573 lines
21 KiB
Go
573 lines
21 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"math"
|
|
"sort"
|
|
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
// maxParallelPenalty is a score penalty applied to allocations to mitigate against
|
|
// too many allocations of the same job being preempted. This penalty is applied after the
|
|
// number of allocations being preempted exceeds max_parallel value in the job's migrate stanza
|
|
const maxParallelPenalty = 50.0
|
|
|
|
type groupedAllocs struct {
|
|
priority int
|
|
allocs []*structs.Allocation
|
|
}
|
|
|
|
// PreemptionResource interface is implemented by different
|
|
// types of resources.
|
|
type PreemptionResource interface {
|
|
// MeetsRequirements returns true if the available resources match needed resources
|
|
MeetsRequirements() bool
|
|
|
|
// Distance returns values in the range [0, MaxFloat], lower is better
|
|
Distance() float64
|
|
}
|
|
|
|
// NetworkPreemptionResource implements PreemptionResource for network assignments
|
|
// It only looks at MBits needed
|
|
type NetworkPreemptionResource struct {
|
|
availableResources *structs.NetworkResource
|
|
resourceNeeded *structs.NetworkResource
|
|
}
|
|
|
|
func (n *NetworkPreemptionResource) MeetsRequirements() bool {
|
|
mbitsAvailable := n.availableResources.MBits
|
|
mbitsNeeded := n.resourceNeeded.MBits
|
|
if mbitsAvailable == 0 || mbitsNeeded == 0 {
|
|
return false
|
|
}
|
|
return mbitsAvailable >= mbitsNeeded
|
|
}
|
|
|
|
func (n *NetworkPreemptionResource) Distance() float64 {
|
|
networkCoord := math.MaxFloat64
|
|
if n.availableResources != nil && n.resourceNeeded != nil {
|
|
networkCoord = float64(n.resourceNeeded.MBits-n.availableResources.MBits) / float64(n.resourceNeeded.MBits)
|
|
}
|
|
|
|
originDist := math.Sqrt(
|
|
math.Pow(networkCoord, 2))
|
|
return originDist
|
|
}
|
|
|
|
// BasePreemptionResource implements PreemptionResource for CPU/Memory/Disk
|
|
type BasePreemptionResource struct {
|
|
availableResources *structs.ComparableResources
|
|
resourceNeeded *structs.ComparableResources
|
|
}
|
|
|
|
func (b *BasePreemptionResource) MeetsRequirements() bool {
|
|
super, _ := b.availableResources.Superset(b.resourceNeeded)
|
|
return super
|
|
}
|
|
|
|
func (b *BasePreemptionResource) Distance() float64 {
|
|
return basicResourceDistance(b.resourceNeeded, b.availableResources)
|
|
}
|
|
|
|
// PreemptionResourceFactory returns a new PreemptionResource
|
|
type PreemptionResourceFactory func(availableResources *structs.ComparableResources, resourceAsk *structs.ComparableResources) PreemptionResource
|
|
|
|
// GetNetworkPreemptionResourceFactory returns a preemption resource factory for network assignments
|
|
func GetNetworkPreemptionResourceFactory() PreemptionResourceFactory {
|
|
return func(availableResources *structs.ComparableResources, resourceNeeded *structs.ComparableResources) PreemptionResource {
|
|
available := availableResources.Flattened.Networks[0]
|
|
return &NetworkPreemptionResource{
|
|
availableResources: available,
|
|
resourceNeeded: resourceNeeded.Flattened.Networks[0],
|
|
}
|
|
}
|
|
}
|
|
|
|
// GetBasePreemptionResourceFactory returns a preemption resource factory for CPU/Memory/Disk
|
|
func GetBasePreemptionResourceFactory() PreemptionResourceFactory {
|
|
return func(availableResources *structs.ComparableResources, resourceNeeded *structs.ComparableResources) PreemptionResource {
|
|
return &BasePreemptionResource{
|
|
