vault: First pass at a barrier

This commit is contained in:
Armon Dadgar 2015-03-05 13:27:35 -08:00
parent 0cac63234a
commit e8abe8b0cd
4 changed files with 596 additions and 0 deletions

72
vault/barrier.go Normal file
View File

@ -0,0 +1,72 @@
package vault
import "errors"
var (
// ErrBarrierSealed is returned if an operation is performed on
// a sealed barrier. No operation is expected to succeed before unsealing
ErrBarrierSealed = errors.New("Vault is sealed")
// ErrBarrierAlreadyInit is returned if the barrier is already
// initialized. This prevents a re-initialization.
ErrBarrierAlreadyInit = errors.New("Vault is already initialized")
// ErrBarrierNotInit is returned if a non-initialized barrier
// is attempted to be unsealed.
ErrBarrierNotInit = errors.New("Vault is not initialized")
)
const (
// barrierInitPath is the path used to store our init sentinel file
barrierInitPath = "barrier/init"
)
// SecurityBarrier is a critical component of Vault. It is used to wrap
// an untrusted physical backend and provide a single point of encryption,
// decryption and checksum verification. The goal is to ensure that any
// data written to the barrier is confidential and that integrity is preserved.
// As a real-world analogy, this is the steel and concrete wrapper around
// a Vault. The barrier should only be Unlockable given its key.
type SecurityBarrier interface {
// Initialized checks if the barrier has been initialized
// and has a master key set.
Initialized() (bool, error)
// Initialize works only if the barrier has not been initialized
// and makes use of the given master key.
Initialize([]byte) error
// GenerateKey is used to generate a new key
GenerateKey() ([]byte, error)
// Sealed checks if the barrier has been unlocked yet. The Barrier
// is not expected to be able to perform any CRUD until it is unsealed.
Sealed() (bool, error)
// Unseal is used to provide the master key which permits the barrier
// to be unsealed. If the key is not correct, the barrier remains sealed.
Unseal(key []byte) error
// Seal is used to re-seal the barrier. This requires the barrier to
// be unsealed again to perform any further operations.
Seal() error
// Put is used to insert or update an entry
Put(entry *Entry) error
// Get is used to fetch an entry
Get(key string) (*Entry, error)
// Delete is used to permanently delete an entry
Delete(key string) error
// List is used ot list all the keys under a given
// prefix, up to the next prefix.
List(prefix string) ([]string, error)
}
// Entry is used to represent data stored by the security barrier
type Entry struct {
Key string
Value []byte
}

