open-nomad/scheduler/rank.go
Mahmood Ali 0c2551270a oversubscription: Add MemoryMaxMB to internal structs
Start tracking a new MemoryMaxMB field that represents the maximum memory a task
may use in the client. This allows tasks to specify a memory reservation (to be
used by scheduler when placing the task) but use excess memory used on the
client if the client has any.

This commit adds the server tracking for the value, and ensures that allocations
AllocatedResource fields include the value.
2021-03-30 16:55:58 -04:00

818 lines
25 KiB
Go

package scheduler
import (
"fmt"
"math"
"github.com/hashicorp/nomad/lib/cpuset"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// binPackingMaxFitScore is the maximum possible bin packing fitness score.
// This is used to normalize bin packing score to a value between 0 and 1
binPackingMaxFitScore = 18.0
)
// Rank is used to provide a score and various ranking metadata
// along with a node when iterating. This state can be modified as
// various rank methods are applied.
type RankedNode struct {
Node *structs.Node
FinalScore float64
Scores []float64
TaskResources map[string]*structs.AllocatedTaskResources
TaskLifecycles map[string]*structs.TaskLifecycleConfig
AllocResources *structs.AllocatedSharedResources
// Allocs is used to cache the proposed allocations on the
// node. This can be shared between iterators that require it.
Proposed []*structs.Allocation
// PreemptedAllocs is used by the BinpackIterator to identify allocs
// that should be preempted in order to make the placement
PreemptedAllocs []*structs.Allocation
}
func (r *RankedNode) GoString() string {
return fmt.Sprintf("<Node: %s Score: %0.3f>", r.Node.ID, r.FinalScore)
}
func (r *RankedNode) ProposedAllocs(ctx Context) ([]*structs.Allocation, error) {
if r.Proposed != nil {
return r.Proposed, nil
}
p, err := ctx.ProposedAllocs(r.Node.ID)
if err != nil {
return nil, err
}
r.Proposed = p
return p, nil
}
func (r *RankedNode) SetTaskResources(task *structs.Task,
resource *structs.AllocatedTaskResources) {
if r.TaskResources == nil {
r.TaskResources = make(map[string]*structs.AllocatedTaskResources)
r.TaskLifecycles = make(map[string]*structs.TaskLifecycleConfig)
}
r.TaskResources[task.Name] = resource
r.TaskLifecycles[task.Name] = task.Lifecycle
}
// RankFeasibleIterator is used to iteratively yield nodes along
// with ranking metadata. The iterators may manage some state for
// performance optimizations.
type RankIterator interface {
// Next yields a ranked option or nil if exhausted
Next() *RankedNode
// Reset is invoked when an allocation has been placed
// to reset any stale state.
Reset()
}
// FeasibleRankIterator is used to consume from a FeasibleIterator
// and return an unranked node with base ranking.
type FeasibleRankIterator struct {
ctx Context
source FeasibleIterator
}
// NewFeasibleRankIterator is used to return a new FeasibleRankIterator
// from a FeasibleIterator source.
func NewFeasibleRankIterator(ctx Context, source FeasibleIterator) *FeasibleRankIterator {
iter := &FeasibleRankIterator{
ctx: ctx,
source: source,
}
return iter
}
func (iter *FeasibleRankIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil {
return nil
}
ranked := &RankedNode{
Node: option,
}
return ranked
}
func (iter *FeasibleRankIterator) Reset() {
iter.source.Reset()
}
// StaticRankIterator is a RankIterator that returns a static set of results.
// This is largely only useful for testing.
type StaticRankIterator struct {
ctx Context
nodes []*RankedNode
offset int
seen int
}
// NewStaticRankIterator returns a new static rank iterator over the given nodes
func NewStaticRankIterator(ctx Context, nodes []*RankedNode) *StaticRankIterator {
iter := &StaticRankIterator{
ctx: ctx,
nodes: nodes,
}
return iter
}
func (iter *StaticRankIterator) Next() *RankedNode {
// Check if exhausted
n := len(iter.nodes)
if iter.offset == n || iter.seen == n {
if iter.seen != n {
iter.offset = 0
} else {
return nil
}
}
// Return the next offset
offset := iter.offset
iter.offset += 1
iter.seen += 1
return iter.nodes[offset]
}
func (iter *StaticRankIterator) Reset() {
iter.seen = 0
}
// BinPackIterator is a RankIterator that scores potential options
// based on a bin-packing algorithm.
