open-nomad/nomad/worker.go
2023-04-10 15:36:59 +00:00

896 lines
27 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package nomad
import (
"context"
"encoding/json"
"errors"
"fmt"
"strings"
"sync"
"time"
metrics "github.com/armon/go-metrics"
log "github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-version"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/nomad/scheduler"
)
const (
// backoffBaselineFast is the baseline time for exponential backoff
backoffBaselineFast = 20 * time.Millisecond
// backoffBaselineSlow is the baseline time for exponential backoff
// but that is much slower than backoffBaselineFast
backoffBaselineSlow = 500 * time.Millisecond
// backoffLimitSlow is the limit of the exponential backoff for
// the slower backoff
backoffLimitSlow = 10 * time.Second
// backoffSchedulerVersionMismatch is the backoff between retries when the
// scheduler version mismatches that of the leader.
backoffSchedulerVersionMismatch = 30 * time.Second
// dequeueTimeout is used to timeout an evaluation dequeue so that
// we can check if there is a shutdown event
dequeueTimeout = 500 * time.Millisecond
// raftSyncLimit is the limit of time we will wait for Raft replication
// to catch up to the evaluation. This is used to fast Nack and
// allow another scheduler to pick it up.
raftSyncLimit = 5 * time.Second
// dequeueErrGrace is the grace period where we don't log about
// dequeue errors after start. This is to improve the user experience
// in dev mode where the leader isn't elected for a few seconds.
dequeueErrGrace = 10 * time.Second
)
type WorkerStatus int
//go:generate stringer -trimprefix=Worker -output worker_string_workerstatus.go -linecomment -type=WorkerStatus
const (
WorkerUnknownStatus WorkerStatus = iota // Unknown
WorkerStarting
WorkerStarted
WorkerPausing
WorkerPaused
WorkerResuming
WorkerStopping
WorkerStopped
)
type SchedulerWorkerStatus int
//go:generate stringer -trimprefix=Workload -output worker_string_schedulerworkerstatus.go -linecomment -type=SchedulerWorkerStatus
const (
WorkloadUnknownStatus SchedulerWorkerStatus = iota
WorkloadRunning
WorkloadWaitingToDequeue
WorkloadWaitingForRaft
WorkloadScheduling
WorkloadSubmitting
WorkloadBackoff
WorkloadStopped
WorkloadPaused
)
// Worker is a single threaded scheduling worker. There may be multiple
// running per server (leader or follower). They are responsible for dequeuing
// pending evaluations, invoking schedulers, plan submission and the
// lifecycle around making task allocations. They bridge the business logic
// of the scheduler with the plumbing required to make it all work.
type Worker struct {
srv *Server
logger log.Logger
start time.Time
id string
status WorkerStatus
workloadStatus SchedulerWorkerStatus
statusLock sync.RWMutex
pauseFlag bool
pauseLock sync.Mutex
pauseCond *sync.Cond
ctx context.Context
cancelFn context.CancelFunc
// the Server.Config.EnabledSchedulers value is not safe for concurrent access, so
// the worker needs a cached copy of it. Workers are stopped if this value changes.
enabledSchedulers []string
// failures is the count of errors encountered while dequeueing evaluations
// and is used to calculate backoff.
failures uint
evalToken string
// snapshotIndex is the index of the snapshot in which the scheduler was
// first invoked. It is used to mark the SnapshotIndex of evaluations
// Created, Updated or Reblocked.
snapshotIndex uint64
}
// NewWorker starts a new scheduler worker associated with the given server
func NewWorker(ctx context.Context, srv *Server, args SchedulerWorkerPoolArgs) (*Worker, error) {
w := newWorker(ctx, srv, args)
w.Start()
return w, nil
}
// _newWorker creates a worker without calling its Start func. This is useful for testing.
