open-nomad/vendor/gopkg.in/inf.v0/dec.go
Lasse Dalegaard cbcbe0da2e Expose rkt DriverNetwork
Currently the rkt driver does not expose a DriverNetwork instance after
starting the container, which means that address_mode = 'driver' does
not work.

To get the container network information, we can call `rkt status` on
the UUID of the container and grab the container IP from there.

For the port map, we need to grab the pod manifest as it will tell us
which ports the container exposes. We then cross-reference the
configured port name with the container port names, and use that to
create a correct port mapping.

To avoid doing a (bad) reimplementation of the appc schema(which rkt
uses for its manifest) and rkt apis, we pull those in as vendored
dependencies. The versions used are the same ones that rkt use in their
glide dependency configuration for version 1.28.0.
2017-09-21 00:34:22 +02:00

616 lines
16 KiB
Go

// Package inf (type inf.Dec) implements "infinite-precision" decimal
// arithmetic.
// "Infinite precision" describes two characteristics: practically unlimited
// precision for decimal number representation and no support for calculating
// with any specific fixed precision.
// (Although there is no practical limit on precision, inf.Dec can only
// represent finite decimals.)
//
// This package is currently in experimental stage and the API may change.
//
// This package does NOT support:
// - rounding to specific precisions (as opposed to specific decimal positions)
// - the notion of context (each rounding must be explicit)
// - NaN and Inf values, and distinguishing between positive and negative zero
// - conversions to and from float32/64 types
//
// Features considered for possible addition:
// + formatting options
// + Exp method
// + combined operations such as AddRound/MulAdd etc
// + exchanging data in decimal32/64/128 formats
//
package inf // import "gopkg.in/inf.v0"
// TODO:
// - avoid excessive deep copying (quo and rounders)
import (
"fmt"
"io"
"math/big"
"strings"
)
// A Dec represents a signed arbitrary-precision decimal.
// It is a combination of a sign, an arbitrary-precision integer coefficient
// value, and a signed fixed-precision exponent value.
// The sign and the coefficient value are handled together as a signed value
// and referred to as the unscaled value.
// (Positive and negative zero values are not distinguished.)
// Since the exponent is most commonly non-positive, it is handled in negated
// form and referred to as scale.
//
// The mathematical value of a Dec equals:
//
// unscaled * 10**(-scale)
//
// Note that different Dec representations may have equal mathematical values.
//
// unscaled scale String()
// -------------------------
// 0 0 "0"
// 0 2 "0.00"
// 0 -2 "0"
// 1 0 "1"
// 100 2 "1.00"
// 10 0 "10"
// 1 -1 "10"
//
// The zero value for a Dec represents the value 0 with scale 0.
//
// Operations are typically performed through the *Dec type.
// The semantics of the assignment operation "=" for "bare" Dec values is
// undefined and should not be relied on.
//
// Methods are typically of the form:
//
// func (z *Dec) Op(x, y *Dec) *Dec
//
// and implement operations z = x Op y with the result as receiver; if it
// is one of the operands it may be overwritten (and its memory reused).
// To enable chaining of operations, the result is also returned. Methods
// returning a result other than *Dec take one of the operands as the receiver.
//
// A "bare" Quo method (quotient / division operation) is not provided, as the
// result is not always a finite decimal and thus in general cannot be
// represented as a Dec.
// Instead, in the common case when rounding is (potentially) necessary,
// QuoRound should be used with a Scale and a Rounder.
// QuoExact or QuoRound with RoundExact can be used in the special cases when it
// is known that the result is always a finite decimal.