type BinPackIterator struct {
ctx Context
source RankIterator
evict bool
priority int
jobId *structs.NamespacedID
taskGroup *structs.TaskGroup
scoreFit func(*structs.Node, *structs.ComparableResources) float64
}
// NewBinPackIterator returns a BinPackIterator which tries to fit tasks
// potentially evicting other tasks based on a given priority.
func NewBinPackIterator(ctx Context, source RankIterator, evict bool, priority int, algorithm structs.SchedulerAlgorithm) *BinPackIterator {
scoreFn := structs.ScoreFitBinPack
if algorithm == structs.SchedulerAlgorithmSpread {
scoreFn = structs.ScoreFitSpread
}
iter := &BinPackIterator{
ctx: ctx,
source: source,
evict: evict,
priority: priority,
scoreFit: scoreFn,
}
iter.ctx.Logger().Named("binpack").Trace("NewBinPackIterator created", "algorithm", algorithm)
return iter
}
func (iter *BinPackIterator) SetJob(job *structs.Job) {
iter.priority = job.Priority
iter.jobId = job.NamespacedID()
}
func (iter *BinPackIterator) SetTaskGroup(taskGroup *structs.TaskGroup) {
iter.taskGroup = taskGroup
}
func (iter *BinPackIterator) Next() *RankedNode {
OUTER:
for {
// Get the next potential option
option := iter.source.Next()
if option == nil {
return nil
}
// Get the proposed allocations
proposed, err := option.ProposedAllocs(iter.ctx)
if err != nil {
iter.ctx.Logger().Named("binpack").Error("failed retrieving proposed allocations", "error", err)
continue
}
// Index the existing network usage
netIdx := structs.NewNetworkIndex()
netIdx.SetNode(option.Node)
netIdx.AddAllocs(proposed)
// Create a device allocator
devAllocator := newDeviceAllocator(iter.ctx, option.Node)
devAllocator.AddAllocs(proposed)
// Track the affinities of the devices
totalDeviceAffinityWeight := 0.0
sumMatchingAffinities := 0.0
// Assign the resources for each task
total := &structs.AllocatedResources{
Tasks: make(map[string]*structs.AllocatedTaskResources,
len(iter.taskGroup.Tasks)),
TaskLifecycles: make(map[string]*structs.TaskLifecycleConfig,
len(iter.taskGroup.Tasks)),
Shared: structs.AllocatedSharedResources{
DiskMB: int64(iter.taskGroup.EphemeralDisk.SizeMB),
},
}
var allocsToPreempt []*structs.Allocation
// Initialize preemptor with node
preemptor := NewPreemptor(iter.priority, iter.ctx, iter.jobId)
preemptor.SetNode(option.Node)
// Count the number of existing preemptions
allPreemptions := iter.ctx.Plan().NodePreemptions
var currentPreemptions []*structs.Allocation
for _, allocs := range allPreemptions {
currentPreemptions = append(currentPreemptions, allocs...)
}
preemptor.SetPreemptions(currentPreemptions)
// Check if we need task group network resource
if len(iter.taskGroup.Networks) > 0 {
ask := iter.taskGroup.Networks[0].Copy()
offer, err := netIdx.AssignPorts(ask)
if err != nil {
// If eviction is not enabled, mark this node as exhausted and continue
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node,
fmt.Sprintf("network: %s", err))
netIdx.Release()
continue OUTER
}
// Look for preemptible allocations to satisfy the network resource for this task
preemptor.SetCandidates(proposed)
netPreemptions := preemptor.PreemptForNetwork(ask, netIdx)
if netPreemptions == nil {
iter.ctx.Logger().Named("binpack").Debug("preemption not possible ", "network_resource", ask)
netIdx.Release()
continue OUTER
}
allocsToPreempt = append(allocsToPreempt, netPreemptions...)