func newWorker(ctx context.Context, srv *Server, args SchedulerWorkerPoolArgs) *Worker {
w := &Worker{
id: uuid.Generate(),
srv: srv,
start: time.Now(),
status: WorkerStarting,
enabledSchedulers: make([]string, len(args.EnabledSchedulers)),
}
copy(w.enabledSchedulers, args.EnabledSchedulers)
w.logger = srv.logger.ResetNamed("worker").With("worker_id", w.id)
w.pauseCond = sync.NewCond(&w.pauseLock)
w.ctx, w.cancelFn = context.WithCancel(ctx)
return w
}
// ID returns a string ID for the worker.
func (w *Worker) ID() string {
return w.id
}
// Start transitions a worker to the starting state. Check
// to see if it paused using IsStarted()
func (w *Worker) Start() {
w.setStatus(WorkerStarting)
go w.run(raftSyncLimit)
}
// Pause transitions a worker to the pausing state. Check
// to see if it paused using IsPaused()
func (w *Worker) Pause() {
if w.isPausable() {
w.setStatus(WorkerPausing)
w.setPauseFlag(true)
}
}
// Resume transitions a worker to the resuming state. Check
// to see if the worker restarted by calling IsStarted()
func (w *Worker) Resume() {
if w.IsPaused() {
w.setStatus(WorkerResuming)
w.setPauseFlag(false)
w.pauseCond.Broadcast()
}
}
// Resume transitions a worker to the stopping state. Check
// to see if the worker stopped by calling IsStopped()
func (w *Worker) Stop() {
w.setStatus(WorkerStopping)
w.shutdown()
}
// IsStarted returns a boolean indicating if this worker has been started.
func (w *Worker) IsStarted() bool {
return w.GetStatus() == WorkerStarted
}
// IsPaused returns a boolean indicating if this worker has been paused.
func (w *Worker) IsPaused() bool {
return w.GetStatus() == WorkerPaused
}
// IsStopped returns a boolean indicating if this worker has been stopped.
func (w *Worker) IsStopped() bool {
return w.GetStatus() == WorkerStopped
}
func (w *Worker) isPausable() bool {
w.statusLock.RLock()
defer w.statusLock.RUnlock()
switch w.status {
case WorkerPausing, WorkerPaused, WorkerStopping, WorkerStopped:
return false
default:
return true
}
}
// GetStatus returns the status of the Worker
func (w *Worker) GetStatus() WorkerStatus {
w.statusLock.RLock()
defer w.statusLock.RUnlock()
return w.status
}
// setStatuses is used internally to the worker to update the
// status of the worker and workload at one time, since some
// transitions need to update both values using the same lock.
func (w *Worker) setStatuses(newWorkerStatus WorkerStatus, newWorkloadStatus SchedulerWorkerStatus) {
w.statusLock.Lock()
defer w.statusLock.Unlock()
w.setWorkerStatusLocked(newWorkerStatus)
w.setWorkloadStatusLocked(newWorkloadStatus)
}
// setStatus is used internally to the worker to update the
// status of the worker based on calls to the Worker API. For
// atomically updating the scheduler status and the workload
// status, use `setStatuses`.
func (w *Worker) setStatus(newStatus WorkerStatus) {
w.statusLock.Lock()
defer w.statusLock.Unlock()
w.setWorkerStatusLocked(newStatus)
}
func (w *Worker) setWorkerStatusLocked(newStatus WorkerStatus) {
if newStatus == w.status {
return
}
w.logger.Trace("changed worker status", "from", w.status, "to", newStatus)
w.status = newStatus
}
// GetStatus returns the status of the Worker's Workload.
func (w *Worker) GetWorkloadStatus() SchedulerWorkerStatus {
w.statusLock.RLock()
defer w.statusLock.RUnlock()
return w.workloadStatus
}
// setWorkloadStatus is used internally to the worker to update the
// status of the worker based updates from the workload.
