331 lines
9.0 KiB
Go
331 lines
9.0 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"log"
|
|
"regexp"
|
|
|
|
memdb "github.com/hashicorp/go-memdb"
|
|
"github.com/hashicorp/go-version"
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
// Context is used to track contextual information used for placement
|
|
type Context interface {
|
|
// State is used to inspect the current global state
|
|
State() State
|
|
|
|
// Plan returns the current plan
|
|
Plan() *structs.Plan
|
|
|
|
// Logger provides a way to log
|
|
Logger() *log.Logger
|
|
|
|
// Metrics returns the current metrics
|
|
Metrics() *structs.AllocMetric
|
|
|
|
// Reset is invoked after making a placement
|
|
Reset()
|
|
|
|
// ProposedAllocs returns the proposed allocations for a node
|
|
// which is the existing allocations, removing evictions, and
|
|
// adding any planned placements.
|
|
ProposedAllocs(nodeID string) ([]*structs.Allocation, error)
|
|
|
|
// RegexpCache is a cache of regular expressions
|
|
RegexpCache() map[string]*regexp.Regexp
|
|
|
|
// ConstraintCache is a cache of version constraints
|
|
ConstraintCache() map[string]version.Constraints
|
|
|
|
// Eligibility returns a tracker for node eligibility in the context of the
|
|
// eval.
|
|
Eligibility() *EvalEligibility
|
|
}
|
|
|
|
// EvalCache is used to cache certain things during an evaluation
|
|
type EvalCache struct {
|
|
reCache map[string]*regexp.Regexp
|
|
constraintCache map[string]version.Constraints
|
|
}
|
|
|
|
func (e *EvalCache) RegexpCache() map[string]*regexp.Regexp {
|
|
if e.reCache == nil {
|
|
e.reCache = make(map[string]*regexp.Regexp)
|
|
}
|
|
return e.reCache
|
|
}
|
|
func (e *EvalCache) ConstraintCache() map[string]version.Constraints {
|
|
if e.constraintCache == nil {
|
|
e.constraintCache = make(map[string]version.Constraints)
|
|
}
|
|
return e.constraintCache
|
|
}
|
|
|
|
// EvalContext is a Context used during an Evaluation
|
|
type EvalContext struct {
|
|
EvalCache
|
|
state State
|
|
plan *structs.Plan
|
|
logger *log.Logger
|
|
metrics *structs.AllocMetric
|
|
eligibility *EvalEligibility
|
|
}
|
|
|
|
// NewEvalContext constructs a new EvalContext
|
|
func NewEvalContext(s State, p *structs.Plan, log *log.Logger) *EvalContext {
|
|
ctx := &EvalContext{
|
|
state: s,
|
|
plan: p,
|
|
logger: log,
|
|
metrics: new(structs.AllocMetric),
|
|
}
|
|
return ctx
|
|
}
|
|
|
|
func (e *EvalContext) State() State {
|
|
return e.state
|
|
}
|
|
|
|
func (e *EvalContext) Plan() *structs.Plan {
|
|
return e.plan
|
|
}
|
|
|
|
func (e *EvalContext) Logger() *log.Logger {
|
|
return e.logger
|
|
}
|
|
|
|
func (e *EvalContext) Metrics() *structs.AllocMetric {
|
|
return e.metrics
|
|
}
|
|
|
|
func (e *EvalContext) SetState(s State) {
|
|
e.state = s
|
|
}
|
|
|
|
func (e *EvalContext) Reset() {
|
|
e.metrics = new(structs.AllocMetric)
|
|
}
|
|
|
|
func (e *EvalContext) ProposedAllocs(nodeID string) ([]*structs.Allocation, error) {
|
|
// Get the existing allocations that are non-terminal
|
|
ws := memdb.NewWatchSet()
|
|
existingAlloc, err := e.state.AllocsByNodeTerminal(ws, nodeID, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Determine the proposed allocation by first removing allocations
|
|
// that are planned evictions and adding the new allocations.
