package transit import ( "fmt" "strconv" "github.com/hashicorp/vault/logical" "github.com/hashicorp/vault/logical/framework" ) func (b *backend) pathKeys() *framework.Path { return &framework.Path{ Pattern: "keys/" + framework.GenericNameRegex("name"), Fields: map[string]*framework.FieldSchema{ "name": &framework.FieldSchema{ Type: framework.TypeString, Description: "Name of the key", }, "derived": &framework.FieldSchema{ Type: framework.TypeBool, Description: "Enables key derivation mode. This allows for per-transaction unique keys", }, }, Callbacks: map[logical.Operation]framework.OperationFunc{ logical.UpdateOperation: b.pathPolicyWrite, logical.DeleteOperation: b.pathPolicyDelete, logical.ReadOperation: b.pathPolicyRead, }, HelpSynopsis: pathPolicyHelpSyn, HelpDescription: pathPolicyHelpDesc, } } func (b *backend) pathPolicyWrite( req *logical.Request, d *framework.FieldData) (*logical.Response, error) { // Grab a write lock right off the bat b.policies.Lock() defer b.policies.Unlock() name := d.Get("name").(string) derived := d.Get("derived").(bool) // Generate the policy; this will also check if it exists for safety _, err := b.policies.generatePolicy(req.Storage, name, derived) return nil, err } func (b *backend) pathPolicyRead( req *logical.Request, d *framework.FieldData) (*logical.Response, error) { name := d.Get("name").(string) lp, err := b.policies.getPolicy(req.Storage, name) if err != nil { return nil, err } if lp == nil { return nil, nil } lp.RLock() defer lp.RUnlock() // Verify if wasn't deleted before we grabbed the lock if lp.Policy() == nil { return nil, fmt.Errorf("no existing policy named %s could be found", name) } // Return the response resp := &logical.Response{ Data: map[string]interface{}{ "name": lp.Policy().Name, "cipher_mode": lp.Policy().CipherMode, "derived": lp.Policy().Derived, "deletion_allowed": lp.Policy().DeletionAllowed, "min_decryption_version": lp.Policy().MinDecryptionVersion, "latest_version": lp.Policy().LatestVersion, }, } if lp.Policy().Derived { resp.Data["kdf_mode"] = lp.Policy().KDFMode } retKeys := map[string]int64{} for k, v := range lp.Policy().Keys { retKeys[strconv.Itoa(k)] = v.CreationTime } resp.Data["keys"] = retKeys return resp, nil } func (b *backend) pathPolicyDelete( req *logical.Request, d *framework.FieldData) (*logical.Response, error) { name := d.Get("name").(string) // Some sanity checking lp, err := b.policies.getPolicy(req.Storage, name) if err != nil { return logical.ErrorResponse(fmt.Sprintf("error looking up policy %s, error is %s", name, err)), err } if lp == nil { return logical.ErrorResponse(fmt.Sprintf("no such key %s", name)), logical.ErrInvalidRequest } // Hold both locks since we'll be affecting both the cache (if it exists) // and the locking policy itself b.policies.Lock() defer b.policies.Unlock() lp.Lock() defer lp.Unlock() // Make sure that we have up-to-date values since deletePolicy will check // things like whether deletion is allowed lp, err = b.policies.refreshPolicy(req.Storage, name) if err != nil { return nil, err } if lp == nil { return nil, fmt.Errorf("error finding key %s after locking for deletion", name) } err = b.policies.deletePolicy(req.Storage, lp, name) if err != nil { return logical.ErrorResponse(fmt.Sprintf("error deleting policy %s: %s", name, err)), err } return nil, nil } const pathPolicyHelpSyn = `Managed named encryption keys` const pathPolicyHelpDesc = ` This path is used to manage the named keys that are available. Doing a write with no value against a new named key will create it using a randomly generated key. `