open-vault/builtin/logical/transit/policy.go

539 lines
14 KiB
Go
Raw Normal View History

package transit
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/base64"
"encoding/json"
2016-01-15 19:02:51 +00:00
"fmt"
"strconv"
"strings"
"time"
"github.com/hashicorp/vault/helper/certutil"
"github.com/hashicorp/vault/helper/kdf"
"github.com/hashicorp/vault/logical"
)
const (
// kdfMode is the only KDF mode currently supported
kdfMode = "hmac-sha256-counter"
)
// KeyEntry stores the key and metadata
type KeyEntry struct {
Key []byte `json:"key"`
CreationTime int64 `json:"creation_time"`
}
// KeyEntryMap is used to allow JSON marshal/unmarshal
type KeyEntryMap map[int]KeyEntry
// MarshalJSON implements JSON marshaling
func (kem KeyEntryMap) MarshalJSON() ([]byte, error) {
intermediate := map[string]KeyEntry{}
for k, v := range kem {
intermediate[strconv.Itoa(k)] = v
}
return json.Marshal(&intermediate)
}
// MarshalJSON implements JSON unmarshaling
func (kem KeyEntryMap) UnmarshalJSON(data []byte) error {
intermediate := map[string]KeyEntry{}
err := json.Unmarshal(data, &intermediate)
if err != nil {
return err
}
for k, v := range intermediate {
keyval, err := strconv.Atoi(k)
if err != nil {
return err
}
kem[keyval] = v
}
return nil
}
// Policy is the struct used to store metadata
type Policy struct {
Name string `json:"name"`
Key []byte `json:"key,omitempty"` //DEPRECATED
Keys KeyEntryMap `json:"keys"`
CipherMode string `json:"cipher"`
// Derived keys MUST provide a context and the
// master underlying key is never used.
Derived bool `json:"derived"`
KDFMode string `json:"kdf_mode"`
// The minimum version of the key allowed to be used
// for decryption
MinDecryptionVersion int `json:"min_decryption_version"`
2016-01-15 19:02:51 +00:00
// The latest key version in this policy
LatestVersion int `json:"latest_version"`
// The latest key version in the archive. We never delete these, so this is a max.
ArchiveVersion int `json:"archive_version"`
// Whether the key is allowed to be deleted
DeletionAllowed bool `json:"deletion_allowed"`
}
2016-01-15 19:02:51 +00:00
// ArchivedKeys stores old keys. This is used to keep the key loading time sane when
// there are huge numbers of rotations.
type ArchivedKeys struct {
Keys []KeyEntry `json:"keys"`
}
func (p *Policy) loadArchive(storage logical.Storage, name string) (*ArchivedKeys, error) {
archive := &ArchivedKeys{}
raw, err := storage.Get("policy/" + name + "/archive")
if err != nil {
return nil, err
}
if raw == nil {
archive.Keys = make([]KeyEntry, 0)
return archive, nil
}
if err := json.Unmarshal(raw.Value, archive); err != nil {
return nil, err
}
return archive, nil
}
func (p *Policy) storeArchive(archive *ArchivedKeys, storage logical.Storage, name string) error {
// Encode the policy
buf, err := json.Marshal(archive)
if err != nil {
return err
}
// Write the policy into storage
err = storage.Put(&logical.StorageEntry{
Key: "policy/" + name + "/archive",
Value: buf,
})
if err != nil {
return err
}
return nil
}
// handleArchiving manages the movement of keys to and from the policy archive.
// This should *ONLY* be called from Persist() since it assumes that the policy
// will be persisted afterwards.
func (p *Policy) handleArchiving(storage logical.Storage, name string) error {
// We need to move keys that are no longer accessible to ArchivedKeys, and keys
// that now need to be accessible back here.
//
// For safety, because there isn't really a good reason to, we never delete
// keys from the archive even when we move them back.
