package shamir import ( "crypto/rand" "crypto/subtle" "fmt" ) const ( // ShareOverhead is the byte size overhead of each share // when using Split on a secret. This is caused by appending // a one byte tag to the share. ShareOverhead = 1 ) // polynomial represents a polynomial of arbitrary degree type polynomial struct { coefficients []uint8 } // makePolynomial constructs a random polynomial of the given // degree but with the provided intercept value. func makePolynomial(intercept, degree uint8) (polynomial, error) { // Create a wrapper p := polynomial{ coefficients: make([]byte, degree+1), } // Ensure the intercept is set p.coefficients[0] = intercept // Assign random co-efficients to the polynomial, ensuring // the highest order co-efficient is non-zero for p.coefficients[degree] == 0 { if _, err := rand.Read(p.coefficients[1:]); err != nil { return p, err } } return p, nil } // evaluate returns the value of the polynomial for the given x func (p *polynomial) evaluate(x uint8) uint8 { // Special case the origin if x == 0 { return p.coefficients[0] } // Compute the polynomial value using Horner's method. degree := len(p.coefficients) - 1 out := p.coefficients[degree] for i := degree - 1; i >= 0; i-- { coeff := p.coefficients[i] out = add(mult(out, x), coeff) } return out } // interpolatePolynomial takes N sample points and returns // the value at a given x using a lagrange interpolation. func interpolatePolynomial(x_samples, y_samples []uint8, x uint8) uint8 { limit := len(x_samples) var result, basis uint8 for i := 0; i < limit; i++ { basis = 1 for j := 0; j < limit; j++ { if i == j { continue } num := add(x, x_samples[j]) denom := add(x_samples[i], x_samples[j]) term := div(num, denom) basis = mult(basis, term) } group := mult(y_samples[i], basis) result = add(result, group) } return result } // div divides two numbers in GF(2^8) func div(a, b uint8) uint8 { if b == 0 { // leaks some timing information but we don't care anyways as this // should never happen, hence the panic panic("divide by zero") } var goodVal, zero uint8 log_a := logTable[a] log_b := logTable[b] diff := (int(log_a) - int(log_b)) % 255 if diff < 0 { diff += 255 } ret := expTable[diff] // Ensure we return zero if a is zero but aren't subject to timing attacks goodVal = ret if subtle.ConstantTimeByteEq(a, 0) == 1 { ret = zero } else { ret = goodVal } return ret } // mult multiplies two numbers in GF(2^8) func mult(a, b uint8) (out uint8) { var goodVal, zero uint8 log_a := logTable[a] log_b := logTable[b] sum := (int(log_a) + int(log_b)) % 255 ret := expTable[sum] // Ensure we return zero if either a or be are zero but aren't subject to // timing attacks goodVal = ret if subtle.ConstantTimeByteEq(a, 0) == 1 { ret = zero } else { ret = goodVal } if subtle.ConstantTimeByteEq(b, 0) == 1 { ret = zero } else { // This operation does not do anything logically useful. It // only ensures a constant number of assignments to thwart // timing attacks. goodVal = zero } return ret } // add combines two numbers in GF(2^8) // This can also be used for subtraction since it is symmetric. func add(a, b uint8) uint8 { return a ^ b } // Split takes an arbitrarily long secret and generates a `parts` // number of shares, `threshold` of which are required to reconstruct // the secret. The parts and threshold must be at least 2, and less // than 256. The returned shares are each one byte longer than the secret // as they attach a tag used to reconstruct the secret. func Split(secret []byte, parts, threshold int) ([][]byte, error) { // Sanity check the input if parts < threshold { return nil, fmt.Errorf("parts cannot be less than threshold") } if parts > 255 { return nil, fmt.Errorf("parts cannot exceed 255") } if threshold < 2 { return nil, fmt.Errorf("threshold must be at least 2") } if threshold > 255 { return nil, fmt.Errorf("threshold cannot exceed 255") } if len(secret) == 0 { return nil, fmt.Errorf("cannot split an empty secret") } // Allocate the output array, initialize the final byte // of the output with the offset. The representation of each // output is {y1, y2, .., yN, x}. out := make([][]byte, parts) for idx := range out { out[idx] = make([]byte, len(secret)+1) out[idx][len(secret)] = uint8(idx) + 1 } // Construct a random polynomial for each byte of the secret. // Because we are using a field of size 256, we can only represent // a single byte as the intercept of the polynomial, so we must // use a new polynomial for each byte. for idx, val := range secret { p, err := makePolynomial(val, uint8(threshold-1)) if err != nil { return nil, fmt.Errorf("failed to generate polynomial: %v", err) } // Generate a `parts` number of (x,y) pairs // We cheat by encoding the x value once as the final index, // so that it only needs to be stored once. for i := 0; i < parts; i++ { x := uint8(i) + 1 y := p.evaluate(x) out[i][idx] = y } } // Return the encoded secrets return out, nil } // Combine is used to reverse a Split and reconstruct a secret // once a `threshold` number of parts are available. func Combine(parts [][]byte) ([]byte, error) { // Verify enough parts provided if len(parts) < 2 { return nil, fmt.Errorf("less than two parts cannot be used to reconstruct the secret") } // Verify the parts are all the same length firstPartLen := len(parts[0]) if firstPartLen < 2 { return nil, fmt.Errorf("parts must be at least two bytes") } for i := 1; i < len(parts); i++ { if len(parts[i]) != firstPartLen { return nil, fmt.Errorf("all parts must be the same length") } } // Create a buffer to store the reconstructed secret secret := make([]byte, firstPartLen-1) // Buffer to store the samples x_samples := make([]uint8, len(parts)) y_samples := make([]uint8, len(parts)) // Set the x value for each sample and ensure no x_sample values are the same, // otherwise div() can be unhappy checkMap := map[byte]bool{} for i, part := range parts { samp := part[firstPartLen-1] if exists := checkMap[samp]; exists { return nil, fmt.Errorf("duplicate part detected") } checkMap[samp] = true x_samples[i] = samp } // Reconstruct each byte for idx := range secret { // Set the y value for each sample for i, part := range parts { y_samples[i] = part[idx] } // Interpolte the polynomial and compute the value at 0 val := interpolatePolynomial(x_samples, y_samples, 0) // Evaluate the 0th value to get the intercept secret[idx] = val } return secret, nil }