// First subtract out preempted allocations
proposed = structs.RemoveAllocs(proposed, netPreemptions)
// Reset the network index and try the offer again
netIdx.Release()
netIdx = structs.NewNetworkIndex()
netIdx.SetNode(option.Node)
netIdx.AddAllocs(proposed)
offer, err = netIdx.AssignPorts(ask)
if err != nil {
iter.ctx.Logger().Named("binpack").Debug("unexpected error, unable to create network offer after considering preemption", "error", err)
netIdx.Release()
continue OUTER
}
}
// Reserve this to prevent another task from colliding
netIdx.AddReservedPorts(offer)
// Update the network ask to the offer
nwRes := structs.AllocatedPortsToNetworkResouce(ask, offer, option.Node.NodeResources)
total.Shared.Networks = []*structs.NetworkResource{nwRes}
total.Shared.Ports = offer
option.AllocResources = &structs.AllocatedSharedResources{
Networks: []*structs.NetworkResource{nwRes},
DiskMB: int64(iter.taskGroup.EphemeralDisk.SizeMB),
Ports: offer,
}
}
for _, task := range iter.taskGroup.Tasks {
// Allocate the resources
taskResources := &structs.AllocatedTaskResources{
Cpu: structs.AllocatedCpuResources{
CpuShares: int64(task.Resources.CPU),
},
Memory: structs.AllocatedMemoryResources{
MemoryMB: int64(task.Resources.MemoryMB),
MemoryMaxMB: int64(task.Resources.MemoryMaxMB),
},
}
// Check if we need a network resource
if len(task.Resources.Networks) > 0 {
ask := task.Resources.Networks[0].Copy()
offer, err := netIdx.AssignNetwork(ask)
if offer == nil {
// If eviction is not enabled, mark this node as exhausted and continue
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node,
fmt.Sprintf("network: %s", err))
netIdx.Release()
continue OUTER
}
// Look for preemptible allocations to satisfy the network resource for this task
preemptor.SetCandidates(proposed)
netPreemptions := preemptor.PreemptForNetwork(ask, netIdx)
if netPreemptions == nil {
iter.ctx.Logger().Named("binpack").Debug("preemption not possible ", "network_resource", ask)
netIdx.Release()
continue OUTER
}
allocsToPreempt = append(allocsToPreempt, netPreemptions...)
// First subtract out preempted allocations
proposed = structs.RemoveAllocs(proposed, netPreemptions)
// Reset the network index and try the offer again
netIdx.Release()
netIdx = structs.NewNetworkIndex()
netIdx.SetNode(option.Node)
netIdx.AddAllocs(proposed)
offer, err = netIdx.AssignNetwork(ask)
if offer == nil {
iter.ctx.Logger().Named("binpack").Debug("unexpected error, unable to create network offer after considering preemption", "error", err)
netIdx.Release()
continue OUTER
}
}
// Reserve this to prevent another task from colliding
netIdx.AddReserved(offer)
// Update the network ask to the offer
taskResources.Networks = []*structs.NetworkResource{offer}
}
// Check if we need to assign devices
for _, req := range task.Resources.Devices {
offer, sumAffinities, err := devAllocator.AssignDevice(req)
if offer == nil {
// If eviction is not enabled, mark this node as exhausted and continue
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node, fmt.Sprintf("devices: %s", err))
continue OUTER
}
// Attempt preemption
preemptor.SetCandidates(proposed)
devicePreemptions := preemptor.PreemptForDevice(req, devAllocator)
if devicePreemptions == nil {
iter.ctx.Logger().Named("binpack").Debug("preemption not possible", "requested_device", req)
netIdx.Release()
continue OUTER
}
allocsToPreempt = append(allocsToPreempt, devicePreemptions...)
// First subtract out preempted allocations
proposed = structs.RemoveAllocs(proposed, allocsToPreempt)
// Reset the device allocator with new set of proposed allocs
devAllocator := newDeviceAllocator(iter.ctx, option.Node)
devAllocator.AddAllocs(proposed)
// Try offer again
offer, sumAffinities, err = devAllocator.AssignDevice(req)
if offer == nil {
iter.ctx.Logger().Named("binpack").Debug("unexpected error, unable to create device offer after considering preemption", "error", err)
continue OUTER
}
}
// Store the resource
devAllocator.AddReserved(offer)
taskResources.Devices = append(taskResources.Devices, offer)
// Add the scores
if len(req.Affinities) != 0 {
for _, a := range req.Affinities {
totalDeviceAffinityWeight += math.Abs(float64(a.Weight))
}
sumMatchingAffinities += sumAffinities
}
}
// Check if we need to allocate any reserved cores
if task.Resources.Cores > 0 {
// set of reservable CPUs for the node
nodeCPUSet := cpuset.New(option.Node.NodeResources.Cpu.ReservableCpuCores...)
