In order to reliably store Go test times in the Github Actions cache we
need to reduce our cache thrashing by not using more than 10gb over all
of our caches. This change reduces our cache usage significantly by
sharing Go module cache between our Go CI workflows and our build
workflows. We lose our per-builder cache which will result in a bit of
performance hit, but we'll enable better automatic rebalancing of our CI
workflows. Overall we should see a per branch reduction in cache sizes
from ~17gb to ~850mb.
Some preliminary investigation into this new strategy:
Prior build workflow strategy on a cache miss:
Download modules: ~20s
Build Vault: ~40s
Upload cache: ~30s
Total: ~1m30s
Prior build workflow strategy on a cache hit:
Download and decompress modules and build cache: ~12s
Build Vault: ~15s
Total: ~28s
New build workflow strategy on a cache miss:
Download modules: ~20
Build Vault: ~40s
Upload cache: ~6s
Total: ~1m6s
New build workflow strategy on a cache hit:
Download and decompress modules: ~3s
Build Vault: ~40s
Total: ~43s
Expected time if we used no Go caching:
Download modules: ~20
Build Vault: ~40s
Total: ~1m
Signed-off-by: Ryan Cragun <me@ryan.ec>
Co-authored-by: Ryan Cragun <me@ryan.ec>
* combine into one checker
* combine and simplify ci checks
* add to test package list
* remove testing test
* only run deprecations check
* only run deprecations check
* remove unneeded repo check
* fix bash options
Co-authored-by: miagilepner <mia.epner@hashicorp.com>
Improve our build workflow execution time by using custom runners,
improved caching and conditional Web UI builds.
Runners
-------
We improve our build times[0] by using larger custom runners[1] when
building the UI and Vault.
Caching
-------
We improve Vault caching by keeping a cache for each build job. This
strategy has the following properties which should result in faster
build times when `go.sum` hasn't been changed from prior builds, or
when a pull request is retried or updated after a prior successful
build:
* Builds will restore cached Go modules and Go build cache according to
the Go version, platform, architecture, go tags, and hash of `go.sum`
that relates to each individual build workflow. This reduces the
amount of time it will take to download the cache on hits and upload
the cache on misses.
* Parallel build workflows won't clobber each others build cache. This
results in much faster compile times after cache hits because the Go
compiler can reuse the platform, architecture, and tag specific build
cache that it created on prior runs.
* Older modules and build cache will not be uploaded when creating a new
cache. This should result in lean cache sizes on an ongoing basis.
* On cache misses we will have to upload our compressed module and build
cache. This will slightly extend the build time for pull requests that
modify `go.sum`.
Web UI
------
We no longer build the web UI in every build workflow. Instead we separate
the UI building into its own workflow and cache the resulting assets.
The same UI assets are restored from cache during build worklows. This
strategy has the following properties:
* If the `ui` directory has not changed from prior builds we'll restore
`http/web_ui` from cache and skip building the UI for no reason.
* We continue to use the built-in `yarn` caching functionality in
`action/setup-node`. The default mode saves the `yarn` global cache.
to improve UI build times if the cache has not been modified.
Changes
-------
* Add per platform/archicture Go module and build caching
* Move UI building into a separate job and cache the result
* Restore UI cache during build
* Pin workflows
Notes
-----
[0] https://hashicorp.atlassian.net/browse/QT-578
[1] https://github.com/hashicorp/vault/actions/runs/5415830307/jobs/9844829929
Signed-off-by: Ryan Cragun <me@ryan.ec>