package transit import ( "encoding/json" "errors" "fmt" "sync" "github.com/hashicorp/vault/logical" ) const ( shared = false exclusive = true ) var ( errNeedExclusiveLock = errors.New("an exclusive lock is needed for this operation") ) type lockManager struct { // A lock for each named key locks map[string]*sync.RWMutex // A mutex for the map itself locksMutex sync.RWMutex // If caching is enabled, the map of name to in-memory policy cache cache map[string]*Policy // Used for global locking, and as the cache map mutex cacheMutex sync.RWMutex } func newLockManager(cacheDisabled bool) *lockManager { lm := &lockManager{ locks: map[string]*sync.RWMutex{}, } if !cacheDisabled { lm.cache = map[string]*Policy{} } return lm } func (lm *lockManager) CacheActive() bool { return lm.cache != nil } func (lm *lockManager) policyLock(name string, lockType bool) *sync.RWMutex { lm.locksMutex.RLock() lock := lm.locks[name] if lock != nil { // We want to give this up before locking the lock, but it's safe -- // the only time we ever write to a value in this map is the first time // we access the value, so it won't be changing out from under us lm.locksMutex.RUnlock() if lockType == exclusive { lock.Lock() } else { lock.RLock() } return lock } lm.locksMutex.RUnlock() lm.locksMutex.Lock() // Don't defer the unlock call because if we get a valid lock below we want // to release the lock mutex right away to avoid the possibility of // deadlock by trying to grab the second lock // Check to make sure it hasn't been created since lock = lm.locks[name] if lock != nil { lm.locksMutex.Unlock() if lockType == exclusive { lock.Lock() } else { lock.RLock() } return lock } lock = &sync.RWMutex{} lm.locks[name] = lock lm.locksMutex.Unlock() if lockType == exclusive { lock.Lock() } else { lock.RLock() } return lock } func (lm *lockManager) UnlockPolicy(lock *sync.RWMutex, lockType bool) { if lockType == exclusive { lock.Unlock() } else { lock.RUnlock() } } // Get the policy with a read lock. If we get an error saying an exclusive lock // is needed (for instance, for an upgrade/migration), give up the read lock, // call again with an exclusive lock, then swap back out for a read lock. func (lm *lockManager) GetPolicyShared(storage logical.Storage, name string) (*Policy, *sync.RWMutex, error) { p, lock, _, err := lm.getPolicyCommon(storage, name, false, false, shared) if err == nil || (err != nil && err != errNeedExclusiveLock) { return p, lock, err } // Try again while asking for an exlusive lock p, lock, _, err = lm.getPolicyCommon(storage, name, false, false, exclusive) if err != nil || p == nil || lock == nil { return p, lock, err } lock.Unlock() p, lock, _, err = lm.getPolicyCommon(storage, name, false, false, shared) return p, lock, err } // Get the policy with an exclusive lock func (lm *lockManager) GetPolicyExclusive(storage logical.Storage, name string) (*Policy, *sync.RWMutex, error) { p, lock, _, err := lm.getPolicyCommon(storage, name, false, false, exclusive) return p, lock, err } // Get the policy with a read lock; if it returns that an exclusive lock is // needed, retry. If successful, call one more time to get a read lock and // return the value. func (lm *lockManager) GetPolicyUpsert(storage logical.Storage, name string, derived bool) (*Policy, *sync.RWMutex, bool, error) { p, lock, _, err := lm.getPolicyCommon(storage, name, true, derived, shared) if err == nil || (err != nil && err != errNeedExclusiveLock) { return p, lock, false, err } // Try again while asking for an exlusive lock p, lock, upserted, err := lm.getPolicyCommon(storage, name, true, derived, exclusive) if err != nil || p == nil || lock == nil { return p, lock, upserted, err } lock.Unlock() // Now get a shared lock for the return, but