|
|
proposed := existingAlloc
|
|
if update := e.plan.NodeUpdate[nodeID]; len(update) > 0 {
|
|
proposed = structs.RemoveAllocs(existingAlloc, update)
|
|
}
|
|
|
|
// We create an index of the existing allocations so that if an inplace
|
|
// update occurs, we do not double count and we override the old allocation.
|
|
proposedIDs := make(map[string]*structs.Allocation, len(proposed))
|
|
for _, alloc := range proposed {
|
|
proposedIDs[alloc.ID] = alloc
|
|
}
|
|
for _, alloc := range e.plan.NodeAllocation[nodeID] {
|
|
proposedIDs[alloc.ID] = alloc
|
|
}
|
|
|
|
// Materialize the proposed slice
|
|
proposed = make([]*structs.Allocation, 0, len(proposedIDs))
|
|
for _, alloc := range proposedIDs {
|
|
proposed = append(proposed, alloc)
|
|
}
|
|
|
|
return proposed, nil
|
|
}
|
|
|
|
func (e *EvalContext) Eligibility() *EvalEligibility {
|
|
if e.eligibility == nil {
|
|
e.eligibility = NewEvalEligibility()
|
|
}
|
|
|
|
return e.eligibility
|
|
}
|
|
|
|
type ComputedClassFeasibility byte
|
|
|
|
const (
|
|
// EvalComputedClassUnknown is the initial state until the eligibility has
|
|
// been explicitly marked to eligible/ineligible or escaped.
|
|
EvalComputedClassUnknown ComputedClassFeasibility = iota
|
|
|
|
// EvalComputedClassIneligible is used to mark the computed class as
|
|
// ineligible for the evaluation.
|
|
EvalComputedClassIneligible
|
|
|
|
// EvalComputedClassIneligible is used to mark the computed class as
|
|
// eligible for the evaluation.
|
|
EvalComputedClassEligible
|
|
|
|
// EvalComputedClassEscaped signals that computed class can not determine
|
|
// eligibility because a constraint exists that is not captured by computed
|
|
// node classes.
|
|
EvalComputedClassEscaped
|
|
)
|
|
|
|
// EvalEligibility tracks eligibility of nodes by computed node class over the
|
|
// course of an evaluation.
|
|
type EvalEligibility struct {
|
|
// job tracks the eligibility at the job level per computed node class.
|
|
job map[string]ComputedClassFeasibility
|
|
|
|
// jobEscaped marks whether constraints have escaped at the job level.
|
|
jobEscaped bool
|
|
|
|
// taskGroups tracks the eligibility at the task group level per computed
|
|
// node class.
|
|
taskGroups map[string]map[string]ComputedClassFeasibility
|
|
|
|
// tgEscapedConstraints is a map of task groups to whether constraints have
|
|
// escaped.
|
|
tgEscapedConstraints map[string]bool
|
|
}
|
|
|
|
// NewEvalEligibility returns an eligibility tracker for the context of an evaluation.
|
|
func NewEvalEligibility() *EvalEligibility {
|
|
return &EvalEligibility{
|
|
job: make(map[string]ComputedClassFeasibility),
|
|
taskGroups: make(map[string]map[string]ComputedClassFeasibility),
|
|
tgEscapedConstraints: make(map[string]bool),
|
|
}
|
|
}
|
|
|
|
// SetJob takes the job being evaluated and calculates the escaped constraints
|
|
// at the job and task group level.
|
|
func (e *EvalEligibility) SetJob(job *structs.Job) {
|
|
// Determine whether the job has escaped constraints.
|
|
e.jobEscaped = len(structs.EscapedConstraints(job.Constraints)) != 0
|
|
|
|
// Determine the escaped constraints per task group.
|
|
for _, tg := range job.TaskGroups {
|
|
constraints := tg.Constraints
|
|
for _, task := range tg.Tasks {
|
|
constraints = append(constraints, task.Constraints...)
|
|
}
|
|
|
|
e.tgEscapedConstraints[tg.Name] = len(structs.EscapedConstraints(constraints)) != 0
|
|
}
|
|
}
|
|
|
|
// HasEscaped returns whether any of the constraints in the passed job have
|
|
// escaped computed node classes.