//
type Dec struct {
unscaled big.Int
scale Scale
}
// Scale represents the type used for the scale of a Dec.
type Scale int32
const scaleSize = 4 // bytes in a Scale value
// Scaler represents a method for obtaining the scale to use for the result of
// an operation on x and y.
type scaler interface {
Scale(x *Dec, y *Dec) Scale
}
var bigInt = [...]*big.Int{
big.NewInt(0), big.NewInt(1), big.NewInt(2), big.NewInt(3), big.NewInt(4),
big.NewInt(5), big.NewInt(6), big.NewInt(7), big.NewInt(8), big.NewInt(9),
big.NewInt(10),
}
var exp10cache [64]big.Int = func() [64]big.Int {
e10, e10i := [64]big.Int{}, bigInt[1]
for i, _ := range e10 {
e10[i].Set(e10i)
e10i = new(big.Int).Mul(e10i, bigInt[10])
}
return e10
}()
// NewDec allocates and returns a new Dec set to the given int64 unscaled value
// and scale.
func NewDec(unscaled int64, scale Scale) *Dec {
return new(Dec).SetUnscaled(unscaled).SetScale(scale)
}
// NewDecBig allocates and returns a new Dec set to the given *big.Int unscaled
// value and scale.
func NewDecBig(unscaled *big.Int, scale Scale) *Dec {
return new(Dec).SetUnscaledBig(unscaled).SetScale(scale)
}
// Scale returns the scale of x.
func (x *Dec) Scale() Scale {
return x.scale
}
// Unscaled returns the unscaled value of x for u and true for ok when the
// unscaled value can be represented as int64; otherwise it returns an undefined
// int64 value for u and false for ok. Use x.UnscaledBig().Int64() to avoid
// checking the validity of the value when the check is known to be redundant.
func (x *Dec) Unscaled() (u int64, ok bool) {
u = x.unscaled.Int64()
var i big.Int
ok = i.SetInt64(u).Cmp(&x.unscaled) == 0
return
}
// UnscaledBig returns the unscaled value of x as *big.Int.
func (x *Dec) UnscaledBig() *big.Int {
return &x.unscaled
}
// SetScale sets the scale of z, with the unscaled value unchanged, and returns
// z.
// The mathematical value of the Dec changes as if it was multiplied by
// 10**(oldscale-scale).
func (z *Dec) SetScale(scale Scale) *Dec {
z.scale = scale
return z
}
// SetUnscaled sets the unscaled value of z, with the scale unchanged, and
// returns z.
func (z *Dec) SetUnscaled(unscaled int64) *Dec {
z.unscaled.SetInt64(unscaled)
return z
}
// SetUnscaledBig sets the unscaled value of z, with the scale unchanged, and
// returns z.
func (z *Dec) SetUnscaledBig(unscaled *big.Int) *Dec {
z.unscaled.Set(unscaled)
return z
}
// Set sets z to the value of x and returns z.
// It does nothing if z == x.
func (z *Dec) Set(x *Dec) *Dec {
if z != x {
z.SetUnscaledBig(x.UnscaledBig())
z.SetScale(x.Scale())
}
return z
}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (x *Dec) Sign() int {
return x.UnscaledBig().Sign()
}
// Neg sets z to -x and returns z.
func (z *Dec) Neg(x *Dec) *Dec {
z.SetScale(x.Scale())
z.UnscaledBig().Neg(x.UnscaledBig())
return z
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Dec) Cmp(y *Dec) int {
xx, yy := upscale(x, y)
return xx.UnscaledBig().Cmp(yy.UnscaledBig())
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Dec) Abs(x *Dec) *Dec {
z.SetScale(x.Scale())
z.UnscaledBig().Abs(x.UnscaledBig())
return z
}
// Add sets z to the sum x+y and returns z.
// The scale of z is the greater of the scales of x and y.
func (z *Dec) Add(x, y *Dec) *Dec {
xx, yy := upscale(x, y)
z.SetScale(xx.Scale())
z.UnscaledBig().Add(xx.UnscaledBig(), yy.UnscaledBig())
return z
}
// Sub sets z to the difference x-y and returns z.