func (w *Worker) setWorkloadStatus(newStatus SchedulerWorkerStatus) {
w.statusLock.Lock()
defer w.statusLock.Unlock()
w.setWorkloadStatusLocked(newStatus)
}
func (w *Worker) setWorkloadStatusLocked(newStatus SchedulerWorkerStatus) {
if newStatus == w.workloadStatus {
return
}
w.logger.Trace("changed workload status", "from", w.workloadStatus, "to", newStatus)
w.workloadStatus = newStatus
}
type WorkerInfo struct {
ID string `json:"id"`
EnabledSchedulers []string `json:"enabled_schedulers"`
Started time.Time `json:"started"`
Status string `json:"status"`
WorkloadStatus string `json:"workload_status"`
}
func (w WorkerInfo) Copy() WorkerInfo {
out := WorkerInfo{
ID: w.ID,
EnabledSchedulers: make([]string, len(w.EnabledSchedulers)),
Started: w.Started,
Status: w.Status,
WorkloadStatus: w.WorkloadStatus,
}
copy(out.EnabledSchedulers, w.EnabledSchedulers)
return out
}
func (w WorkerInfo) String() string {
// lazy implementation of WorkerInfo to string
out, _ := json.Marshal(w)
return string(out)
}
func (w *Worker) Info() WorkerInfo {
w.pauseLock.Lock()
defer w.pauseLock.Unlock()
out := WorkerInfo{
ID: w.id,
Status: w.status.String(),
WorkloadStatus: w.workloadStatus.String(),
EnabledSchedulers: make([]string, len(w.enabledSchedulers)),
}
out.Started = w.start
copy(out.EnabledSchedulers, w.enabledSchedulers)
return out
}
// ----------------------------------
// Pause Implementation
// These functions are used to support the worker's pause behaviors.
// ----------------------------------
func (w *Worker) setPauseFlag(pause bool) {
w.pauseLock.Lock()
defer w.pauseLock.Unlock()
w.pauseFlag = pause
}
// maybeWait is responsible for making the transition from `pausing`
// to `paused`, waiting, and then transitioning back to the running
// values.
func (w *Worker) maybeWait() {
w.pauseLock.Lock()
defer w.pauseLock.Unlock()
if !w.pauseFlag {
return
}
w.statusLock.Lock()
w.status = WorkerPaused
originalWorkloadStatus := w.workloadStatus
w.workloadStatus = WorkloadPaused
w.logger.Trace("changed workload status", "from", originalWorkloadStatus, "to", w.workloadStatus)
w.statusLock.Unlock()
for w.pauseFlag {
w.pauseCond.Wait()
}
w.statusLock.Lock()
w.logger.Trace("changed workload status", "from", w.workloadStatus, "to", originalWorkloadStatus)
w.workloadStatus = originalWorkloadStatus
// only reset the worker status if the worker is not resuming to stop the paused workload.
if w.status != WorkerStopping {
w.logger.Trace("changed worker status", "from", w.status, "to", WorkerStarted)
w.status = WorkerStarted
}
w.statusLock.Unlock()
}
// Shutdown is used to signal that the worker should shutdown.
func (w *Worker) shutdown() {
w.pauseLock.Lock()
wasPaused := w.pauseFlag
w.pauseFlag = false
w.pauseLock.Unlock()
w.logger.Trace("shutdown request received")
w.cancelFn()
if wasPaused {
w.pauseCond.Broadcast()
}
}
// markStopped is used to mark the worker and workload as stopped. It should be called in a
// defer immediately upon entering the run() function.
func (w *Worker) markStopped() {
w.setStatuses(WorkerStopped, WorkloadStopped)
w.logger.Debug("stopped")
}
func (w *Worker) workerShuttingDown() bool {
select {
case <-w.ctx.Done():
return true
default:
return false
}
}
// ----------------------------------
// Workload behavior code
// ----------------------------------
// run is the long-lived goroutine which is used to run the worker
func (w *Worker) run(raftSyncLimit time.Duration) {
defer func() {
w.markStopped()
}()
w.setStatuses(WorkerStarted, WorkloadRunning)
w.logger.Debug("running")
for {
// Check to see if the context has been cancelled. Server shutdown and Shutdown()
// should do this.
