package vault import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/rand" "crypto/subtle" "encoding/binary" "fmt" "strings" "sync" "time" "github.com/armon/go-metrics" "github.com/hashicorp/vault/helper/jsonutil" "github.com/hashicorp/vault/physical" ) const ( // initialKeyTerm is the hard coded initial key term. This is // used only for values that are not encrypted with the keyring. initialKeyTerm = 1 // termSize the number of bytes used for the key term. termSize = 4 ) // Versions of the AESGCM storage methodology const ( AESGCMVersion1 = 0x1 AESGCMVersion2 = 0x2 ) // barrierInit is the JSON encoded value stored type barrierInit struct { Version int // Version is the current format version Key []byte // Key is the primary encryption key } // AESGCMBarrier is a SecurityBarrier implementation that uses the AES // cipher core and the Galois Counter Mode block mode. It defaults to // the golang NONCE default value of 12 and a key size of 256 // bit. AES-GCM is high performance, and provides both confidentiality // and integrity. type AESGCMBarrier struct { backend physical.Backend l sync.RWMutex sealed bool // keyring is used to maintain all of the encryption keys, including // the active key used for encryption, but also prior keys to allow // decryption of keys encrypted under previous terms. keyring *Keyring // cache is used to reduce the number of AEAD constructions we do cache map[uint32]cipher.AEAD cacheLock sync.RWMutex // currentAESGCMVersionByte is prefixed to a message to allow for // future versioning of barrier implementations. It's var instead // of const to allow for testing currentAESGCMVersionByte byte } // NewAESGCMBarrier is used to construct a new barrier that uses // the provided physical backend for storage. func NewAESGCMBarrier(physical physical.Backend) (*AESGCMBarrier, error) { b := &AESGCMBarrier{ backend: physical, sealed: true, cache: make(map[uint32]cipher.AEAD), currentAESGCMVersionByte: byte(AESGCMVersion2), } return b, nil } // Initialized checks if the barrier has been initialized // and has a master key set. func (b *AESGCMBarrier) Initialized() (bool, error) { // Read the keyring file out, err := b.backend.Get(keyringPath) if err != nil { return false, fmt.Errorf("failed to check for initialization: %v", err) } if out != nil { return true, nil } // Fallback, check for the old sentinel file out, err = b.backend.Get(barrierInitPath) if err != nil { return false, fmt.Errorf("failed to check for initialization: %v", err) } return out != nil, nil } // Initialize works only if the barrier has not been initialized // and makes use of the given master key. func (b *AESGCMBarrier) Initialize(key []byte) error { // Verify the key size min, max := b.KeyLength() if len(key) < min || len(key) > max { return fmt.Errorf("Key size must be %d or %d", min, max) } // Check if already initialized if alreadyInit, err := b.Initialized(); err != nil { return err } else if alreadyInit { return ErrBarrierAlreadyInit } // Generate encryption key encrypt, err := b.GenerateKey() if err != nil { return fmt.Errorf("failed to generate encryption key: %v", err) } // Create a new keyring, install the keys keyring := NewKeyring() keyring = keyring.SetMasterKey(key) keyring, err = keyring.AddKey(&Key{ Term: 1, Version: 1, Value: encrypt, }) if err != nil { return fmt.Errorf("failed to create keyring: %v", err) } return b.persistKeyring(keyring) } // persistKeyring is used to write out the keyring using the // master key to encrypt it. func (b *AESGCMBarrier) persistKeyring(keyring *Keyring) error { // Create the keyring entry keyringBuf, err := keyring.Serialize() defer memzero(keyringBuf) if err != nil { return fmt.Errorf("failed to serialize keyring: %v", err) } // Create the AES-GCM gcm, err := b.aeadFromKey(keyring.MasterKey()) if err != nil { return err } // Encrypt the barrier init value value := b.encrypt(keyringPath, initialKeyTerm, gcm, keyringBuf) // Create the keyring physical entry pe := &physical.Entry{ Key: keyringPath, Value: value, } if err := b.backend.Put(pe); err != nil { return fmt.Errorf("failed to persist keyring: %v", err) } // Serialize the master key value key := &Key{ Term: 1, Version: 1, Value: keyring.MasterKey(), } keyBuf, err := key.Serialize() defer memzero(keyBuf) if err != nil { return fmt.Errorf("failed to serialize master key: %v", err) } // Encrypt the master key activeKey := keyring.ActiveKey() aead, err := b.aeadFromKey(activeKey.Value) if err != nil { return err } value = b.encrypt(masterKeyPath, activeKey.Term, aead, keyBuf) // Update the masterKeyPath for standby instances pe = &physical.Entry{ Key: masterKeyPath, Value: value, } if err := b.backend.Put(pe); err != nil { return fmt.Errorf("failed to persist master key: %v", err) } return nil } // GenerateKey is used to generate a new key func (b *AESGCMBarrier) GenerateKey() ([]byte, error) { // Generate a 256bit key buf := make([]byte, 2*aes.BlockSize) _, err := rand.Read(buf) return buf, err } // KeyLength is used to sanity check a key func (b *AESGCMBarrier) KeyLength() (int, int) { return aes.BlockSize, 2 * aes.BlockSize } // Sealed checks if the barrier has been unlocked yet. The Barrier // is not expected to be able to perform any CRUD until it is unsealed. func (b *AESGCMBarrier) Sealed() (bool, error) { b.l.RLock() defer b.l.RUnlock() return b.sealed, nil } // VerifyMaster is used to check if the given key matches the master key func (b *AESGCMBarrier) VerifyMaster(key []byte) error { b.l.RLock() defer b.l.RUnlock() if b.sealed { return ErrBarrierSealed } if subtle.ConstantTimeCompare(key, b.keyring.MasterKey()) != 1 { return ErrBarrierInvalidKey } return nil } // ReloadKeyring is used to re-read the underlying keyring. // This is used for HA deployments to ensure the latest keyring // is present in the leader. func (b *AESGCMBarrier) ReloadKeyring() error { b.l.Lock() defer b.l.Unlock() // Create the AES-GCM gcm, err := b.aeadFromKey(b.keyring.MasterKey()) if err != nil { return err } // Read in the keyring out, err := b.backend.Get(keyringPath) if err != nil { return fmt.Errorf("failed to check for keyring: %v", err) } // Ensure that the keyring exists. This should never happen, // and indicates something really bad has happened. if out == nil { return fmt.Errorf("keyring unexpectedly missing") } // Decrypt the barrier init key plain, err := b.decrypt(keyringPath, gcm, out.Value) defer memzero(plain) if err != nil { if strings.Contains(err.Error(), "message authentication failed") { return ErrBarrierInvalidKey } return err } // Recover the keyring keyring, err := DeserializeKeyring(plain) if err != nil { return fmt.Errorf("keyring deserialization failed: %v", err) } // Setup the keyring and finish b.keyring = keyring return nil } // ReloadMasterKey is used to re-read the underlying masterkey. // This is used for HA deployments to ensure the latest master key // is available for keyring reloading. func (b *AESGCMBarrier) ReloadMasterKey() error { // Read the masterKeyPath upgrade out, err := b.Get(masterKeyPath) if err != nil { return fmt.Errorf("failed to read master key path: %v", err) } // The masterKeyPath could be missing (backwards incompatible), // we can ignore this and attempt to make progress with the current // master key. if out == nil { return nil } defer memzero(out.Value) // Deserialize the master key key, err := DeserializeKey(out.Value) if err != nil { return fmt.Errorf("failed to deserialize key: %v", err) } b.l.Lock() defer b.l.Unlock() // Check if the master key is the same if bytes.Equal(b.keyring.MasterKey(), key.Value) { return nil } // Update the master key oldKeyring := b.keyring b.keyring = b.keyring.SetMasterKey(key.Value) oldKeyring.Zeroize(false) return nil } // Unseal is used to provide the master key which permits the barrier // to be unsealed. If the key is not correct, the barrier remains sealed. func (b *AESGCMBarrier) Unseal(key []byte) error { b.l.Lock() defer b.l.Unlock() // Do nothing if already unsealed if !b.sealed { return nil } // Create the AES-GCM gcm, err := b.aeadFromKey(key) if err != nil { return err } // Read in the keyring out, err := b.backend.Get(keyringPath) if err != nil { return fmt.Errorf("failed to check for keyring: %v", err) } if out != nil { // Decrypt the barrier init key plain, err := b.decrypt(keyringPath, gcm, out.Value) defer memzero(plain) if err != nil { if strings.Contains(err.Error(), "message authentication failed") { return ErrBarrierInvalidKey } return err } // Recover the keyring keyring, err := DeserializeKeyring(plain) if err != nil { return fmt.Errorf("keyring deserialization failed: %v", err) } // Setup the keyring and finish b.keyring = keyring b.sealed = false return nil } // Read the barrier initialization key out, err = b.backend.Get(barrierInitPath) if err != nil { return fmt.Errorf("failed to check for initialization: %v", err) } if out == nil { return ErrBarrierNotInit } // Decrypt the barrier init key plain, err := b.decrypt(barrierInitPath, gcm, out.Value) if err != nil { if strings.Contains(err.Error(), "message authentication failed") { return ErrBarrierInvalidKey } return err } defer memzero(plain) // Unmarshal the barrier init var init barrierInit if err := jsonutil.DecodeJSON(plain, &init); err != nil { return fmt.Errorf("failed to unmarshal barrier init file") } // Setup a new keyring, this is for backwards compatibility keyringNew := NewKeyring() keyring := keyringNew.SetMasterKey(key) // AddKey reuses the master, so we are only zeroizing after this call defer keyringNew.Zeroize(false) keyring, err = keyring.AddKey(&Key{ Term: 1, Version: 1, Value: init.Key, }) if err != nil { return fmt.Errorf("failed to create keyring: %v", err) } if err := b.persistKeyring(keyring); err != nil { return err } // Delete the old barrier entry if err := b.backend.Delete(barrierInitPath); err != nil { return fmt.Errorf("failed to delete barrier init file: %v", err) } // Set the vault as unsealed b.keyring = keyring b.sealed = false return nil } // Seal is used to re-seal the barrier. This requires the barrier to // be unsealed again to perform any further operations. func (b *AESGCMBarrier) Seal() error { b.l.Lock() defer b.l.Unlock() // Remove the primary key, and seal the vault b.cache = make(map[uint32]cipher.AEAD) b.keyring.Zeroize(true) b.keyring = nil b.sealed = true return nil } // Rotate is used to create a new encryption key. All future writes // should use the new key, while old values should still be decryptable. func (b *AESGCMBarrier) Rotate() (uint32, error) { b.l.Lock() defer b.l.Unlock() if b.sealed { return 0, ErrBarrierSealed } // Generate a new key encrypt, err := b.GenerateKey() if err != nil { return 0, fmt.Errorf("failed to generate encryption key: %v", err) } // Get the next term term := b.keyring.ActiveTerm() newTerm := term + 1 // Add a new encryption key newKeyring, err := b.keyring.AddKey(&Key{ Term: newTerm, Version: 1, Value: encrypt, }) if err != nil { return 0, fmt.Errorf("failed to add new encryption key: %v", err) } // Persist the new keyring if err := b.persistKeyring(newKeyring); err != nil { return 0, err } // Swap the keyrings b.keyring = newKeyring return newTerm, nil } // CreateUpgrade creates an upgrade path key to the given term from the previous term func (b *AESGCMBarrier) CreateUpgrade(term uint32) error { b.l.RLock() defer b.l.RUnlock() if b.sealed { return ErrBarrierSealed } // Get the key for this term termKey := b.keyring.TermKey(term) buf, err := termKey.Serialize() defer memzero(buf) if err != nil { return err } // Get the AEAD for the previous term prevTerm := term - 1 primary, err := b.aeadForTerm(prevTerm) if err != nil { return err } key := fmt.Sprintf("%s%d", keyringUpgradePrefix, prevTerm) value := b.encrypt(key, prevTerm, primary, buf) // Create upgrade key pe := &physical.Entry{ Key: key, Value: value, } return b.backend.Put(pe) } // DestroyUpgrade destroys the upgrade path key to the given term func (b *AESGCMBarrier) DestroyUpgrade(term uint32) error { path := fmt.Sprintf("%s%d", keyringUpgradePrefix, term-1) return b.Delete(path) } // CheckUpgrade looks for an upgrade to the current term and installs it func (b *AESGCMBarrier) CheckUpgrade() (bool, uint32, error) { b.l.RLock() defer b.l.RUnlock() if b.sealed { return false, 0, ErrBarrierSealed } // Get the current term activeTerm := b.keyring.ActiveTerm() // Check for an upgrade key upgrade := fmt.Sprintf("%s%d", keyringUpgradePrefix, activeTerm) entry, err := b.Get(upgrade) if err != nil { return false, 0, err } // Nothing to do if no upgrade if entry == nil { return false, 0, nil } defer memzero(entry.Value) // Deserialize the key key, err := DeserializeKey(entry.Value) if err != nil { return false, 0, err } // Upgrade from read lock to write lock b.l.RUnlock() defer b.l.RLock() b.l.Lock() defer b.l.Unlock() // Update the keyring newKeyring, err := b.keyring.AddKey(key) if err != nil { return false, 0, fmt.Errorf("failed to add new encryption key: %v", err) } b.keyring = newKeyring // Done! return true, key.Term, nil } // ActiveKeyInfo is used to inform details about the active key func (b *AESGCMBarrier) ActiveKeyInfo() (*KeyInfo, error) { b.l.RLock() defer b.l.RUnlock() if b.sealed { return nil, ErrBarrierSealed } // Determine the key install time term := b.keyring.ActiveTerm() key := b.keyring.TermKey(term) // Return the key info info := &KeyInfo{ Term: int(term), InstallTime: key.InstallTime, } return info, nil } // Rekey is used to change the master key used to protect the keyring func (b *AESGCMBarrier) Rekey(key []byte) error { b.l.Lock() defer b.l.Unlock() if b.sealed { return ErrBarrierSealed } // Verify the key size min, max := b.KeyLength() if len(key) < min || len(key) > max { return fmt.Errorf("Key size must be %d or %d", min, max) } // Add a new encryption key newKeyring := b.keyring.SetMasterKey(key) // Persist the new keyring if err := b.persistKeyring(newKeyring); err != nil { return err } // Swap the keyrings oldKeyring := b.keyring b.keyring = newKeyring oldKeyring.Zeroize(false) return nil } // Put is used to insert or update an entry func (b *AESGCMBarrier) Put(entry *Entry) error { defer metrics.MeasureSince([]string{"barrier", "put"}, time.Now()) b.l.RLock() defer b.l.RUnlock() if b.sealed { return ErrBarrierSealed } term := b.keyring.ActiveTerm() primary, err := b.aeadForTerm(term) if err != nil { return err } pe := &physical.Entry{ Key: entry.Key, Value: b.encrypt(entry.Key, term, primary, entry.Value), } return b.backend.Put(pe) } // Get is used to fetch an entry func (b *AESGCMBarrier) Get(key string) (*Entry, error) { defer metrics.MeasureSince([]string{"barrier", "get"}, time.Now()) b.l.RLock() defer b.l.RUnlock() if b.sealed { return nil, ErrBarrierSealed } // Read the key from the backend pe, err := b.backend.Get(key) if err != nil { return nil, err } else if pe == nil { return nil, nil } // Decrypt the ciphertext plain, err := b.decryptKeyring(key, pe.Value) if err != nil { return nil, fmt.Errorf("decryption failed: %v", err) } // Wrap in a logical entry entry := &Entry{ Key: key, Value: plain, } return entry, nil } // Delete is used to permanently delete an entry func (b *AESGCMBarrier) Delete(key string) error { defer metrics.MeasureSince([]string{"barrier", "delete"}, time.Now()) b.l.RLock() defer