// The scale of z is the greater of the scales of x and y.
func (z *Dec) Sub(x, y *Dec) *Dec {
xx, yy := upscale(x, y)
z.SetScale(xx.Scale())
z.UnscaledBig().Sub(xx.UnscaledBig(), yy.UnscaledBig())
return z
}
// Mul sets z to the product x*y and returns z.
// The scale of z is the sum of the scales of x and y.
func (z *Dec) Mul(x, y *Dec) *Dec {
z.SetScale(x.Scale() + y.Scale())
z.UnscaledBig().Mul(x.UnscaledBig(), y.UnscaledBig())
return z
}
// Round sets z to the value of x rounded to Scale s using Rounder r, and
// returns z.
func (z *Dec) Round(x *Dec, s Scale, r Rounder) *Dec {
return z.QuoRound(x, NewDec(1, 0), s, r)
}
// QuoRound sets z to the quotient x/y, rounded using the given Rounder to the
// specified scale.
//
// If the rounder is RoundExact but the result can not be expressed exactly at
// the specified scale, QuoRound returns nil, and the value of z is undefined.
//
// There is no corresponding Div method; the equivalent can be achieved through
// the choice of Rounder used.
//
func (z *Dec) QuoRound(x, y *Dec, s Scale, r Rounder) *Dec {
return z.quo(x, y, sclr{s}, r)
}
func (z *Dec) quo(x, y *Dec, s scaler, r Rounder) *Dec {
scl := s.Scale(x, y)
var zzz *Dec
if r.UseRemainder() {
zz, rA, rB := new(Dec).quoRem(x, y, scl, true, new(big.Int), new(big.Int))
zzz = r.Round(new(Dec), zz, rA, rB)
} else {
zz, _, _ := new(Dec).quoRem(x, y, scl, false, nil, nil)
zzz = r.Round(new(Dec), zz, nil, nil)
}
if zzz == nil {
return nil
}
return z.Set(zzz)
}
// QuoExact sets z to the quotient x/y and returns z when x/y is a finite
// decimal. Otherwise it returns nil and the value of z is undefined.
//
// The scale of a non-nil result is "x.Scale() - y.Scale()" or greater; it is
// calculated so that the remainder will be zero whenever x/y is a finite
// decimal.
func (z *Dec) QuoExact(x, y *Dec) *Dec {
return z.quo(x, y, scaleQuoExact{}, RoundExact)
}
// quoRem sets z to the quotient x/y with the scale s, and if useRem is true,
// it sets remNum and remDen to the numerator and denominator of the remainder.
// It returns z, remNum and remDen.
//
// The remainder is normalized to the range -1 < r < 1 to simplify rounding;
// that is, the results satisfy the following equation:
//
// x / y = z + (remNum/remDen) * 10**(-z.Scale())
//
// See Rounder for more details about rounding.
//
func (z *Dec) quoRem(x, y *Dec, s Scale, useRem bool,
remNum, remDen *big.Int) (*Dec, *big.Int, *big.Int) {
// difference (required adjustment) compared to "canonical" result scale
shift := s - (x.Scale() - y.Scale())
// pointers to adjusted unscaled dividend and divisor
var ix, iy *big.Int
switch {
case shift > 0:
// increased scale: decimal-shift dividend left
ix = new(big.Int).Mul(x.UnscaledBig(), exp10(shift))
iy = y.UnscaledBig()
case shift < 0:
// decreased scale: decimal-shift divisor left
ix = x.UnscaledBig()
iy = new(big.Int).Mul(y.UnscaledBig(), exp10(-shift))
