate(ctx) case <-ctx.Done(): t.Stop() return } } } func (c *Core) checkBarrierAutoRotate(ctx context.Context) { c.stateLock.RLock() defer c.stateLock.RUnlock() if c.isPrimary() { reason, err := c.barrier.CheckBarrierAutoRotate(ctx) if err != nil { lf := c.logger.Error if strings.HasSuffix(err.Error(), "context canceled") { lf = c.logger.Debug } lf("error in barrier auto rotation", "error", err) return } if reason != "" { // Time to rotate. Invoke the rotation handler in order to both rotate and create // the replication canary c.logger.Info("automatic barrier key rotation triggered", "reason", reason) _, err := c.systemBackend.handleRotate(ctx, nil, nil) if err != nil { c.logger.Error("error automatically rotating barrier key", "error", err) } else { metrics.IncrCounter(barrierRotationsMetric, 1) } } } } func (c *Core) isPrimary() bool { return !c.ReplicationState().HasState(consts.ReplicationPerformanceSecondary | consts.ReplicationDRSecondary) } type LicenseState struct { State string ExpiryTime time.Time Terminated bool }