open-vault/vault/token_store.go

563 lines
16 KiB
Go
Raw Normal View History

2015-03-18 20:19:19 +00:00
package vault
import (
"crypto/sha1"
"encoding/hex"
"encoding/json"
"fmt"
"strings"
"time"
2015-03-18 20:19:19 +00:00
"github.com/hashicorp/vault/logical"
"github.com/hashicorp/vault/logical/framework"
2015-03-18 20:19:19 +00:00
)
const (
// lookupPrefix is the prefix used to store tokens for their
// primary ID based index
lookupPrefix = "id/"
// parentPrefix is the prefix used to store tokens for their
// secondar parent based index
parentPrefix = "parent/"
// tokenSaltLocation is the path in the view we store our key salt.
// This is used to ensure the paths we write out are obfuscated so
// that token names cannot be guessed as that would compromise their
// use.
tokenSaltLocation = "salt"
// tokenSubPath is the sub-path used for the token store
// view. This is nested under the system view.
tokenSubPath = "token/"
2015-03-18 20:19:19 +00:00
)
// TokenStore is used to manage client tokens. Tokens are used for
// clients to authenticate, and each token is mapped to an applicable
// set of policy which is used for authorization.
type TokenStore struct {
*framework.Backend
2015-03-18 20:19:19 +00:00
view *BarrierView
salt string
}
// NewTokenStore is used to construct a token store that is
// backed by the given barrier view.
func NewTokenStore(c *Core) (*TokenStore, error) {
// Create a sub-view
view := c.systemView.SubView(tokenSubPath)
2015-03-18 20:19:19 +00:00
// Initialize the store
t := &TokenStore{
view: view,
}
// Look for the salt
raw, err := view.Get(tokenSaltLocation)
if err != nil {
return nil, fmt.Errorf("failed to read salt: %v", err)
}
// Restore the salt if it exists
if raw != nil {
t.salt = string(raw.Value)
}
// Generate a new salt if necessary
if t.salt == "" {
t.salt = generateUUID()
raw = &logical.StorageEntry{Key: tokenSaltLocation, Value: []byte(t.salt)}
if err := view.Put(raw); err != nil {
return nil, fmt.Errorf("failed to persist salt: %v", err)
}
}
// Setup the framework endpoints
t.Backend = &framework.Backend{
PathsSpecial: nil,
Paths: []*framework.Path{
&framework.Path{
Pattern: "create$",
Callbacks: map[logical.Operation]framework.OperationFunc{
logical.WriteOperation: t.handleCreate,
},
HelpSynopsis: strings.TrimSpace(tokenCreateHelp),
HelpDescription: strings.TrimSpace(tokenCreateHelp),
},
&framework.Path{
Pattern: "lookup/(?P<token>.+)",
Fields: map[string]*framework.FieldSchema{
"token": &framework.FieldSchema{
Type: framework.TypeString,
Description: "Token to lookup",
},
},
Callbacks: map[logical.Operation]framework.OperationFunc{
logical.ReadOperation: t.handleLookup,
},
HelpSynopsis: strings.TrimSpace(tokenLookupHelp),
HelpDescription: strings.TrimSpace(tokenLookupHelp),
},
&framework.Path{
Pattern: "lookup-self$",
Fields: map[string]*framework.FieldSchema{
"token": &framework.FieldSchema{
Type: framework.TypeString,
Description: "Token to lookup",
},
},
Callbacks: map[logical.Operation]framework.OperationFunc{
logical.ReadOperation: t.handleLookup,
},
HelpSynopsis: strings.TrimSpace(tokenLookupHelp),
HelpDescription: strings.TrimSpace(tokenLookupHelp),
},
&framework.Path{
Pattern: "revoke/(?P<token>.+)",
Fields: map[string]*framework.FieldSchema{
"token": &framework.FieldSchema{
Type: framework.TypeString,
Description: "Token to revoke",
},
},
Callbacks: map[logical.Operation]framework.OperationFunc{
logical.WriteOperation: t.handleRevokeTree,
},
HelpSynopsis: strings.TrimSpace(tokenRevokeHelp),
HelpDescription: strings.TrimSpace(tokenRevokeHelp),
},
&framework.Path{
Pattern: "revoke-orphan/(?P<token>.+)",
Fields: map[string]*framework.FieldSchema{
"token": &framework.FieldSchema{
Type: framework.TypeString,
Description: "Token to revoke",
},
},
Callbacks: map[logical.Operation]framework.OperationFunc{
