463 lines
13 KiB
Go
463 lines
13 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
"math/rand"
|
|
"reflect"
|
|
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
// allocTuple is a tuple of the allocation name and potential alloc ID
|
|
type allocTuple struct {
|
|
Name string
|
|
TaskGroup *structs.TaskGroup
|
|
Alloc *structs.Allocation
|
|
}
|
|
|
|
// materializeTaskGroups is used to materialize all the task groups
|
|
// a job requires. This is used to do the count expansion.
|
|
func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup {
|
|
out := make(map[string]*structs.TaskGroup)
|
|
if job == nil {
|
|
return out
|
|
}
|
|
|
|
for _, tg := range job.TaskGroups {
|
|
for i := 0; i < tg.Count; i++ {
|
|
name := fmt.Sprintf("%s.%s[%d]", job.Name, tg.Name, i)
|
|
out[name] = tg
|
|
}
|
|
}
|
|
return out
|
|
}
|
|
|
|
// diffResult is used to return the sets that result from the diff
|
|
type diffResult struct {
|
|
place, update, migrate, stop, ignore []allocTuple
|
|
}
|
|
|
|
func (d *diffResult) GoString() string {
|
|
return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d)",
|
|
len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore))
|
|
}
|
|
|
|
func (d *diffResult) Append(other *diffResult) {
|
|
d.place = append(d.place, other.place...)
|
|
d.update = append(d.update, other.update...)
|
|
d.migrate = append(d.migrate, other.migrate...)
|
|
d.stop = append(d.stop, other.stop...)
|
|
d.ignore = append(d.ignore, other.ignore...)
|
|
}
|
|
|
|
// diffAllocs is used to do a set difference between the target allocations
|
|
// and the existing allocations. This returns 5 sets of results, the list of
|
|
// named task groups that need to be placed (no existing allocation), the
|
|
// allocations that need to be updated (job definition is newer), allocs that
|
|
// need to be migrated (node is draining), the allocs that need to be evicted
|
|
// (no longer required), and those that should be ignored.
|
|
func diffAllocs(job *structs.Job, taintedNodes map[string]bool,
|
|
required map[string]*structs.TaskGroup, allocs []*structs.Allocation) *diffResult {
|
|
result := &diffResult{}
|
|
|
|
// Scan the existing updates
|
|
existing := make(map[string]struct{})
|
|
for _, exist := range allocs {
|
|
// Index the existing node
|
|
name := exist.Name
|
|
existing[name] = struct{}{}
|
|
|
|
// Check for the definition in the required set
|
|
tg, ok := required[name]
|
|
|
|
// If not required, we stop the alloc
|
|
if !ok {
|
|
result.stop = append(result.stop, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// If we are on a tainted node, we must migrate
|
|
if taintedNodes[exist.NodeID] {
|
|
result.migrate = append(result.migrate, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// If the definition is updated we need to update
|
|
if job.JobModifyIndex != exist.Job.JobModifyIndex {
|
|
result.update = append(result.update, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// Everything is up-to-date
|
|
result.ignore = append(result.ignore, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
}
|
|
|
|
// Scan the required groups
|
|
for name, tg := range required {
|
|
// Check for an existing allocation
|
|
_, ok := existing[name]
|
|
|
|
// Require a placement if no existing allocation. If there
|
|
// is an existing allocation, we would have checked for a potential
|
|
// update or ignore above.
|
|
if !ok {
|
|
result.place = append(result.place, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
})
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// diffSystemAllocs is like diffAllocs however, the allocations in the
|
|
// diffResult contain the specific nodeID they should be allocated on.
|
|
func diffSystemAllocs(job *structs.Job, nodes []*structs.Node, taintedNodes map[string]bool,
|
|
allocs []*structs.Allocation) *diffResult {
|
|
|
|
// Build a mapping of nodes to all their allocs.