availableResources: availableResources,
|
|
resourceNeeded: resourceNeeded,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Preemptor is used to track existing allocations
|
|
// and find suitable allocations to preempt
|
|
type Preemptor struct {
|
|
// currentPreemptions is a map computed when SetPreemptions is called
|
|
// it tracks the number of preempted allocations per job/taskgroup
|
|
currentPreemptions map[structs.NamespacedID]map[string]int
|
|
|
|
// jobPriority is the priority of the job being preempted
|
|
jobPriority int
|
|
|
|
// nodeRemainingResources tracks remaining available resources on the node
|
|
nodeRemainingResources *structs.ComparableResources
|
|
|
|
// currentAllocs is the candidate set used to find preemptible allocations
|
|
currentAllocs []*structs.Allocation
|
|
}
|
|
|
|
func NewPreemptor(jobPriority int) *Preemptor {
|
|
return &Preemptor{
|
|
currentPreemptions: make(map[structs.NamespacedID]map[string]int),
|
|
jobPriority: jobPriority,
|
|
}
|
|
}
|
|
|
|
// SetNode sets the node
|
|
func (p *Preemptor) SetNode(node *structs.Node) {
|
|
nodeRemainingResources := node.ComparableResources()
|
|
// Subtract the reserved resources of the node
|
|
if node.ComparableReservedResources() != nil {
|
|
nodeRemainingResources.Subtract(node.ComparableReservedResources())
|
|
}
|
|
p.nodeRemainingResources = nodeRemainingResources
|
|
}
|
|
|
|
// SetCandidates initializes the candidate set from which preemptions are chosen
|
|
func (p *Preemptor) SetCandidates(allocs []*structs.Allocation) {
|
|
p.currentAllocs = allocs
|
|
}
|
|
|
|
// SetPreemptions initializes a map tracking existing counts of preempted allocations
|
|
// per job/task group. This is used while scoring preemption options
|
|
func (p *Preemptor) SetPreemptions(allocs []*structs.Allocation) {
|
|
// Clear out existing values since this can be called more than once
|
|
for k := range p.currentPreemptions {
|
|
delete(p.currentPreemptions, k)
|
|
}
|
|
|
|
// Initialize counts
|
|
for _, alloc := range allocs {
|
|
id := structs.NamespacedID{alloc.JobID, alloc.Namespace}
|
|
countMap, ok := p.currentPreemptions[id]
|
|
if !ok {
|
|
countMap = make(map[string]int)
|
|
}
|
|
c := countMap[alloc.TaskGroup]
|
|
countMap[alloc.TaskGroup] = c + 1
|
|
p.currentPreemptions[id] = countMap
|
|
}
|
|
}
|
|
|
|
// getNumPreemptions counts the number of other allocations being preempted that match the job and task group of
|
|
// the alloc under consideration. This is used as a scoring factor to minimize too many allocs of the same job being preempted at once
|
|
func (p *Preemptor) getNumPreemptions(alloc *structs.Allocation) int {
|
|
numCurrentPreemptionsForJob := 0
|
|
countMap := p.currentPreemptions[structs.NamespacedID{alloc.JobID, alloc.Namespace}]
|
|
if countMap != nil {
|
|
numCurrentPreemptionsForJob = countMap[alloc.TaskGroup]
|
|
}
|
|
return numCurrentPreemptionsForJob
|
|
}
|
|
|
|
// PreemptForTaskGroup computes a list of allocations to preempt to accommodate
|
|
// the resources asked for. Only allocs with a job priority < 10 of jobPriority are considered
|
|
// This method is meant only for finding preemptible allocations based on CPU/Memory/Disk
|
|
func (p *Preemptor) PreemptForTaskGroup(resourceAsk *structs.AllocatedResources) []*structs.Allocation {
|
|
resourcesNeeded := resourceAsk.Comparable()
|
|
|
|
// Subtract current allocations
|
|
for _, alloc := range p.currentAllocs {
|
|
p.nodeRemainingResources.Subtract(alloc.ComparableResources())