b.l.RUnlock() if b.sealed { return ErrBarrierSealed } return b.backend.Delete(key) } // List is used ot list all the keys under a given // prefix, up to the next prefix. func (b *AESGCMBarrier) List(prefix string) ([]string, error) { defer metrics.MeasureSince([]string{"barrier", "list"}, time.Now()) b.l.RLock() defer b.l.RUnlock() if b.sealed { return nil, ErrBarrierSealed } return b.backend.List(prefix) } // aeadForTerm returns the AES-GCM AEAD for the given term func (b *AESGCMBarrier) aeadForTerm(term uint32) (cipher.AEAD, error) { // Check for the keyring keyring := b.keyring if keyring == nil { return nil, nil } // Check the cache for the aead b.cacheLock.RLock() aead, ok := b.cache[term] b.cacheLock.RUnlock() if ok { return aead, nil } // Read the underlying key key := keyring.TermKey(term) if key == nil { return nil, nil } // Create a new aead aead, err := b.aeadFromKey(key.Value) if err != nil { return nil, err } // Update the cache b.cacheLock.Lock() b.cache[term] = aead b.cacheLock.Unlock() return aead, nil } // aeadFromKey returns an AES-GCM AEAD using the given key. func (b *AESGCMBarrier) aeadFromKey(key []byte) (cipher.AEAD, error) { // Create the AES cipher aesCipher, err := aes.NewCipher(key) if err != nil { return nil, fmt.Errorf("failed to create cipher: %v", err) } // Create the GCM mode AEAD gcm, err := cipher.NewGCM(aesCipher) if err != nil { return nil, fmt.Errorf("failed to initialize GCM mode") } return gcm, nil } // encrypt is used to encrypt a value func (b *AESGCMBarrier) encrypt(path string, term uint32, gcm cipher.AEAD, plain []byte) []byte { // Allocate the output buffer with room for tern, version byte, // nonce, GCM tag and the plaintext capacity := termSize + 1 + gcm.NonceSize() + gcm.Overhead() + len(plain) size := termSize + 1 + gcm.NonceSize() out := make([]byte, size, capacity) // Set the key term binary.BigEndian.PutUint32(out[:4], term) // Set the version byte out[4] = b.currentAESGCMVersionByte // Generate a random nonce nonce := out[5 : 5+gcm.NonceSize()] rand.Read(nonce) // Seal the output switch b.currentAESGCMVersionByte { case AESGCMVersion1: out = gcm.Seal(out, nonce, plain, nil) case AESGCMVersion2: out = gcm.Seal(out, nonce, plain, []byte(path)) default: panic("Unknown AESGCM version") } return out } // decrypt is used to decrypt a value func (b *AESGCMBarrier) decrypt(path string, gcm cipher.AEAD, cipher []byte) ([]byte, error) { // Verify the term is always just one term := binary.BigEndian.Uint32(cipher[:4]) if term != initialKeyTerm { return nil, fmt.Errorf("term mis-match") } // Capture the parts nonce := cipher[5 : 5+gcm.NonceSize()] raw := cipher[5+gcm.NonceSize():] out := make([]byte, 0, len(raw)-gcm.NonceSize()) // Verify the cipher byte and attempt to open switch cipher[4] { case AESGCMVersion1: return gcm.Open(out, nonce, raw, nil) case AESGCMVersion2: return gcm.Open(out, nonce, raw, []byte(path)) default: return nil, fmt.Errorf("version bytes mis-match") } } // decryptKeyring is used to decrypt a value using the keyring func (b *AESGCMBarrier) decryptKeyring(path string, cipher []byte) ([]byte, error) { // Verify the term term := binary.BigEndian.Uint32(cipher[:4]) // Get the GCM by term // It is expensive to do this first but it is not a // normal case that this won't match gcm, err := b.aeadForTerm(term) if err != nil { return nil, err } if gcm == nil { return nil, fmt.Errorf("no decryption key available for term %d", term) } nonce := cipher[5 : 5+gcm.NonceSize()] raw := cipher[5+gcm.NonceSize():] out := make([]byte, 0, len(raw)-gcm.NonceSize()) // Attempt to open switch cipher[4] { case AESGCMVersion1: return gcm.Open(out, nonce, raw, nil) case AESGCMVersion2: return gcm.Open(out, nonce, raw, []byte(path)) default: return nil, fmt.Errorf("version bytes mis-match") } }