// 0/1 are aliases, so don't deal with this code path unless we're past that
if p.MinDecryptionVersion < 2 {
return nil
}
// Check if we have the latest minimum version in the current set of keys
_, keysContainsMinimum := p.Keys[p.MinDecryptionVersion]
// If keys contains the minimum value, we are moving keys *to* the archive,
// but we only need to do this if the archive doesn't contain those key
// versions, since we don't remove key versions from the archive.
if keysContainsMinimum &&
p.ArchiveVersion >= p.MinDecryptionVersion-1 {
return nil
}
archive, err := p.loadArchive(storage, name)
if err != nil {
return err
}
if keysContainsMinimum {
// Need to move keys *to* archive
if len(archive.Keys) < p.MinDecryptionVersion-1 {
// Increase the size of the archive slice. We need a size that is
// equivalent to the minimum decryption version minus 1, but adding
// one since slice numbering starts at 0 and we're indexing by key
// version
newKeys := make([]KeyEntry, p.MinDecryptionVersion)
copy(newKeys, archive.Keys)
archive.Keys = newKeys
}
// As we are archiving progressively, we should only have to archive
// from the min version down to the latest version minus however many
// keys are in the policy's map. For example, if we have never
// archived, the latest version is 10, and we move the min decryption
// version to 5, we will archive from 4 down to (10-10) non-inclusive.
// If the latest version now becomes 8, we will archive from 7 down to
// (10-6) non-inclusive, e.g. keys 5, 6, and 7.
for i := p.LatestVersion - len(p.Keys) + 1; i < p.MinDecryptionVersion; i++ {
2016-01-15 19:02:51 +00:00
archive.Keys[i] = p.Keys[i]
}
err = p.storeArchive(archive, storage, name)
if err != nil {
return err
}
// Perform deletion afterwards so that if there is an error saving we
// haven't messed with the current policy
for i := p.LatestVersion - len(p.Keys) + 1; i < p.MinDecryptionVersion; i++ {
2016-01-15 19:02:51 +00:00
delete(p.Keys, i)
}
// Update the archive max key version. This also corresponds to the
// maximum safe index into the slice. Continuing our example from
// before, p.ArchiveVersion will now be 7.
p.ArchiveVersion = p.MinDecryptionVersion - 1
} else {
// Need to move keys *from* archive
// If we've been archiving, keys should have been archived
// sequentially. So we can perform a sanity check. First test the
// actual latest version in the policy, so continuing the previous
// example, if the key version is 10 and the minimum was 8, p.Keys
// should hold 8, 9, and 10. Now if we move the minimum back, e.g. to
// 5, we need to load keys 5, 6, and 7, so should load everything up to
// (10-3), inclusive. If p.ArchiveVersion is less than this (which it
// shouldn't be, as set earlier in the example), we have a problem.
// Also, we should never have a situation where the Archive version is
// less than the minimum decryption version but we also do not have the
// minimum version in p.Keys (which is the only way we'd be in this
// code path to begin with). That's also a problem.
//
// Note that we *should never have these problems*. If we do it's
// serious.
if p.ArchiveVersion < p.LatestVersion-len(p.Keys) ||
p.ArchiveVersion < p.MinDecryptionVersion {
return fmt.Errorf("latest archived key version not high enough to satisfy request")
}
2016-01-21 22:44:40 +00:00
currLen := len(p.Keys)
for i := p.MinDecryptionVersion; i <= p.LatestVersion-currLen; i++ {
2016-01-15 19:02:51 +00:00
_, ok := p.Keys[i]
if ok {
// We hit the beginning of the values currently in the keyset,
// so break
break
}
p.Keys[i] = archive.Keys[i]
}
}
return nil
}
func (p *Policy) Persist(storage logical.Storage, name string) error {
2016-01-15 19:02:51 +00:00
err := p.handleArchiving(storage, name)
if err != nil {
return err
}
// Encode the policy
buf, err := p.Serialize()
if err != nil {
return err
}
// Write the policy into storage
err = storage.Put(&logical.StorageEntry{
Key: "policy/" + name,
Value: buf,
})
if err != nil {
return err
}
return nil
}
func (p *Policy) Serialize() ([]byte, error) {
return json.Marshal(p)
}
// DeriveKey is used to derive the encryption key that should
// be used depending on the policy. If derivation is disabled the
// raw key is used and no context is required, otherwise the KDF
// mode is used with the context to derive the proper key.