|
|
}
|
|
|
|
// Group candidates by priority, filter out ineligible allocs
|
|
allocsByPriority := filterAndGroupPreemptibleAllocs(p.jobPriority, p.currentAllocs)
|
|
|
|
var bestAllocs []*structs.Allocation
|
|
allRequirementsMet := false
|
|
var preemptedResources *structs.ComparableResources
|
|
|
|
// Iterate over allocations grouped by priority to find preemptible allocations
|
|
for _, allocGrp := range allocsByPriority {
|
|
for len(allocGrp.allocs) > 0 && !allRequirementsMet {
|
|
closestAllocIndex := -1
|
|
bestDistance := math.MaxFloat64
|
|
// Find the alloc with the closest distance
|
|
for index, alloc := range allocGrp.allocs {
|
|
currentPreemptionCount := p.getNumPreemptions(alloc)
|
|
maxParallel := 0
|
|
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
|
|
if tg != nil && tg.Migrate != nil {
|
|
maxParallel = tg.Migrate.MaxParallel
|
|
}
|
|
distance := scoreForTaskGroup(resourcesNeeded, alloc.ComparableResources(), maxParallel, currentPreemptionCount)
|
|
if distance < bestDistance {
|
|
bestDistance = distance
|
|
closestAllocIndex = index
|
|
}
|
|
}
|
|
closestAlloc := allocGrp.allocs[closestAllocIndex]
|
|
|
|
if preemptedResources == nil {
|
|
preemptedResources = closestAlloc.ComparableResources()
|
|
} else {
|
|
preemptedResources.Add(closestAlloc.ComparableResources())
|
|
}
|
|
availableResources := preemptedResources.Copy()
|
|
availableResources.Add(p.nodeRemainingResources)
|
|
|
|
// This step needs the original resources asked for as the second arg, can't use the running total
|
|
allRequirementsMet, _ = availableResources.Superset(resourceAsk.Comparable())
|
|
|
|
bestAllocs = append(bestAllocs, closestAlloc)
|
|
|
|
allocGrp.allocs[closestAllocIndex] = allocGrp.allocs[len(allocGrp.allocs)-1]
|
|
allocGrp.allocs = allocGrp.allocs[:len(allocGrp.allocs)-1]
|
|
|
|
// This is the remaining total of resources needed
|
|
resourcesNeeded.Subtract(closestAlloc.ComparableResources())
|
|
}
|
|
if allRequirementsMet {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Early return if all allocs examined and requirements were not met
|
|
if !allRequirementsMet {
|
|
return nil
|
|
}
|
|
|
|
resourcesNeeded = resourceAsk.Comparable()
|
|
// We do another pass to eliminate unnecessary preemptions
|
|
// This filters out allocs whose resources are already covered by another alloc
|
|
basePreemptionResource := GetBasePreemptionResourceFactory()
|
|
|
|
filteredBestAllocs := filterSuperset(bestAllocs, p.nodeRemainingResources, resourcesNeeded, basePreemptionResource)
|
|
return filteredBestAllocs
|
|
|
|
}
|
|
|
|
// PreemptForNetwork tries to find allocations to preempt to meet network resources.
|
|
// This is called once per task when assigning a network to the task. While finding allocations
|
|
// to preempt, this only considers allocations that share the same network device
|
|
func (p *Preemptor) PreemptForNetwork(networkResourceAsk *structs.NetworkResource, netIdx *structs.NetworkIndex) []*structs.Allocation {
|
|
|
|
// Early return if there are no current allocs
|
|
if len(p.currentAllocs) == 0 {
|
|
return nil
|
|
}
|
|
|
|
deviceToAllocs := make(map[string][]*structs.Allocation)
|
|
MbitsNeeded := networkResourceAsk.MBits
|
|
reservedPortsNeeded := networkResourceAsk.ReservedPorts
|
|
|
|
// Create a map from each device to allocs
|
|
// We do this because to place a task we have to be able to
|
|
// preempt allocations that are using the same device.