default:
ix = x.UnscaledBig()
iy = y.UnscaledBig()
}
// save a copy of iy in case it to be overwritten with the result
iy2 := iy
if iy == z.UnscaledBig() {
iy2 = new(big.Int).Set(iy)
}
// set scale
z.SetScale(s)
// set unscaled
if useRem {
// Int division
_, intr := z.UnscaledBig().QuoRem(ix, iy, new(big.Int))
// set remainder
remNum.Set(intr)
remDen.Set(iy2)
} else {
z.UnscaledBig().Quo(ix, iy)
}
return z, remNum, remDen
}
type sclr struct{ s Scale }
func (s sclr) Scale(x, y *Dec) Scale {
return s.s
}
type scaleQuoExact struct{}
func (sqe scaleQuoExact) Scale(x, y *Dec) Scale {
rem := new(big.Rat).SetFrac(x.UnscaledBig(), y.UnscaledBig())
f2, f5 := factor2(rem.Denom()), factor(rem.Denom(), bigInt[5])
var f10 Scale
if f2 > f5 {
f10 = Scale(f2)
} else {
f10 = Scale(f5)
}
return x.Scale() - y.Scale() + f10
}
func factor(n *big.Int, p *big.Int) int {
// could be improved for large factors
d, f := n, 0
for {
dd, dm := new(big.Int).DivMod(d, p, new(big.Int))
if dm.Sign() == 0 {
f++
d = dd
} else {
break
}
}
return f
}
func factor2(n *big.Int) int {
// could be improved for large factors
f := 0
for ; n.Bit(f) == 0; f++ {
}
return f
}
func upscale(a, b *Dec) (*Dec, *Dec) {
if a.Scale() == b.Scale() {
return a, b
}
if a.Scale() > b.Scale() {
bb := b.rescale(a.Scale())
return a, bb
}
aa := a.rescale(b.Scale())
return aa, b
}
func exp10(x Scale) *big.Int {
if int(x) < len(exp10cache) {
return &exp10cache[int(x)]
}
return new(big.Int).Exp(bigInt[10], big.NewInt(int64(x)), nil)
}
func (x *Dec) rescale(newScale Scale) *Dec {
shift := newScale - x.Scale()
switch {
case shift < 0:
e := exp10(-shift)
return NewDecBig(new(big.Int).Quo(x.UnscaledBig(), e), newScale)
case shift > 0:
e := exp10(shift)
return NewDecBig(new(big.Int).Mul(x.UnscaledBig(), e), newScale)
}
return x
}
var zeros = []byte("00000000000000000000000000000000" +
"00000000000000000000000000000000")
var lzeros = Scale(len(zeros))
func appendZeros(s []byte, n Scale) []byte {
for i := Scale(0); i < n; i += lzeros {
if n > i+lzeros {
s = append(s, zeros...)
} else {
s = append(s, zeros[0:n-i]...)
}
}
return s
}
func (x *Dec) String() string {
if x == nil {
return "<nil>"
}
scale := x.Scale()
s := []byte(x.UnscaledBig().String())
if scale <= 0 {
if scale != 0 && x.unscaled.Sign() != 0 {
s = appendZeros(s, -scale)
}
return string(s)
}
negbit := Scale(-((x.Sign() - 1) / 2))
// scale > 0
lens := Scale(len(s))
if lens-negbit <= scale {
ss := make([]byte, 0, scale+2)
if negbit == 1 {
ss = append(ss, '-')
}
ss = append(ss, '0', '.')
ss = appendZeros(ss, scale-lens+negbit)
ss = append(ss, s[negbit:]...)
return string(ss)
}
// lens > scale
ss := make([]byte, 0, lens+1)
ss = append(ss, s[:lens-scale]...)
ss = append(ss, '.')
ss = append(ss, s[lens-scale:]...)
return string(ss)
}
// Format is a support routine for fmt.Formatter. It accepts the decimal
// formats 'd' and 'f', and handles both equivalently.