func (p *Policy) DeriveKey(context []byte, ver int) ([]byte, error) {
2016-01-15 19:02:51 +00:00
if p.Keys == nil || p.LatestVersion == 0 {
if p.Key == nil || len(p.Key) == 0 {
return nil, certutil.InternalError{Err: "unable to access the key; no key versions found"}
}
p.migrateKeyToKeysMap()
}
2016-01-15 19:02:51 +00:00
if p.LatestVersion == 0 {
return nil, certutil.InternalError{Err: "unable to access the key; no key versions found"}
}
2016-01-15 19:02:51 +00:00
if ver <= 0 || ver > p.LatestVersion {
return nil, certutil.UserError{Err: "invalid key version"}
}
// Fast-path non-derived keys
if !p.Derived {
return p.Keys[ver].Key, nil
}
// Ensure a context is provided
if len(context) == 0 {
return nil, certutil.UserError{Err: "missing 'context' for key deriviation. The key was created using a derived key, which means additional, per-request information must be included in order to encrypt or decrypt information"}
}
switch p.KDFMode {
case kdfMode:
prf := kdf.HMACSHA256PRF
prfLen := kdf.HMACSHA256PRFLen
return kdf.CounterMode(prf, prfLen, p.Keys[ver].Key, context, 256)
default:
return nil, certutil.InternalError{Err: "unsupported key derivation mode"}
}
}
func (p *Policy) Encrypt(context []byte, value string) (string, error) {
// Decode the plaintext value
plaintext, err := base64.StdEncoding.DecodeString(value)
if err != nil {
return "", certutil.UserError{Err: "failed to decode plaintext as base64"}
}
// Derive the key that should be used
2016-01-15 19:02:51 +00:00
key, err := p.DeriveKey(context, p.LatestVersion)
if err != nil {
return "", certutil.InternalError{Err: err.Error()}
}
// Guard against a potentially invalid cipher-mode
switch p.CipherMode {
case "aes-gcm":
default:
return "", certutil.InternalError{Err: "unsupported cipher mode"}
}
// Setup the cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return "", certutil.InternalError{Err: err.Error()}
}
// Setup the GCM AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return "", certutil.InternalError{Err: err.Error()}
}
// Compute random nonce
nonce := make([]byte, gcm.NonceSize())
_, err = rand.Read(nonce)
if err != nil {
return "", certutil.InternalError{Err: err.Error()}
}
// Encrypt and tag with GCM
out := gcm.Seal(nil, nonce, plaintext, nil)
// Place the encrypted data after the nonce
full := append(nonce, out...)