logical.WriteOperation: t.handleRevokeOrphan,
},
HelpSynopsis: strings.TrimSpace(tokenRevokeOrphanHelp),
HelpDescription: strings.TrimSpace(tokenRevokeOrphanHelp),
},
},
}
2015-03-18 20:19:19 +00:00
return t, nil
}
// TokenEntry is used to represent a given token
type TokenEntry struct {
2015-03-31 03:26:39 +00:00
ID string // ID of this entry, generally a random UUID
Parent string // Parent token, used for revocation trees
Policies []string // Which named policies should be used
Path string // Used for audit trails, this is something like "auth/user/login"
Meta map[string]string // Used for auditing. This could include things like "source", "user", "ip"
2015-03-18 20:19:19 +00:00
}
// saltID is used to apply a salt and hash to an ID to make sure its not reversable
func (ts *TokenStore) saltID(id string) string {
comb := ts.salt + id
hash := sha1.Sum([]byte(comb))
return hex.EncodeToString(hash[:])
}
// RootToken is used to generate a new token with root privileges and no parent
func (ts *TokenStore) RootToken() (*TokenEntry, error) {
te := &TokenEntry{
Policies: []string{"root"},
Path: "sys/root",
}
if err := ts.Create(te); err != nil {
return nil, err
}
return te, nil
}
2015-03-18 20:19:19 +00:00
// Create is used to create a new token entry. The entry is assigned
// a newly generated ID if not provided.
2015-03-18 20:19:19 +00:00
func (ts *TokenStore) Create(entry *TokenEntry) error {
// Generate an ID if necessary
if entry.ID == "" {
entry.ID = generateUUID()
}
2015-03-18 20:19:19 +00:00
saltedId := ts.saltID(entry.ID)
// Marshal the entry
2015-03-18 20:19:19 +00:00
enc, err := json.Marshal(entry)
if err != nil {
return fmt.Errorf("failed to encode entry: %v", err)
}
// Write the secondary index if necessary. This is done before the
// primary index because we'd rather have a dangling pointer with
// a missing primary instead of missing the parent index and potentially
// escaping the revocation chain.
if entry.Parent != "" {
// Ensure the parent exists
parent, err := ts.Lookup(entry.Parent)
if err != nil {
return fmt.Errorf("failed to lookup parent: %v", err)
}
if parent == nil {
return fmt.Errorf("parent token not found")
}
// Create the index entry
path := parentPrefix + ts.saltID(entry.Parent) + "/" + saltedId
le := &logical.StorageEntry{Key: path}
if err := ts.view.Put(le); err != nil {
return fmt.Errorf("failed to persist entry: %v", err)
}
}
// Write the primary ID
path := lookupPrefix + saltedId
le := &logical.StorageEntry{Key: path, Value: enc}
if err := ts.view.Put(le); err != nil {
return fmt.Errorf("failed to persist entry: %v", err)
}
return nil
}
// Lookup is used to find a token given its ID
func (ts *TokenStore) Lookup(id string) (*TokenEntry, error) {
2015-03-18 20:21:16 +00:00
if id == "" {
return nil, fmt.Errorf("cannot lookup blank token")
}
2015-03-18 20:19:19 +00:00
return ts.lookupSalted(ts.saltID(id))
}
// lookupSlated is used to find a token given its salted ID
func (ts *TokenStore) lookupSalted(saltedId string) (*TokenEntry, error) {
// Lookup token
path := lookupPrefix + saltedId
raw, err := ts.view.Get(path)
if err != nil {
return nil, fmt.Errorf("failed to read entry: %v", err)
}
// Bail if not found
if raw == nil {
return nil, nil
}
// Unmarshal the token
entry := new(TokenEntry)
if err := json.Unmarshal(raw.Value, entry); err != nil {
return nil, fmt.Errorf("failed to decode entry: %v", err)
}
return entry, nil
}
// Revoke is used to invalidate a given token, any child tokens
// will be orphaned.
func (ts *TokenStore) Revoke(id string) error {
2015-03-18 20:21:16 +00:00
if id == "" {
return fmt.Errorf("cannot revoke blank token")
}
2015-03-18 20:19:19 +00:00
return ts.revokeSalted(ts.saltID(id))
}
// revokeSalted is used to invalidate a given salted token,
// any child tokens will be orphaned.