// set of all reserved CPUs on the node
allocatedCPUSet := cpuset.New()
for _, alloc := range proposed {
allocatedCPUSet = allocatedCPUSet.Union(cpuset.New(alloc.ComparableResources().Flattened.Cpu.ReservedCores...))
}
// add any cores that were reserved for other tasks
for _, tr := range total.Tasks {
allocatedCPUSet = allocatedCPUSet.Union(cpuset.New(tr.Cpu.ReservedCores...))
}
// set of CPUs not yet reserved on the node
availableCPUSet := nodeCPUSet.Difference(allocatedCPUSet)
// If not enough cores are available mark the node as exhausted
if availableCPUSet.Size() < task.Resources.Cores {
// TODO preemption
iter.ctx.Metrics().ExhaustedNode(option.Node, "cores")
continue OUTER
}
// Set the task's reserved cores
taskResources.Cpu.ReservedCores = availableCPUSet.ToSlice()[0:task.Resources.Cores]
// Total CPU usage on the node is still tracked by CPUShares. Even though the task will have the entire
// core reserved, we still track overall usage by cpu shares.
taskResources.Cpu.CpuShares = option.Node.NodeResources.Cpu.SharesPerCore() * int64(task.Resources.Cores)
}
// Store the task resource
option.SetTaskResources(task, taskResources)
// Accumulate the total resource requirement
total.Tasks[task.Name] = taskResources
total.TaskLifecycles[task.Name] = task.Lifecycle
}
// Store current set of running allocs before adding resources for the task group
current := proposed
// Add the resources we are trying to fit
proposed = append(proposed, &structs.Allocation{AllocatedResources: total})
// Check if these allocations fit, if they do not, simply skip this node
fit, dim, util, _ := structs.AllocsFit(option.Node, proposed, netIdx, false)
netIdx.Release()
if !fit {
// Skip the node if evictions are not enabled
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node, dim)
continue
}
// If eviction is enabled and the node doesn't fit the alloc, check if
// any allocs can be preempted
// Initialize preemptor with candidate set
preemptor.SetCandidates(current)
preemptedAllocs := preemptor.PreemptForTaskGroup(total)
allocsToPreempt = append(allocsToPreempt, preemptedAllocs...)
// If we were unable to find preempted allocs to meet these requirements
// mark as exhausted and continue
if len(preemptedAllocs) == 0 {
iter.ctx.Metrics().ExhaustedNode(option.Node, dim)
continue
}
}
if len(allocsToPreempt) > 0 {
option.PreemptedAllocs = allocsToPreempt
}
// Score the fit normally otherwise
fitness := iter.scoreFit(option.Node, util)
normalizedFit := fitness / binPackingMaxFitScore
option.Scores = append(option.Scores, normalizedFit)
iter.ctx.Metrics().ScoreNode(option.Node, "binpack", normalizedFit)
// Score the device affinity
if totalDeviceAffinityWeight != 0 {
sumMatchingAffinities /= totalDeviceAffinityWeight
option.Scores = append(option.Scores, sumMatchingAffinities)
iter.ctx.Metrics().ScoreNode(option.Node, "devices", sumMatchingAffinities)
}
return option
}
}
func (iter *BinPackIterator) Reset() {
iter.source.Reset()
}
// JobAntiAffinityIterator is used to apply an anti-affinity to allocating
// along side other allocations from this job. This is used to help distribute
// load across the cluster.
type JobAntiAffinityIterator struct {
ctx Context
source RankIterator
jobID string
taskGroup string
desiredCount int
}
// NewJobAntiAffinityIterator is used to create a JobAntiAffinityIterator that
// applies the given penalty for co-placement with allocs from this job.