|
|
nodeAllocs := make(map[string][]*structs.Allocation, len(allocs))
|
|
for _, alloc := range allocs {
|
|
nallocs := append(nodeAllocs[alloc.NodeID], alloc)
|
|
nodeAllocs[alloc.NodeID] = nallocs
|
|
}
|
|
|
|
for _, node := range nodes {
|
|
if _, ok := nodeAllocs[node.ID]; !ok {
|
|
nodeAllocs[node.ID] = nil
|
|
}
|
|
}
|
|
|
|
// Create the required task groups.
|
|
required := materializeTaskGroups(job)
|
|
|
|
result := &diffResult{}
|
|
for nodeID, allocs := range nodeAllocs {
|
|
diff := diffAllocs(job, taintedNodes, required, allocs)
|
|
|
|
// Mark the alloc as being for a specific node.
|
|
for i := range diff.place {
|
|
alloc := &diff.place[i]
|
|
alloc.Alloc = &structs.Allocation{NodeID: nodeID}
|
|
}
|
|
|
|
// Migrate does not apply to system jobs and instead should be marked as
|
|
// stop because if a node is tainted, the job is invalid on that node.
|
|
diff.stop = append(diff.stop, diff.migrate...)
|
|
diff.migrate = nil
|
|
|
|
result.Append(diff)
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// readyNodesInDCs returns all the ready nodes in the given datacenters and a
|
|
// mapping of each data center to the count of ready nodes.
|
|
func readyNodesInDCs(state State, dcs []string) ([]*structs.Node, map[string]int, error) {
|
|
// Index the DCs
|
|
dcMap := make(map[string]int, len(dcs))
|
|
for _, dc := range dcs {
|
|
dcMap[dc] = 0
|
|
}
|
|
|
|
// Scan the nodes
|
|
var out []*structs.Node
|
|
iter, err := state.Nodes()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
for {
|
|
raw := iter.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
|
|
// Filter on datacenter and status
|
|
node := raw.(*structs.Node)
|
|
if node.Status != structs.NodeStatusReady {
|
|
continue
|
|
}
|
|
if node.Drain {
|
|
continue
|
|
}
|
|
if _, ok := dcMap[node.Datacenter]; !ok {
|
|
continue
|
|
}
|
|
out = append(out, node)
|
|
dcMap[node.Datacenter] += 1
|
|
}
|
|
return out, dcMap, nil
|
|
}
|
|
|
|
// retryMax is used to retry a callback until it returns success or
|
|
// a maximum number of attempts is reached. An optional reset function may be
|
|
// passed which is called after each failed iteration. If the reset function is
|
|
// set and returns true, the number of attempts is reset back to max.
|
|
func retryMax(max int, cb func() (bool, error), reset func() bool) error {
|
|
attempts := 0
|
|
for attempts < max {
|
|
done, err := cb()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if done {
|
|
return nil
|
|
}
|
|
|
|
// Check if we should reset the number attempts
|
|
if reset != nil && reset() {
|
|
attempts = 0
|
|
} else {
|
|
attempts += 1
|
|
}
|
|
}
|
|
return &SetStatusError{
|
|
Err: fmt.Errorf("maximum attempts reached (%d)", max),
|
|
EvalStatus: structs.EvalStatusFailed,
|
|
}
|
|
}
|
|
|
|
// progressMade checks to see if the plan result made allocations or updates.
|
|
// If the result is nil, false is returned.
|
|
func progressMade(result *structs.PlanResult) bool {
|
|
return result != nil && (len(result.NodeUpdate) != 0 ||
|
|
len(result.NodeAllocation) != 0)
|
|
}
|
|
|
|
// taintedNodes is used to scan the allocations and then check if the
|
|
// underlying nodes are tainted, and should force a migration of the allocation.