|
|
|
|
// This step also filters out high priority allocations and allocations
|
|
// that are not using any network resources
|
|
for _, alloc := range p.currentAllocs {
|
|
if alloc.Job == nil {
|
|
continue
|
|
}
|
|
|
|
if p.jobPriority-alloc.Job.Priority < 10 {
|
|
continue
|
|
}
|
|
networks := alloc.ComparableResources().Flattened.Networks
|
|
|
|
// Only include if the alloc has a network device
|
|
if len(networks) > 0 {
|
|
device := networks[0].Device
|
|
allocsForDevice := deviceToAllocs[device]
|
|
allocsForDevice = append(allocsForDevice, alloc)
|
|
deviceToAllocs[device] = allocsForDevice
|
|
}
|
|
}
|
|
|
|
// If no existing allocations use network resources, return early
|
|
if len(deviceToAllocs) == 0 {
|
|
return nil
|
|
}
|
|
|
|
var allocsToPreempt []*structs.Allocation
|
|
|
|
met := false
|
|
freeBandwidth := 0
|
|
|
|
for device, currentAllocs := range deviceToAllocs {
|
|
totalBandwidth := netIdx.AvailBandwidth[device]
|
|
|
|
// If the device doesn't have enough total available bandwidth, skip
|
|
if totalBandwidth < MbitsNeeded {
|
|
continue
|
|
}
|
|
|
|
// Track how much existing free bandwidth we have before preemption
|
|
freeBandwidth = totalBandwidth - netIdx.UsedBandwidth[device]
|
|
|
|
preemptedBandwidth := 0
|
|
|
|
// Reset allocsToPreempt since we don't want to preempt across devices for the same task
|
|
allocsToPreempt = nil
|
|
|
|
// Build map from used reserved ports to allocation
|
|
usedPortToAlloc := make(map[int]*structs.Allocation)
|
|
|
|
// First try to satisfy needed reserved ports
|
|
if len(reservedPortsNeeded) > 0 {
|
|
for _, alloc := range currentAllocs {
|
|
for _, tr := range alloc.TaskResources {
|
|
reservedPorts := tr.Networks[0].ReservedPorts
|
|
for _, p := range reservedPorts {
|
|
usedPortToAlloc[p.Value] = alloc
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for allocs that are using reserved ports needed
|
|
for _, port := range reservedPortsNeeded {
|
|
alloc, ok := usedPortToAlloc[port.Value]
|
|
if ok {
|
|
preemptedBandwidth += alloc.Resources.Networks[0].MBits
|
|
allocsToPreempt = append(allocsToPreempt, alloc)
|
|
}
|
|
}
|
|
|
|
// Remove allocs that were preempted to satisfy reserved ports
|
|
currentAllocs = structs.RemoveAllocs(currentAllocs, allocsToPreempt)
|
|
}
|
|
|
|
// If bandwidth requirements have been met, stop
|
|
if preemptedBandwidth+freeBandwidth >= MbitsNeeded {
|
|
break
|
|
}
|
|
|
|
// Split by priority
|
|
allocsByPriority := filterAndGroupPreemptibleAllocs(p.jobPriority, currentAllocs)
|
|
|
|
for _, allocsGrp := range allocsByPriority {
|
|
allocs := allocsGrp.allocs
|
|
|
|
// Sort by distance function
|
|
sort.Slice(allocs, func(i, j int) bool {
|
|
return p.distanceComparatorForNetwork(allocs, networkResourceAsk, i, j)
|
|
})
|
|
|
|
// Iterate over allocs until end of if requirements have been met
|
|
for _, alloc := range allocs {
|
|
preemptedBandwidth += alloc.Resources.Networks[0].MBits
|
|
allocsToPreempt = append(allocsToPreempt, alloc)
|
|
if preemptedBandwidth+freeBandwidth >= MbitsNeeded {
|
|
met = true
|
|
break
|
|
}
|
|
}
|
|
|
|