func (ts *TokenStore) revokeSalted(saltedId string) error {
// Lookup the token first
entry, err := ts.lookupSalted(saltedId)
if err != nil {
return err
}
// Nuke the primary key first
path := lookupPrefix + saltedId
if ts.view.Delete(path); err != nil {
return fmt.Errorf("failed to delete entry: %v", err)
}
// Clear the secondary index if any
if entry != nil && entry.Parent != "" {
path := parentPrefix + ts.saltID(entry.Parent) + "/" + saltedId
if ts.view.Delete(path); err != nil {
return fmt.Errorf("failed to delete entry: %v", err)
}
}
return nil
}
// RevokeTree is used to invalide a given token and all
// child tokens.
func (ts *TokenStore) RevokeTree(id string) error {
2015-03-18 20:21:16 +00:00
// Verify the token is not blank
if id == "" {
return fmt.Errorf("cannot revoke blank token")
}
2015-03-18 20:19:19 +00:00
// Get the salted ID
saltedId := ts.saltID(id)
// Lookup the token first
entry, err := ts.lookupSalted(saltedId)
if err != nil {
return err
}
// Nuke the child entries recursively
if err := ts.revokeTreeSalted(saltedId); err != nil {
return err
}
// Clear the secondary index if any
if entry != nil && entry.Parent != "" {
path := parentPrefix + ts.saltID(entry.Parent) + "/" + saltedId
if ts.view.Delete(path); err != nil {
return fmt.Errorf("failed to delete entry: %v", err)
}
}
return nil
}
// revokeTreeSalted is used to invalide a given token and all
// child tokens using a saltedID.
func (ts *TokenStore) revokeTreeSalted(saltedId string) error {
// Scan for child tokens
path := parentPrefix + saltedId + "/"
children, err := ts.view.List(path)
if err != nil {
return fmt.Errorf("failed to scan for children: %v", err)
}
// Recursively nuke the children. The subtle nuance here is that
// we don't have the acutal ID of the child, but we have the salted
// value. Turns out, this is good enough!
for _, child := range children {
if err := ts.revokeTreeSalted(child); err != nil {
return fmt.Errorf("failed to revoke child: %v", err)
}
childIndex := path + child
if err := ts.view.Delete(childIndex); err != nil {
return fmt.Errorf("failed to delete child index: %v", err)
}
}
// Nuke the primary key
path = lookupPrefix + saltedId
if ts.view.Delete(path); err != nil {
return fmt.Errorf("failed to delete entry: %v", err)
}
return nil
}
// RevokeAll is used to invalidate all generated tokens.
2015-03-18 20:21:16 +00:00
func (ts *TokenStore) RevokeAll() error {
2015-03-18 20:19:19 +00:00
// Collect all the tokens
sub := ts.view.SubView(lookupPrefix)
tokens, err := CollectKeys(sub)
if err != nil {
return fmt.Errorf("failed to scan tokens: %v", err)
}
// Invalidate them all, note that the keys we get back from the
// sub-view are all salted
for idx, token := range tokens {
if err := ts.revokeSalted(token); err != nil {
return fmt.Errorf("failed to revoke '%s' (%d / %d): %v",
token, idx+1, len(tokens), err)
}
}
return nil
}
// handleCreate handles the auth/token/create path for creation of new tokens
func (ts *TokenStore) handleCreate(
req *logical.Request, data *framework.FieldData) (*logical.Response, error) {
// Read the parent policy
parent, err := ts.Lookup(req.ClientToken)
if err != nil || parent == nil {
return logical.ErrorResponse("parent token lookup failed"), logical.ErrInvalidRequest
}
// Check if the parent policy is root
isRoot := strListContains(parent.Policies, "root")
// Read and parse the fields
idRaw, _ := req.Data["id"]
policiesRaw, _ := req.Data["policies"]
metaRaw, _ := req.Data["meta"]
noParentRaw, _ := req.Data["no_parent"]
leaseRaw, _ := req.Data["lease"]
// Setup the token entry
te := TokenEntry{
Parent: req.ClientToken,
Path: "auth/token/create",
}
// Allow specifying the ID of the token if the client is root
if id, ok := idRaw.(string); ok {
if !isRoot {
return logical.ErrorResponse("root required to specify token id"),
logical.ErrInvalidRequest
}
te.ID = id
}
// Only permit policies to be a subset unless the client is root
if policies, ok := policiesRaw.([]string); ok {
if !isRoot && !strListSubset(parent.Policies, policies) {
return logical.ErrorResponse("child policies must be subset of parent"), logical.ErrInvalidRequest
}