292
vault/barrier_aes_gcm.go Normal file
View File

@ -0,0 +1,292 @@
package vault
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"fmt"
"sync"
"github.com/hashicorp/vault/physical"
)
const (
// aesgcmVersionByte is prefixed to a message to allow for
// future versioning of barrier implementations.
aesgcmVersionByte = 0x1
)
// AESGCMBarrier is a SecurityBarrier implementation that
// uses a 128bit AES encryption cipher with the Galois Counter Mode.
// AES-GCM is high performance, and provides both confidentiality
// and integrity.
type AESGCMBarrier struct {
backend physical.Backend
l sync.RWMutex
sealed bool
// primary is the AEAD keyed from the encryption key.
// This is the cipher that should be used to encrypt/decrypt
// all the underlying values. It will be available if the
// barrier is unsealed.
primary cipher.AEAD
}
// NewAESGCMBarrier is used to construct a new barrier that uses
// the provided physical backend for storage.
func NewAESGCMBarrier(physical physical.Backend) (*AESGCMBarrier, error) {
b := &AESGCMBarrier{
backend: physical,
sealed: true,
}
return b, nil
}
// Initialized checks if the barrier has been initialized
// and has a master key set.
func (b *AESGCMBarrier) Initialized() (bool, error) {
// Read the init sentinel file
out, err := b.backend.Get(barrierInitPath)
if err != nil {
return false, fmt.Errorf("failed to check for initialization: %v", err)
}
return out != nil, nil
}
// Initialize works only if the barrier has not been initialized
// and makes use of the given master key.
func (b *AESGCMBarrier) Initialize(key []byte) error {
// Verify the key size
if len(key) != aes.BlockSize {
return fmt.Errorf("Key size must be %d", aes.BlockSize)
}
// Check if already initialized
if alreadyInit, err := b.Initialized(); err != nil {
return err
} else if alreadyInit {
return ErrBarrierAlreadyInit
}
// Create the AES-GCM
gcm, err := b.aeadFromKey(key)
if err != nil {
return err
}
// Generate encryption key
encrypt, err := b.GenerateKey()
if err != nil {
return fmt.Errorf("failed to generate encryption key: %v", err)
}
defer memzero(encrypt)
// Generate the barrier init value
value := b.encrypt(gcm, encrypt)
// Create the barrierInitPath
init := &physical.Entry{
Key: barrierInitPath,
Value: value,
}
if err := b.backend.Put(init); err != nil {
return fmt.Errorf("failed to create initialization key: %v", err)
}
return nil
}
// GenerateKey is used to generate a new key
func (b *AESGCMBarrier) GenerateKey() ([]byte, error) {
buf := make([]byte, aes.BlockSize)
_, err := rand.Read(buf)
return buf, err
}
// Sealed checks if the barrier has been unlocked yet. The Barrier
// is not expected to be able to perform any CRUD until it is unsealed.
func (b *AESGCMBarrier) Sealed() (bool, error) {
b.l.RLock()
defer b.l.RUnlock()
return b.sealed, nil
}
// Unseal is used to provide the master key which permits the barrier
// to be unsealed. If the key is not correct, the barrier remains sealed.
func (b *AESGCMBarrier) Unseal(key []byte) error {
b.l.Lock()
defer b.l.Unlock()
// Do nothing if already unsealed
if !b.sealed {
return nil
}
// Read the barrier initialization key
out, err := b.backend.Get(barrierInitPath)
if err != nil {
return fmt.Errorf("failed to check for initialization: %v", err)
}
if out == nil {
return ErrBarrierNotInit
}
// Create the AES-GCM
gcm, err := b.aeadFromKey(key)
if err != nil {
return err
}
// Decrypt the barrier init key
encryptKey, err := b.decrypt(gcm, out.Value)
if err != nil {
return err
}
defer memzero(encryptKey)
// Initialize the master encryption key
b.primary, err = b.aeadFromKey(encryptKey)
if err != nil {
return err
}
// Set the vault as unsealed
b.sealed = false
return nil
}
// Seal is used to re-seal the barrier. This requires the barrier to
// be unsealed again to perform any further operations.
func (b *AESGCMBarrier) Seal() error {
b.l.Lock()
defer b.l.Unlock()
// Remove the primary key, and seal the vault
b.primary = nil
b.sealed = true
return nil
}
// Put is used to insert or update an entry
func (b *AESGCMBarrier) Put(entry *Entry) error {
b.l.RLock()
defer b.l.RUnlock()
primary := b.primary
if primary == nil {
return ErrBarrierSealed
}
pe := &physical.Entry{
Key: entry.Key,
Value: b.encrypt(primary, entry.Value),
}
return b.backend.Put(pe)
}
// Get is used to fetch an entry
func (b *AESGCMBarrier) Get(key string) (*Entry, error) {
b.l.RLock()
defer b.l.RUnlock()
primary := b.primary
if primary == nil {
return nil, ErrBarrierSealed
}
// Read the key from the backend
pe, err := b.backend.Get(key)
if err != nil {
return nil, err
} else if pe == nil {
return nil, nil
}
// Decrypt the ciphertext
plain, err := b.decrypt(primary, pe.Value)
if err != nil {
return nil, fmt.Errorf("decryption failed: %v", err)
}
// Wrap in a logical entry
entry := &Entry{
Key: key,
Value: plain,
}
return entry, nil
}
// Delete is used to permanently delete an entry
func (b *AESGCMBarrier) Delete(key string) error {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return ErrBarrierSealed
}
return b.backend.Delete(key)
}
// List is used ot list all the keys under a given
// prefix, up to the next prefix.
func (b *AESGCMBarrier) List(prefix string) ([]string, error) {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return nil, ErrBarrierSealed
}
return b.backend.List(prefix)
}
// aeadFromKey returns an AES-GCM AEAD using the given key.
func (b *AESGCMBarrier) aeadFromKey(key []byte) (cipher.AEAD, error) {
// Create the AES cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return nil, fmt.Errorf("failed to create cipher: %v", err)
}
// Create the GCM mode AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return nil, fmt.Errorf("failed to initialize GCM mode")
}
return gcm, nil
}
// encrypt is used to encrypt a value
func (b *AESGCMBarrier) encrypt(gcm cipher.AEAD, plain []byte) []byte {
// Allocate the output buffer with room for version byte,
// nonce, GCM tag and the plaintext
capacity := 1 + gcm.NonceSize() + gcm.Overhead() + len(plain)
size := 1 + gcm.NonceSize()
out := make([]byte, size, capacity)
// Set the version byte
out[0] = aesgcmVersionByte
// Generate a random nonce
nonce := out[1 : 1+gcm.NonceSize()]
rand.Read(nonce)
// Seal the output
out = gcm.Seal(out, nonce, plain, nil)
return out
}
// decrypt is used to decrypt a value
func (b *AESGCMBarrier) decrypt(gcm cipher.AEAD, cipher []byte) ([]byte, error) {
// Verify the version byte
if cipher[0] != aesgcmVersionByte {
return nil, fmt.Errorf("version bytes mis-match")
}
// Capture the parts
nonce := cipher[1 : 1+gcm.NonceSize()]
raw := cipher[1+gcm.NonceSize():]
out := make([]byte, 0, len(raw)-gcm.NonceSize())
// Attempt to open
return gcm.Open(out, nonce, raw, nil)
}

View File

@ -0,0 +1,24 @@
package vault
import (
"testing"
"github.com/hashicorp/vault/physical"
)
func TestAESGCMBarrier_Basic(t *testing.T) {
inm := physical.NewInmem()
b, err := NewAESGCMBarrier(inm)
if err != nil {
t.Fatalf("err: %v", err)
}
testBarrier(t, b)
}
func TestAESGCMBarrier_Confidential(t *testing.T) {
// TODO: Verify data sent through is encrypted
}
func TestAESGCMBarrier_Integrity(t *testing.T) {
// TODO: Verify data sent through is cannot be tampered
}