// If we met bandwidth needs we can break out of iterating by priority within a device
|
|
if met {
|
|
break
|
|
}
|
|
}
|
|
// If we met bandwidth needs we don't need to examine the next network device
|
|
if met {
|
|
break
|
|
}
|
|
}
|
|
if len(allocsToPreempt) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// Build a resource object with just the network Mbits filled in
|
|
// Its safe to use the first preempted allocation's network resource
|
|
// here because all allocations preempted will be from the same device
|
|
nodeRemainingResources := &structs.ComparableResources{
|
|
Flattened: structs.AllocatedTaskResources{
|
|
Networks: []*structs.NetworkResource{
|
|
{
|
|
Device: allocsToPreempt[0].Resources.Networks[0].Device,
|
|
MBits: freeBandwidth,
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
// Do a final pass to eliminate any superset allocations
|
|
preemptionResourceFactory := GetNetworkPreemptionResourceFactory()
|
|
resourcesNeeded := &structs.ComparableResources{
|
|
Flattened: structs.AllocatedTaskResources{
|
|
Networks: []*structs.NetworkResource{networkResourceAsk},
|
|
},
|
|
}
|
|
filteredBestAllocs := filterSuperset(allocsToPreempt, nodeRemainingResources, resourcesNeeded, preemptionResourceFactory)
|
|
return filteredBestAllocs
|
|
}
|
|
|
|
// basicResourceDistance computes a distance using a coordinate system. It compares resource fields like CPU/Memory and Disk.
|
|
// Values emitted are in the range [0, maxFloat]
|
|
func basicResourceDistance(resourceAsk *structs.ComparableResources, resourceUsed *structs.ComparableResources) float64 {
|
|
memoryCoord, cpuCoord, diskMBCoord := 0.0, 0.0, 0.0
|
|
if resourceAsk.Flattened.Memory.MemoryMB > 0 {
|
|
memoryCoord = (float64(resourceAsk.Flattened.Memory.MemoryMB) - float64(resourceUsed.Flattened.Memory.MemoryMB)) / float64(resourceAsk.Flattened.Memory.MemoryMB)
|
|
}
|
|
if resourceAsk.Flattened.Cpu.CpuShares > 0 {
|
|
cpuCoord = (float64(resourceAsk.Flattened.Cpu.CpuShares) - float64(resourceUsed.Flattened.Cpu.CpuShares)) / float64(resourceAsk.Flattened.Cpu.CpuShares)
|
|
}
|
|
if resourceAsk.Shared.DiskMB > 0 {
|
|
diskMBCoord = (float64(resourceAsk.Shared.DiskMB) - float64(resourceUsed.Shared.DiskMB)) / float64(resourceAsk.Shared.DiskMB)
|
|
}
|
|
originDist := math.Sqrt(
|
|
math.Pow(memoryCoord, 2) +
|
|
math.Pow(cpuCoord, 2) +
|
|
math.Pow(diskMBCoord, 2))
|
|
return originDist
|
|
}
|
|
|
|
// networkResourceDistance returns a distance based only on network megabits
|
|
func networkResourceDistance(resourceUsed *structs.NetworkResource, resourceNeeded *structs.NetworkResource) float64 {
|
|
networkCoord := math.MaxFloat64
|
|
if resourceUsed != nil && resourceNeeded != nil {
|
|
networkCoord = float64(resourceNeeded.MBits-resourceUsed.MBits) / float64(resourceNeeded.MBits)
|
|
}
|
|
|
|
originDist := math.Sqrt(
|
|
math.Pow(networkCoord, 2))
|
|
return originDist
|
|
}
|
|
|
|
// scoreForTaskGroup is used to calculate a score (lower is better) based on the distance between
|
|
// the needed resource and requirements. A penalty is added when the choice already has some existing
|
|
// allocations in the plan that are being preempted.