preserve the value of upsert p, lock, _, err = lm.getPolicyCommon(storage, name, true, derived, shared) return p, lock, upserted, err } // When the function returns, a lock will be held on the policy if err == nil. // It is the caller's responsibility to unlock. func (lm *lockManager) getPolicyCommon(storage logical.Storage, name string, upsert, derived, lockType bool) (*Policy, *sync.RWMutex, bool, error) { lock := lm.policyLock(name, lockType) var p *Policy var err error // Check if it's in our cache. If so, return right away. if lm.CacheActive() { lm.cacheMutex.RLock() p = lm.cache[name] if p != nil { lm.cacheMutex.RUnlock() return p, lock, false, nil } lm.cacheMutex.RUnlock() } // Load it from storage p, err = lm.getStoredPolicy(storage, name) if err != nil { lm.UnlockPolicy(lock, lockType) return nil, nil, false, err } if p == nil { // This is the only place we upsert a new policy, so if upsert is not // specified, or the lock type is wrong, unllock before returning if !upsert { lm.UnlockPolicy(lock, lockType) return nil, nil, false, nil } if lockType != exclusive { lm.UnlockPolicy(lock, lockType) return nil, nil, false, errNeedExclusiveLock } p = &Policy{ Name: name, CipherMode: "aes-gcm", Derived: derived, } if derived { p.KDFMode = kdfMode } err = p.rotate(storage) if err != nil { lm.UnlockPolicy(lock, lockType) return nil, nil, false, err } if lm.CacheActive() { // Since we didn't have the policy in the cache, if there was no // error, write the value in. lm.cacheMutex.Lock() defer lm.cacheMutex.Unlock() // Make sure a policy didn't appear. If so, it will only be set if // there was no error, so assume it's good and return that exp := lm.cache[name] if exp != nil { return exp, lock, false, nil } if err == nil { lm.cache[name] = p } } // We don't need to worry about upgrading since it will be a new policy return p, lock, true, nil } if p.needsUpgrade() { if lockType == shared { lm.UnlockPolicy(lock, lockType) return nil, nil, false, errNeedExclusiveLock } err = p.upgrade(storage) if err != nil { lm.UnlockPolicy(lock, lockType) return nil, nil, false, err } } if lm.CacheActive() { // Since we didn't have the policy in the cache, if there was no // error, write the value in. lm.cacheMutex.Lock() defer lm.cacheMutex.Unlock() // Make sure a policy didn't appear. If so, it will only be set if // there was no error, so assume it's good and return that exp := lm.cache[name] if exp != nil { return exp, lock, false, nil } if err == nil { lm.cache[name] = p } } return p, lock, false, nil } func (lm *lockManager) DeletePolicy(storage logical.Storage, name string) error { lm.cacheMutex.Lock() lock := lm.policyLock(name, exclusive) defer lock.Unlock() defer lm.cacheMutex.Unlock() var p *Policy var err error if lm.CacheActive() { p = lm.cache[name] } if p == nil { p, err = lm.getStoredPolicy(storage, name) if err != nil { return err } if p == nil { return fmt.Errorf("could not delete policy; not found") } } if !p.DeletionAllowed { return fmt.Errorf("deletion is not allowed for this policy") } err = storage.Delete("policy/" + name) if err != nil { return fmt.Errorf("error deleting policy %s: %s", name, err) } err = storage.Delete("archive/" + name) if err != nil { return fmt.Errorf("error deleting archive %s: %s", name, err) } if lm.CacheActive() { delete(lm.cache, name) } return nil } func (lm *lockManager) getStoredPolicy(storage logical.Storage, name string) (*Policy, error) { // Check if the policy already exists raw, err := storage.Get("policy/" + name) if err != nil { return nil, err } if raw == nil { return nil, nil } // Decode the policy policy := &Policy{ Keys: KeyEntryMap{}, } err = json.Unmarshal(raw.Value, policy) if err != nil { return nil, err } return policy, nil }