func NewJobAntiAffinityIterator(ctx Context, source RankIterator, jobID string) *JobAntiAffinityIterator {
iter := &JobAntiAffinityIterator{
ctx: ctx,
source: source,
jobID: jobID,
}
return iter
}
func (iter *JobAntiAffinityIterator) SetJob(job *structs.Job) {
iter.jobID = job.ID
}
func (iter *JobAntiAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) {
iter.taskGroup = tg.Name
iter.desiredCount = tg.Count
}
func (iter *JobAntiAffinityIterator) Next() *RankedNode {
for {
option := iter.source.Next()
if option == nil {
return nil
}
// Get the proposed allocations
proposed, err := option.ProposedAllocs(iter.ctx)
if err != nil {
iter.ctx.Logger().Named("job_anti_affinity").Error("failed retrieving proposed allocations", "error", err)
continue
}
// Determine the number of collisions
collisions := 0
for _, alloc := range proposed {
if alloc.JobID == iter.jobID && alloc.TaskGroup == iter.taskGroup {
collisions += 1
}
}
// Calculate the penalty based on number of collisions
// TODO(preetha): Figure out if batch jobs need a different scoring penalty where collisions matter less
if collisions > 0 {
scorePenalty := -1 * float64(collisions+1) / float64(iter.desiredCount)
option.Scores = append(option.Scores, scorePenalty)
iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", scorePenalty)
} else {
iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", 0)
}
return option
}
}
func (iter *JobAntiAffinityIterator) Reset() {
iter.source.Reset()
}
// NodeReschedulingPenaltyIterator is used to apply a penalty to
// a node that had a previous failed allocation for the same job.
// This is used when attempting to reschedule a failed alloc
type NodeReschedulingPenaltyIterator struct {
ctx Context
source RankIterator
penaltyNodes map[string]struct{}
}
// NewNodeReschedulingPenaltyIterator is used to create a NodeReschedulingPenaltyIterator that
// applies the given scoring penalty for placement onto nodes in penaltyNodes
func NewNodeReschedulingPenaltyIterator(ctx Context, source RankIterator) *NodeReschedulingPenaltyIterator {
iter := &NodeReschedulingPenaltyIterator{
ctx: ctx,
source: source,
}
return iter
}
func (iter *NodeReschedulingPenaltyIterator) SetPenaltyNodes(penaltyNodes map[string]struct{}) {
iter.penaltyNodes = penaltyNodes
}
func (iter *NodeReschedulingPenaltyIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil {
return nil
}
_, ok := iter.penaltyNodes[option.Node.ID]
if ok {
option.Scores = append(option.Scores, -1)
iter.ctx.Metrics().ScoreNode(option.Node, "node-reschedule-penalty", -1)
} else {
iter.ctx.Metrics().ScoreNode(option.Node, "node-reschedule-penalty", 0)
}
return option
}
func (iter *NodeReschedulingPenaltyIterator) Reset() {
iter.penaltyNodes = make(map[string]struct{})
iter.source.Reset()
}
// NodeAffinityIterator is used to resolve any affinity rules in the job or task group,
// and apply a weighted score to nodes if they match.
type NodeAffinityIterator struct {
ctx Context
source RankIterator
jobAffinities []*structs.Affinity
affinities []*structs.Affinity
}
// NewNodeAffinityIterator is used to create a NodeAffinityIterator that
// applies a weighted score according to whether nodes match any
// affinities in the job or task group.
func NewNodeAffinityIterator(ctx Context, source RankIterator) *NodeAffinityIterator {
return &NodeAffinityIterator{
ctx: ctx,
source: source,
}
}
func (iter *NodeAffinityIterator) SetJob(job *structs.Job) {
iter.jobAffinities = job.Affinities
}
func (iter *NodeAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) {
// Merge job affinities
if iter.jobAffinities != nil {
iter.affinities = append(iter.affinities, iter.jobAffinities...)
}
// Merge task group affinities and task affinities
if tg.Affinities != nil {
iter.affinities = append(iter.affinities, tg.Affinities...)
}
for _, task := range tg.Tasks {
if task.Affinities != nil {
iter.affinities = append(iter.affinities, task.Affinities...)