208
vault/barrier_test.go Normal file
View File

@ -0,0 +1,208 @@
package vault
import (
"reflect"
"testing"
)
func testBarrier(t *testing.T, b SecurityBarrier) {
// Should not be initialized
init, err := b.Initialized()
if err != nil {
t.Fatalf("err: %v", err)
}
if init {
t.Fatalf("should not be initialized")
}
// Should start sealed
sealed, err := b.Sealed()
if err != nil {
t.Fatalf("err: %v", err)
}
if !sealed {
t.Fatalf("should be sealed")
}
// Sealing should be a no-op
if err := b.Seal(); err != nil {
t.Fatalf("err: %v", err)
}
// All operations should fail
e := &Entry{Key: "test", Value: []byte("test")}
if err := b.Put(e); err != ErrBarrierSealed {
t.Fatalf("err: %v", err)
}
if _, err := b.Get("test"); err != ErrBarrierSealed {
t.Fatalf("err: %v", err)
}
if err := b.Delete("test"); err != ErrBarrierSealed {
t.Fatalf("err: %v", err)
}
if _, err := b.List(""); err != ErrBarrierSealed {
t.Fatalf("err: %v", err)
}
// Get a new key
key, err := b.GenerateKey()
if err != nil {
t.Fatalf("err: %v", err)
}
// Unseal should not work
if err := b.Unseal(key); err != ErrBarrierNotInit {
t.Fatalf("err: %v", err)
}
// Initialize the vault
if err := b.Initialize(key); err != nil {
t.Fatalf("err: %v", err)
}
// Double Initialize should fail
if err := b.Initialize(key); err != ErrBarrierAlreadyInit {
t.Fatalf("err: %v", err)
}
// Should be initialized
init, err = b.Initialized()
if err != nil {
t.Fatalf("err: %v", err)
}
if !init {
t.Fatalf("should be initialized")
}
// Should still be sealed
sealed, err = b.Sealed()
if err != nil {
t.Fatalf("err: %v", err)
}
if !sealed {
t.Fatalf("should sealed")
}
// Unseal should work
if err := b.Unseal(key); err != nil {
t.Fatalf("err: %v", err)
}
// Should no longer be sealed
sealed, err = b.Sealed()
if err != nil {
t.Fatalf("err: %v", err)
}
if sealed {
t.Fatalf("should be unsealed")
}
// Operations should work
out, err := b.Get("test")
if err != nil {
t.Fatalf("err: %v", err)
}
if out != nil {
t.Fatalf("bad: %v", out)
}
// List should have only "barrier/"
keys, err := b.List("")
if err != nil {
t.Fatalf("err: %v", err)
}
if len(keys) != 1 || keys[0] != "barrier/" {
t.Fatalf("bad: %v", keys)
}
// Try to write
if err := b.Put(e); err != nil {
t.Fatalf("err: %v", err)
}
// Should be equal
out, err = b.Get("test")
if err != nil {
t.Fatalf("err: %v", err)
}
if !reflect.DeepEqual(out, e) {
t.Fatalf("bad: %v exp: %v", out, e)
}
// List should show the items
keys, err = b.List("")
if err != nil {
t.Fatalf("err: %v", err)
}
if len(keys) != 2 {
t.Fatalf("bad: %v", keys)
}
if keys[0] != "barrier/" || keys[1] != "test" {
t.Fatalf("bad: %v", keys)
}
// Delete should clear
err = b.Delete("test")
if err != nil {
t.Fatalf("err: %v", err)
}
// Double Delete is fine
err = b.Delete("test")
if err != nil {
t.Fatalf("err: %v", err)
}
// Should be nil
out, err = b.Get("test")
if err != nil {
t.Fatalf("err: %v", err)
}
if out != nil {
t.Fatalf("bad: %v", out)
}
// List should have nothing
keys, err = b.List("")
if err != nil {
t.Fatalf("err: %v", err)
}
if len(keys) != 1 || keys[0] != "barrier/" {
t.Fatalf("bad: %v", keys)
}
// Add the item back
if err := b.Put(e); err != nil {
t.Fatalf("err: %v", err)
}
// Reseal should prevent any updates
if err := b.Seal(); err != nil {
t.Fatalf("err: %v", err)
}
// No access allowed
if _, err := b.Get("test"); err != ErrBarrierSealed {
t.Fatalf("err: %v", err)
}
// Unseal should work
if err := b.Unseal(key); err != nil {
t.Fatalf("err: %v", err)
}
// Should be equal
out, err = b.Get("test")
if err != nil {
t.Fatalf("err: %v", err)
}
if !reflect.DeepEqual(out, e) {
t.Fatalf("bad: %v exp: %v", out, e)
}
// Final cleanup
err = b.Delete("test")
if err != nil {
t.Fatalf("err: %v", err)
}
}