|
|
func scoreForTaskGroup(resourceAsk *structs.ComparableResources, resourceUsed *structs.ComparableResources, maxParallel int, numPreemptedAllocs int) float64 {
|
|
maxParallelScorePenalty := 0.0
|
|
if maxParallel > 0 && numPreemptedAllocs >= maxParallel {
|
|
maxParallelScorePenalty = float64((numPreemptedAllocs+1)-maxParallel) * maxParallelPenalty
|
|
}
|
|
return basicResourceDistance(resourceAsk, resourceUsed) + maxParallelScorePenalty
|
|
}
|
|
|
|
// scoreForNetwork is similar to scoreForTaskGroup
|
|
// but only uses network Mbits to calculate a preemption score
|
|
func scoreForNetwork(resourceUsed *structs.NetworkResource, resourceNeeded *structs.NetworkResource, maxParallel int, numPreemptedAllocs int) float64 {
|
|
if resourceUsed == nil || resourceNeeded == nil {
|
|
return math.MaxFloat64
|
|
}
|
|
maxParallelScorePenalty := 0.0
|
|
if maxParallel > 0 && numPreemptedAllocs >= maxParallel {
|
|
maxParallelScorePenalty = float64((numPreemptedAllocs+1)-maxParallel) * maxParallelPenalty
|
|
}
|
|
return networkResourceDistance(resourceUsed, resourceNeeded) + maxParallelScorePenalty
|
|
}
|
|
|
|
// filterAndGroupPreemptibleAllocs groups allocations by priority after removing any from jobs of
|
|
// a higher priority than jobPriority
|
|
func filterAndGroupPreemptibleAllocs(jobPriority int, current []*structs.Allocation) []*groupedAllocs {
|
|
allocsByPriority := make(map[int][]*structs.Allocation)
|
|
for _, alloc := range current {
|
|
// Why is alloc.Job even nil though?
|
|
if alloc.Job == nil {
|
|
continue
|
|
}
|
|
|
|
// Skip allocs whose priority is within a delta of 10
|
|
// This also skips any allocs of the current job
|
|
// for which we are attempting preemption
|
|
if jobPriority-alloc.Job.Priority < 10 {
|
|
continue
|
|
}
|
|
grpAllocs, ok := allocsByPriority[alloc.Job.Priority]
|
|
if !ok {
|
|
grpAllocs = make([]*structs.Allocation, 0)
|
|
}
|
|
grpAllocs = append(grpAllocs, alloc)
|
|
allocsByPriority[alloc.Job.Priority] = grpAllocs
|
|
}
|
|
|
|
var groupedSortedAllocs []*groupedAllocs
|
|
for priority, allocs := range allocsByPriority {
|
|
groupedSortedAllocs = append(groupedSortedAllocs, &groupedAllocs{
|
|
priority: priority,
|
|
allocs: allocs})
|
|
}
|
|
|
|
// Sort by priority
|
|
sort.Slice(groupedSortedAllocs, func(i, j int) bool {
|
|
return groupedSortedAllocs[i].priority < groupedSortedAllocs[j].priority
|
|
})
|
|
|
|
return groupedSortedAllocs
|
|
}
|
|
|
|
// filterSuperset is used as a final step to remove
|
|
// any allocations that meet a superset of requirements from
|
|
// the set of allocations to preempt
|
|
func filterSuperset(bestAllocs []*structs.Allocation,
|
|
nodeRemainingResources *structs.ComparableResources,
|
|
resourceAsk *structs.ComparableResources,
|
|
preemptionResourceFactory PreemptionResourceFactory) []*structs.Allocation {
|
|
|
|
// Sort bestAllocs by distance descending (without penalty)
|
|
sort.Slice(bestAllocs, func(i, j int) bool {
|
|