te.Policies = policies
}
// Ensure is some associated policy
if len(te.Policies) == 0 {
return logical.ErrorResponse("token must have at least one policy"), logical.ErrInvalidRequest
}
// Only allow an orphan token if the client is root
if noParent, _ := noParentRaw.(bool); noParent {
if !isRoot {
return logical.ErrorResponse("root required to create orphan token"),
logical.ErrInvalidRequest
}
te.Parent = ""
}
// Parse any metadata associated with the token
2015-03-31 03:26:39 +00:00
if meta, ok := metaRaw.(map[string]string); ok {
te.Meta = meta
}
// Parse the lease if any
var secret *logical.Secret
if lease, ok := leaseRaw.(string); ok {
dur, err := time.ParseDuration(lease)
if err != nil {
return logical.ErrorResponse(err.Error()), logical.ErrInvalidRequest
}
if dur < 0 {
return logical.ErrorResponse("lease must be positive"), logical.ErrInvalidRequest
}
secret = &logical.Secret{
Lease: dur,
LeaseGracePeriod: dur / 10, // Provide a 10% grace buffer
Renewable: true,
}
}
// Create the token
if err := ts.Create(&te); err != nil {
return logical.ErrorResponse(err.Error()), logical.ErrInvalidRequest
}
// Generate the response
resp := &logical.Response{
Secret: secret,
2015-03-31 03:26:39 +00:00
Auth: &logical.Auth{
ClientToken: te.ID,
},
}
2015-03-31 03:26:39 +00:00
return resp, nil
}
// handleRevokeTree handles the auth/token/revoke/id path for revocation of tokens
// in a way that revokes all child tokens. Normally, using sys/revoke/vaultID will revoke
// the token and all children anyways, but that is only available when there is a lease.
func (ts *TokenStore) handleRevokeTree(
req *logical.Request, data *framework.FieldData) (*logical.Response, error) {
id := data.Get("token").(string)
if id == "" {
return logical.ErrorResponse("missing token ID"), logical.ErrInvalidRequest
}
// Revoke the token and its children
if err := ts.RevokeTree(id); err != nil {
return logical.ErrorResponse(err.Error()), logical.ErrInvalidRequest
}
return nil, nil
}
// handleRevokeOrphan handles the auth/token/revoke-orphan/id path for revocation of tokens
// in a way that leaves child tokens orphaned. Normally, using sys/revoke/vaultID will revoke
// the token and all children.
func (ts *TokenStore) handleRevokeOrphan(
req *logical.Request, data *framework.FieldData) (*logical.Response, error) {
// Parse the id
id := data.Get("token").(string)
if id == "" {
return logical.ErrorResponse("missing token ID"), logical.ErrInvalidRequest
}
// Revoke and orphan
if err := ts.Revoke(id); err != nil {
return logical.ErrorResponse(err.Error()), logical.ErrInvalidRequest
}
return nil, nil
}
// handleLookup handles the auth/token/lookup/id path for querying information about
// a particular token. This can be used to see which policies are applicable.
func (ts *TokenStore) handleLookup(
req *logical.Request, data *framework.FieldData) (*logical.Response, error) {
id := data.Get("token").(string)
if id == "" {
id = req.ClientToken
}
if id == "" {
return logical.ErrorResponse("missing token ID"), logical.ErrInvalidRequest
}
// Lookup the token
out, err := ts.Lookup(id)
if err != nil {
return logical.ErrorResponse(err.Error()), logical.ErrInvalidRequest
}
// Fast-path the not found case
if out == nil {
return nil, nil
}
// Generate a response. We purposely omit the parent reference otherwise
// you could escalade your privileges.
resp := &logical.Response{
Data: map[string]interface{}{
"id": out.ID,
"policies": out.Policies,
"path": out.Path,
"meta": out.Meta,
},
}
return resp, nil
}
const (
tokenBackendHelp = `The token credential backend is always enabled and builtin to Vault.
Client tokens are used to identify a client and to allow Vault to associate policies and ACLs
which are enforced on every request. This backend also allows for generating sub-tokens as well
as revocation of tokens.`
tokenCreateHelp = `The token create path is used to create new tokens.`
tokenLookupHelp = `This endpoint will lookup a token and its properties.`
tokenRevokeHelp = `This endpoint will delete the token and all of its child tokens.`
tokenRevokeOrphanHelp = `This endpoint will delete the token and orphan its child tokens.`
)