// Width, precision, flags and bases 2, 8, 16 are not supported.
func (x *Dec) Format(s fmt.State, ch rune) {
if ch != 'd' && ch != 'f' && ch != 'v' && ch != 's' {
fmt.Fprintf(s, "%%!%c(dec.Dec=%s)", ch, x.String())
return
}
fmt.Fprintf(s, x.String())
}
func (z *Dec) scan(r io.RuneScanner) (*Dec, error) {
unscaled := make([]byte, 0, 256) // collects chars of unscaled as bytes
dp, dg := -1, -1 // indexes of decimal point, first digit
loop:
for {
ch, _, err := r.ReadRune()
if err == io.EOF {
break loop
}
if err != nil {
return nil, err
}
switch {
case ch == '+' || ch == '-':
if len(unscaled) > 0 || dp >= 0 { // must be first character
r.UnreadRune()
break loop
}
case ch == '.':
if dp >= 0 {
r.UnreadRune()
break loop
}
dp = len(unscaled)
continue // don't add to unscaled
case ch >= '0' && ch <= '9':
if dg == -1 {
dg = len(unscaled)
}
default:
r.UnreadRune()
break loop
}
unscaled = append(unscaled, byte(ch))
}
if dg == -1 {
return nil, fmt.Errorf("no digits read")
}
if dp >= 0 {
z.SetScale(Scale(len(unscaled) - dp))
} else {
z.SetScale(0)
}
_, ok := z.UnscaledBig().SetString(string(unscaled), 10)
if !ok {
return nil, fmt.Errorf("invalid decimal: %s", string(unscaled))
}
return z, nil
}
// SetString sets z to the value of s, interpreted as a decimal (base 10),
// and returns z and a boolean indicating success. The scale of z is the
// number of digits after the decimal point (including any trailing 0s),
// or 0 if there is no decimal point. If SetString fails, the value of z
// is undefined but the returned value is nil.
func (z *Dec) SetString(s string) (*Dec, bool) {
r := strings.NewReader(s)
_, err := z.scan(r)
if err != nil {
return nil, false
}
_, _, err = r.ReadRune()
if err != io.EOF {
return nil, false
}
// err == io.EOF => scan consumed all of s
return z, true
}
// Scan is a support routine for fmt.Scanner; it sets z to the value of
// the scanned number. It accepts the decimal formats 'd' and 'f', and
// handles both equivalently. Bases 2, 8, 16 are not supported.
// The scale of z is the number of digits after the decimal point
// (including any trailing 0s), or 0 if there is no decimal point.
func (z *Dec) Scan(s fmt.ScanState, ch rune) error {
if ch != 'd' && ch != 'f' && ch != 's' && ch != 'v' {
return fmt.Errorf("Dec.Scan: invalid verb '%c'", ch)
}
s.SkipSpace()
_, err := z.scan(s)
return err
}
// Gob encoding version
const decGobVersion byte = 1
func scaleBytes(s Scale) []byte {
buf := make([]byte, scaleSize)
i := scaleSize
for j := 0; j < scaleSize; j++ {
i--
buf[i] = byte(s)
s >>= 8
}
return buf
}
func scale(b []byte) (s Scale) {
for j := 0; j < scaleSize; j++ {
s <<= 8
s |= Scale(b[j])
}
return
}
// GobEncode implements the gob.GobEncoder interface.
func (x *Dec) GobEncode() ([]byte, error) {
buf, err := x.UnscaledBig().GobEncode()
if err != nil {
return nil, err
}
buf = append(append(buf, scaleBytes(x.Scale())...), decGobVersion)
return buf, nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Dec) GobDecode(buf []byte) error {
if len(buf) == 0 {
return fmt.Errorf("Dec.GobDecode: no data")
}
b := buf[len(buf)-1]
if b != decGobVersion {
return fmt.Errorf("Dec.GobDecode: encoding version %d not supported", b)
}
l := len(buf) - scaleSize - 1
err := z.UnscaledBig().GobDecode(buf[:l])
if err != nil {
return err
}
z.SetScale(scale(buf[l : l+scaleSize]))
return nil
}
// MarshalText implements the encoding.TextMarshaler interface.
func (x *Dec) MarshalText() ([]byte, error) {
return []byte(x.String()), nil
}
// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (z *Dec) UnmarshalText(data []byte) error {
_, ok := z.SetString(string(data))
if !ok {
return fmt.Errorf("invalid inf.Dec")
}
return nil
}