|
|
func (e *EvalEligibility) HasEscaped() bool {
|
|
if e.jobEscaped {
|
|
return true
|
|
}
|
|
|
|
for _, escaped := range e.tgEscapedConstraints {
|
|
if escaped {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// GetClasses returns the tracked classes to their eligibility, across the job
|
|
// and task groups.
|
|
func (e *EvalEligibility) GetClasses() map[string]bool {
|
|
elig := make(map[string]bool)
|
|
|
|
// Go through the job.
|
|
for class, feas := range e.job {
|
|
switch feas {
|
|
case EvalComputedClassEligible:
|
|
elig[class] = true
|
|
case EvalComputedClassIneligible:
|
|
elig[class] = false
|
|
}
|
|
}
|
|
|
|
// Go through the task groups.
|
|
for _, classes := range e.taskGroups {
|
|
for class, feas := range classes {
|
|
switch feas {
|
|
case EvalComputedClassEligible:
|
|
elig[class] = true
|
|
case EvalComputedClassIneligible:
|
|
// Only mark as ineligible if it hasn't been marked before. This
|
|
// prevents one task group marking a class as ineligible when it
|
|
// is eligible on another task group.
|
|
if _, ok := elig[class]; !ok {
|
|
elig[class] = false
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return elig
|
|
}
|
|
|
|
// JobStatus returns the eligibility status of the job.
|
|
func (e *EvalEligibility) JobStatus(class string) ComputedClassFeasibility {
|
|
// COMPAT: Computed node class was introduced in 0.3. Clients running < 0.3
|
|
// will not have a computed class. The safest value to return is the escaped
|
|
// case, since it disables any optimization.
|
|
if e.jobEscaped || class == "" {
|
|
return EvalComputedClassEscaped
|
|
}
|
|
|
|
if status, ok := e.job[class]; ok {
|
|
return status
|
|
}
|
|
return EvalComputedClassUnknown
|
|
}
|
|
|
|
// SetJobEligibility sets the eligibility status of the job for the computed
|
|
// node class.
|
|
func (e *EvalEligibility) SetJobEligibility(eligible bool, class string) {
|
|
if eligible {
|
|
e.job[class] = EvalComputedClassEligible
|
|
} else {
|
|
e.job[class] = EvalComputedClassIneligible
|
|
}
|
|
}
|
|
|
|
// TaskGroupStatus returns the eligibility status of the task group.
|
|
func (e *EvalEligibility) TaskGroupStatus(tg, class string) ComputedClassFeasibility {
|
|
// COMPAT: Computed node class was introduced in 0.3. Clients running < 0.3
|
|
// will not have a computed class. The safest value to return is the escaped
|
|
// case, since it disables any optimization.
|
|
if class == "" {
|
|
return EvalComputedClassEscaped
|
|
}
|
|
|
|
if escaped, ok := e.tgEscapedConstraints[tg]; ok {
|
|
if escaped {
|
|
return EvalComputedClassEscaped
|
|
}
|
|
}
|
|
|
|
if classes, ok := e.taskGroups[tg]; ok {
|
|
if status, ok := classes[class]; ok {
|
|
return status
|
|
}
|
|
}
|
|
return EvalComputedClassUnknown
|
|
}
|
|
|
|
// SetTaskGroupEligibility sets the eligibility status of the task group for the
|
|
// computed node class.
|
|
func (e *EvalEligibility) SetTaskGroupEligibility(eligible bool, tg, class string) {
|
|
var eligibility ComputedClassFeasibility
|
|
if eligible {
|
|
eligibility = EvalComputedClassEligible
|
|
} else {
|
|
eligibility = EvalComputedClassIneligible
|
|
}
|
|
|
|
if classes, ok := e.taskGroups[tg]; ok {
|
|
classes[class] = eligibility
|
|
} else {
|
|
e.taskGroups[tg] = map[string]ComputedClassFeasibility{class: eligibility}
|
|
}
|
|
}
|