|
|
func taintedNodes(state State, allocs []*structs.Allocation) (map[string]bool, error) {
|
|
out := make(map[string]bool)
|
|
for _, alloc := range allocs {
|
|
if _, ok := out[alloc.NodeID]; ok {
|
|
continue
|
|
}
|
|
|
|
node, err := state.NodeByID(alloc.NodeID)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If the node does not exist, we should migrate
|
|
if node == nil {
|
|
out[alloc.NodeID] = true
|
|
continue
|
|
}
|
|
|
|
out[alloc.NodeID] = structs.ShouldDrainNode(node.Status) || node.Drain
|
|
}
|
|
return out, nil
|
|
}
|
|
|
|
// shuffleNodes randomizes the slice order with the Fisher-Yates algorithm
|
|
func shuffleNodes(nodes []*structs.Node) {
|
|
n := len(nodes)
|
|
for i := n - 1; i > 0; i-- {
|
|
j := rand.Intn(i + 1)
|
|
nodes[i], nodes[j] = nodes[j], nodes[i]
|
|
}
|
|
}
|
|
|
|
// tasksUpdated does a diff between task groups to see if the
|
|
// tasks, their drivers, environment variables or config have updated.
|
|
func tasksUpdated(a, b *structs.TaskGroup) bool {
|
|
// If the number of tasks do not match, clearly there is an update
|
|
if len(a.Tasks) != len(b.Tasks) {
|
|
return true
|
|
}
|
|
|
|
// Check each task
|
|
for _, at := range a.Tasks {
|
|
bt := b.LookupTask(at.Name)
|
|
if bt == nil {
|
|
return true
|
|
}
|
|
if at.Driver != bt.Driver {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.Config, bt.Config) {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.Env, bt.Env) {
|
|
return true
|
|
}
|
|
|
|
// Inspect the network to see if the dynamic ports are different
|
|
if len(at.Resources.Networks) != len(bt.Resources.Networks) {
|
|
return true
|
|
}
|
|
for idx := range at.Resources.Networks {
|
|
an := at.Resources.Networks[idx]
|
|
bn := bt.Resources.Networks[idx]
|
|
if len(an.DynamicPorts) != len(bn.DynamicPorts) {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// setStatus is used to update the status of the evaluation
|
|
func setStatus(logger *log.Logger, planner Planner, eval, nextEval *structs.Evaluation, status, desc string) error {
|
|
logger.Printf("[DEBUG] sched: %#v: setting status to %s", eval, status)
|
|
newEval := eval.Copy()
|
|
newEval.Status = status
|
|
newEval.StatusDescription = desc
|
|
if nextEval != nil {
|
|
newEval.NextEval = nextEval.ID
|
|
}
|
|
return planner.UpdateEval(newEval)
|
|
}
|
|
|
|
// inplaceUpdate attempts to update allocations in-place where possible.
|
|
func inplaceUpdate(ctx Context, eval *structs.Evaluation, job *structs.Job,
|
|
stack Stack, updates []allocTuple) []allocTuple {
|
|
|
|
n := len(updates)
|
|
inplace := 0
|
|
for i := 0; i < n; i++ {
|
|
// Get the update
|
|
update := updates[i]
|
|
|
|
// Check if the task drivers or config has changed, requires
|
|
// a rolling upgrade since that cannot be done in-place.
|
|
existing := update.Alloc.Job.LookupTaskGroup(update.TaskGroup.Name)
|
|
if tasksUpdated(update.TaskGroup, existing) {
|
|
continue
|
|
}
|
|
|
|
// Get the existing node
|
|
node, err := ctx.State().NodeByID(update.Alloc.NodeID)
|
|
if err != nil {
|
|
ctx.Logger().Printf("[ERR] sched: %#v failed to get node '%s': %v",
|
|
eval, update.Alloc.NodeID, err)
|
|
continue
|
|
}
|
|
if node == nil {
|
|
continue
|
|
}
|
|
|
|
// Set the existing node as the base set
|
|
stack.SetNodes([]*structs.Node{node})
|
|
|
|
// Stage an eviction of the current allocation. This is done so that
|
|
// the current allocation is discounted when checking for feasability.
|
|
// Otherwise we would be trying to fit the tasks current resources and
|
|
// updated resources. After select is called we can remove the evict.