// Convert to base64
encoded := base64.StdEncoding.EncodeToString(full)
// Prepend some information
2016-01-15 19:02:51 +00:00
encoded = "vault:v" + strconv.Itoa(p.LatestVersion) + ":" + encoded
return encoded, nil
}
func (p *Policy) Decrypt(context []byte, value string) (string, error) {
// Verify the prefix
if !strings.HasPrefix(value, "vault:v") {
return "", certutil.UserError{Err: "invalid ciphertext"}
}
splitVerCiphertext := strings.SplitN(strings.TrimPrefix(value, "vault:v"), ":", 2)
if len(splitVerCiphertext) != 2 {
return "", certutil.UserError{Err: "invalid ciphertext"}
}
ver, err := strconv.Atoi(splitVerCiphertext[0])
if err != nil {
return "", certutil.UserError{Err: "invalid ciphertext"}
}
if ver == 0 {
// Compatibility mode with initial implementation, where keys start at zero
ver = 1
}
if p.MinDecryptionVersion > 0 && ver < p.MinDecryptionVersion {
return "", certutil.UserError{Err: "ciphertext version is disallowed by policy (too old)"}
}
// Derive the key that should be used
key, err := p.DeriveKey(context, ver)
if err != nil {
return "", err
}
// Guard against a potentially invalid cipher-mode
switch p.CipherMode {
case "aes-gcm":
default:
return "", certutil.InternalError{Err: "unsupported cipher mode"}
}
// Decode the base64
decoded, err := base64.StdEncoding.DecodeString(splitVerCiphertext[1])
if err != nil {
return "", certutil.UserError{Err: "invalid ciphertext"}
}
// Setup the cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return "", certutil.InternalError{Err: err.Error()}
}
// Setup the GCM AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return "", certutil.InternalError{Err: err.Error()}
}
// Extract the nonce and ciphertext
nonce := decoded[:gcm.NonceSize()]
ciphertext := decoded[gcm.NonceSize():]
// Verify and Decrypt
plain, err := gcm.Open(nil, nonce, ciphertext, nil)
if err != nil {
return "", certutil.UserError{Err: "invalid ciphertext"}
}
return base64.StdEncoding.EncodeToString(plain), nil
}
func (p *Policy) rotate(storage logical.Storage) error {
if p.Keys == nil {
p.migrateKeyToKeysMap()
}
// Generate a 256bit key
newKey := make([]byte, 32)
_, err := rand.Read(newKey)
if err != nil {
return err
}
2016-01-15 19:02:51 +00:00
p.LatestVersion += 1
p.Keys[p.LatestVersion] = KeyEntry{
Key: newKey,
CreationTime: time.Now().Unix(),
}
return p.Persist(storage, p.Name)
}
func (p *Policy) migrateKeyToKeysMap() {
if p.Key == nil || len(p.Key) == 0 {
p.Key = nil
p.Keys = KeyEntryMap{}
return
}
p.Keys = KeyEntryMap{
1: KeyEntry{
Key: p.Key,
CreationTime: time.Now().Unix(),
},
}
p.Key = nil
}
func deserializePolicy(buf []byte) (*Policy, error) {
p := &Policy{
Keys: KeyEntryMap{},
}
if err := json.Unmarshal(buf, p); err != nil {
return nil, err
}
return p, nil
}
func getPolicy(req *logical.Request, name string) (*Policy, error) {
// Check if the policy already exists
raw, err := req.Storage.Get("policy/" + name)
if err != nil {
return nil, err
}
if raw == nil {
return nil, nil
}
// Decode the policy
p, err := deserializePolicy(raw.Value)
if err != nil {
return nil, err
}
2016-01-15 19:02:51 +00:00
persistNeeded := false
// Ensure we've moved from Key -> Keys
if p.Key != nil && len(p.Key) > 0 {
p.migrateKeyToKeysMap()
2016-01-15 19:02:51 +00:00
persistNeeded = true
}
// With archiving, past assumptions about the length of the keys map are no longer valid
if p.LatestVersion == 0 && len(p.Keys) != 0 {
p.LatestVersion = len(p.Keys)
persistNeeded = true
}
2016-01-15 19:02:51 +00:00
if persistNeeded {
err = p.Persist(req.Storage, name)
if err != nil {
return nil, err
}
}
return p, nil
}
// generatePolicy is used to create a new named policy with
// a randomly generated key
func generatePolicy(storage logical.Storage, name string, derived bool) (*Policy, error) {
// Create the policy object
p := &Policy{
Name: name,
CipherMode: "aes-gcm",
Derived: derived,
}
if derived {
p.KDFMode = kdfMode
}
err := p.rotate(storage)
if err != nil {
return nil, err
}
// Return the policy
return p, nil
}