}
}
}
func (iter *NodeAffinityIterator) Reset() {
iter.source.Reset()
// This method is called between each task group, so only reset the merged list
iter.affinities = nil
}
func (iter *NodeAffinityIterator) hasAffinities() bool {
return len(iter.affinities) > 0
}
func (iter *NodeAffinityIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil {
return nil
}
if !iter.hasAffinities() {
iter.ctx.Metrics().ScoreNode(option.Node, "node-affinity", 0)
return option
}
// TODO(preetha): we should calculate normalized weights once and reuse it here
sumWeight := 0.0
for _, affinity := range iter.affinities {
sumWeight += math.Abs(float64(affinity.Weight))
}
totalAffinityScore := 0.0
for _, affinity := range iter.affinities {
if matchesAffinity(iter.ctx, affinity, option.Node) {
totalAffinityScore += float64(affinity.Weight)
}
}
normScore := totalAffinityScore / sumWeight
if totalAffinityScore != 0.0 {
option.Scores = append(option.Scores, normScore)
iter.ctx.Metrics().ScoreNode(option.Node, "node-affinity", normScore)
}
return option
}
func matchesAffinity(ctx Context, affinity *structs.Affinity, option *structs.Node) bool {
//TODO(preetha): Add a step here that filters based on computed node class for potential speedup
// Resolve the targets
lVal, lOk := resolveTarget(affinity.LTarget, option)
rVal, rOk := resolveTarget(affinity.RTarget, option)
// Check if satisfied
return checkAffinity(ctx, affinity.Operand, lVal, rVal, lOk, rOk)
}
// ScoreNormalizationIterator is used to combine scores from various prior
// iterators and combine them into one final score. The current implementation
// averages the scores together.
type ScoreNormalizationIterator struct {
ctx Context
source RankIterator
}
// NewScoreNormalizationIterator is used to create a ScoreNormalizationIterator that
// averages scores from various iterators into a final score.
func NewScoreNormalizationIterator(ctx Context, source RankIterator) *ScoreNormalizationIterator {
return &ScoreNormalizationIterator{
ctx: ctx,
source: source}
}
func (iter *ScoreNormalizationIterator) Reset() {
iter.source.Reset()
}
func (iter *ScoreNormalizationIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil || len(option.Scores) == 0 {
return option
}
numScorers := len(option.Scores)
sum := 0.0
for _, score := range option.Scores {
sum += score
}
option.FinalScore = sum / float64(numScorers)
//TODO(preetha): Turn map in allocmetrics into a heap of topK scores
iter.ctx.Metrics().ScoreNode(option.Node, "normalized-score", option.FinalScore)
return option
}
// PreemptionScoringIterator is used to score nodes according to the
// combination of preemptible allocations in them
type PreemptionScoringIterator struct {
ctx Context
source RankIterator
}
// PreemptionScoringIterator is used to create a score based on net aggregate priority
// of preempted allocations
func NewPreemptionScoringIterator(ctx Context, source RankIterator) RankIterator {
return &PreemptionScoringIterator{
ctx: ctx,
source: source,
}
}
func (iter *PreemptionScoringIterator) Reset() {
iter.source.Reset()
}
func (iter *PreemptionScoringIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil || option.PreemptedAllocs == nil {
return option
}
netPriority := netPriority(option.PreemptedAllocs)
// preemption score is inversely proportional to netPriority
preemptionScore := preemptionScore(netPriority)
option.Scores = append(option.Scores, preemptionScore)
iter.ctx.Metrics().ScoreNode(option.Node, "preemption", preemptionScore)
return option
}
// netPriority is a scoring heuristic that represents a combination of two factors.
// First factor is the max priority in the set of allocations, with
// an additional factor that takes into account the individual priorities of allocations
func netPriority(allocs []*structs.Allocation) float64 {
sumPriority := 0
max := 0.0
for _, alloc := range allocs {
if float64(alloc.Job.Priority) > max {
max = float64(alloc.Job.Priority)
}
sumPriority += alloc.Job.Priority
}
// We use the maximum priority across all allocations
// with an additional penalty that increases proportional to the
// ratio of the sum by max
// This ensures that we penalize nodes that have a low max but a high
// number of preemptible allocations
ret := max + (float64(sumPriority) / max)
return ret
}
// preemptionScore is calculated using a logistic function
// see https://www.desmos.com/calculator/alaeiuaiey for a visual representation of the curve.
// Lower values of netPriority get a score closer to 1 and the inflection point is around 2048
// The score is modelled to be between 0 and 1 because its combined with other
// scoring factors like bin packing
func preemptionScore(netPriority float64) float64 {
// These values were chosen such that a net priority of 2048 would get a preemption score of 0.5
// rate is the decay parameter of the logistic function used in scoring preemption options
const rate = 0.0048
// origin controls the inflection point of the logistic function used in scoring preemption options
const origin = 2048.0
// This function manifests as an s curve that asympotically moves towards zero for large values of netPriority
return 1.0 / (1 + math.Exp(rate*(netPriority-origin)))
}