|
|
ctx.Plan().AppendUpdate(update.Alloc, structs.AllocDesiredStatusStop,
|
|
allocInPlace)
|
|
|
|
// Attempt to match the task group
|
|
option, _ := stack.Select(update.TaskGroup)
|
|
|
|
// Pop the allocation
|
|
ctx.Plan().PopUpdate(update.Alloc)
|
|
|
|
// Skip if we could not do an in-place update
|
|
if option == nil {
|
|
continue
|
|
}
|
|
|
|
// Restore the network offers from the existing allocation.
|
|
// We do not allow network resources (reserved/dynamic ports)
|
|
// to be updated. This is guarded in taskUpdated, so we can
|
|
// safely restore those here.
|
|
for task, resources := range option.TaskResources {
|
|
existing := update.Alloc.TaskResources[task]
|
|
resources.Networks = existing.Networks
|
|
}
|
|
|
|
// Create a shallow copy
|
|
newAlloc := new(structs.Allocation)
|
|
*newAlloc = *update.Alloc
|
|
|
|
// Update the allocation
|
|
newAlloc.EvalID = eval.ID
|
|
newAlloc.Job = nil // Use the Job in the Plan
|
|
newAlloc.Resources = nil // Computed in Plan Apply
|
|
newAlloc.TaskResources = option.TaskResources
|
|
newAlloc.Metrics = ctx.Metrics()
|
|
newAlloc.DesiredStatus = structs.AllocDesiredStatusRun
|
|
newAlloc.ClientStatus = structs.AllocClientStatusPending
|
|
newAlloc.PopulateServiceIDs(update.TaskGroup)
|
|
ctx.Plan().AppendAlloc(newAlloc)
|
|
|
|
// Remove this allocation from the slice
|
|
updates[i] = updates[n-1]
|
|
i--
|
|
n--
|
|
inplace++
|
|
}
|
|
if len(updates) > 0 {
|
|
ctx.Logger().Printf("[DEBUG] sched: %#v: %d in-place updates of %d", eval, inplace, len(updates))
|
|
}
|
|
return updates[:n]
|
|
}
|
|
|
|
// evictAndPlace is used to mark allocations for evicts and add them to the
|
|
// placement queue. evictAndPlace modifies both the the diffResult and the
|
|
// limit. It returns true if the limit has been reached.
|
|
func evictAndPlace(ctx Context, diff *diffResult, allocs []allocTuple, desc string, limit *int) bool {
|
|
n := len(allocs)
|
|
for i := 0; i < n && i < *limit; i++ {
|
|
a := allocs[i]
|
|
ctx.Plan().AppendUpdate(a.Alloc, structs.AllocDesiredStatusStop, desc)
|
|
diff.place = append(diff.place, a)
|
|
}
|
|
if n <= *limit {
|
|
*limit -= n
|
|
return false
|
|
}
|
|
*limit = 0
|
|
return true
|
|
}
|
|
|
|
// tgConstrainTuple is used to store the total constraints of a task group.
|
|
type tgConstrainTuple struct {
|
|
// Holds the combined constraints of the task group and all it's sub-tasks.
|
|
constraints []*structs.Constraint
|
|
|
|
// The set of required drivers within the task group.
|
|
drivers map[string]struct{}
|
|
|
|
// The combined resources of all tasks within the task group.
|
|
size *structs.Resources
|
|
}
|
|
|
|
// taskGroupConstraints collects the constraints, drivers and resources required by each
|
|
// sub-task to aggregate the TaskGroup totals
|
|
func taskGroupConstraints(tg *structs.TaskGroup) tgConstrainTuple {
|
|
c := tgConstrainTuple{
|
|
constraints: make([]*structs.Constraint, 0, len(tg.Constraints)),
|
|
drivers: make(map[string]struct{}),
|
|
size: new(structs.Resources),
|
|
}
|
|
|
|
c.constraints = append(c.constraints, tg.Constraints...)
|
|
for _, task := range tg.Tasks {
|
|
c.drivers[task.Driver] = struct{}{}
|
|
c.constraints = append(c.constraints, task.Constraints...)
|
|
c.size.Add(task.Resources)
|
|
}
|
|
|
|
return c
|
|
}
|