distance1 := preemptionResourceFactory(bestAllocs[i].ComparableResources(), resourceAsk).Distance()
|
|
distance2 := preemptionResourceFactory(bestAllocs[j].ComparableResources(), resourceAsk).Distance()
|
|
return distance1 > distance2
|
|
})
|
|
|
|
var preemptedResources *structs.ComparableResources
|
|
var filteredBestAllocs []*structs.Allocation
|
|
|
|
// Do another pass to eliminate allocations that are a superset of other allocations
|
|
// in the preemption set
|
|
for _, alloc := range bestAllocs {
|
|
if preemptedResources == nil {
|
|
preemptedResources = alloc.ComparableResources().Copy()
|
|
} else {
|
|
preemptedResources.Add(alloc.ComparableResources().Copy())
|
|
}
|
|
filteredBestAllocs = append(filteredBestAllocs, alloc)
|
|
availableResources := preemptedResources.Copy()
|
|
availableResources.Add(nodeRemainingResources)
|
|
|
|
premptionResource := preemptionResourceFactory(availableResources, resourceAsk)
|
|
requirementsMet := premptionResource.MeetsRequirements()
|
|
if requirementsMet {
|
|
break
|
|
}
|
|
}
|
|
return filteredBestAllocs
|
|
}
|
|
|
|
// distanceComparatorForNetwork is used as the sorting function when finding allocations to preempt. It uses
|
|
// both a coordinate distance function based on Mbits needed, and a penalty if the allocation under consideration
|
|
// belongs to a job that already has more preempted allocations
|
|
func (p *Preemptor) distanceComparatorForNetwork(allocs []*structs.Allocation, networkResourceAsk *structs.NetworkResource, i int, j int) bool {
|
|
firstAlloc := allocs[i]
|
|
currentPreemptionCount1 := p.getNumPreemptions(firstAlloc)
|
|
// Look up configured maxParallel value for these allocation's task groups
|
|
var maxParallel1, maxParallel2 int
|
|
tg1 := allocs[i].Job.LookupTaskGroup(firstAlloc.TaskGroup)
|
|
if tg1 != nil && tg1.Migrate != nil {
|
|
maxParallel1 = tg1.Migrate.MaxParallel
|
|
}
|
|
// Dereference network usage on first alloc if its there
|
|
firstAllocNetworks := firstAlloc.ComparableResources().Flattened.Networks
|
|
var firstAllocNetResourceUsed *structs.NetworkResource
|
|
if len(firstAllocNetworks) > 0 {
|
|
firstAllocNetResourceUsed = firstAllocNetworks[0]
|
|
}
|
|
|
|
distance1 := scoreForNetwork(firstAllocNetResourceUsed, networkResourceAsk, maxParallel1, currentPreemptionCount1)
|
|
|
|
secondAlloc := allocs[j]
|
|
currentPreemptionCount2 := p.getNumPreemptions(secondAlloc)
|
|
tg2 := secondAlloc.Job.LookupTaskGroup(secondAlloc.TaskGroup)
|
|
if tg2 != nil && tg2.Migrate != nil {
|
|
maxParallel2 = tg2.Migrate.MaxParallel
|
|
}
|
|
// Dereference network usage on second alloc if its there
|
|
secondAllocNetworks := secondAlloc.ComparableResources().Flattened.Networks
|
|
var secondAllocNetResourceUsed *structs.NetworkResource
|
|
if len(secondAllocNetworks) > 0 {
|
|
secondAllocNetResourceUsed = secondAllocNetworks[0]
|
|
}
|
|
|
|
distance2 := scoreForNetwork(secondAllocNetResourceUsed, networkResourceAsk, maxParallel2, currentPreemptionCount2)
|
|
return distance1 < distance2
|
|
}
|