if w.workerShuttingDown() {
return
}
// Dequeue a pending evaluation
eval, token, waitIndex, shutdown := w.dequeueEvaluation(dequeueTimeout)
if shutdown {
return
}
// since dequeue takes time, we could have shutdown the server after
// getting an eval that needs to be nacked before we exit. Explicitly
// check the server whether to allow this eval to be processed.
if w.srv.IsShutdown() {
w.logger.Warn("nacking eval because the server is shutting down",
"eval", log.Fmt("%#v", eval))
w.sendNack(eval, token)
return
}
// Wait for the raft log to catchup to the evaluation
w.setWorkloadStatus(WorkloadWaitingForRaft)
snap, err := w.snapshotMinIndex(waitIndex, raftSyncLimit)
if err != nil {
var timeoutErr ErrMinIndexDeadlineExceeded
if errors.As(err, &timeoutErr) {
w.logger.Warn("timeout waiting for Raft index required by eval",
"eval", eval.ID, "index", waitIndex, "timeout", raftSyncLimit)
w.sendNack(eval, token)
// Timing out above means this server is woefully behind the
// leader's index. This can happen when a new server is added to
// a cluster and must initially sync the cluster state.
// Backoff dequeuing another eval until there's some indication
// this server would be up to date enough to process it.
slowServerSyncLimit := 10 * raftSyncLimit
if _, err := w.snapshotMinIndex(waitIndex, slowServerSyncLimit); err != nil {
w.logger.Warn("server is unable to catch up to last eval's index", "error", err)
}
} else if errors.Is(err, context.Canceled) {
// If the server has shutdown while we're waiting, we'll get the
// Canceled error from the worker's context. We need to nack any
// dequeued evals before we exit.
w.logger.Warn("nacking eval because the server is shutting down", "eval", eval.ID)
w.sendNack(eval, token)
return
} else {
w.logger.Error("error waiting for Raft index", "error", err, "index", waitIndex)
w.sendNack(eval, token)
}
continue
}
// Invoke the scheduler to determine placements
w.setWorkloadStatus(WorkloadScheduling)
if err := w.invokeScheduler(snap, eval, token); err != nil {
w.logger.Error("error invoking scheduler", "error", err)
w.sendNack(eval, token)
continue
}
// Complete the evaluation
w.sendAck(eval, token)
}
}
// dequeueEvaluation is used to fetch the next ready evaluation.
// This blocks until an evaluation is available or a timeout is reached.
func (w *Worker) dequeueEvaluation(timeout time.Duration) (
eval *structs.Evaluation, token string, waitIndex uint64, shutdown bool) {
// Setup the request
req := structs.EvalDequeueRequest{
Schedulers: w.enabledSchedulers,
Timeout: timeout,
SchedulerVersion: scheduler.SchedulerVersion,
WriteRequest: structs.WriteRequest{
Region: w.srv.config.Region,
},
}
var resp structs.EvalDequeueResponse
REQ:
// Wait inside this function if the worker is paused.
w.maybeWait()
// Immediately check to see if the worker has been shutdown.
if w.workerShuttingDown() {
return nil, "", 0, true
}
// Make a blocking RPC
start := time.Now()
w.setWorkloadStatus(WorkloadWaitingToDequeue)
err := w.srv.RPC("Eval.Dequeue", &req, &resp)
metrics.MeasureSince([]string{"nomad", "worker", "dequeue_eval"}, start)
if err != nil {
if time.Since(w.start) > dequeueErrGrace && !w.workerShuttingDown() {
w.logger.Error("failed to dequeue evaluation", "error", err)
}
// Adjust the backoff based on the error. If it is a scheduler version
// mismatch we increase the baseline.
base, limit := backoffBaselineFast, backoffLimitSlow
if strings.Contains(err.Error(), "calling scheduler version") {
base = backoffSchedulerVersionMismatch
limit = backoffSchedulerVersionMismatch
}
if w.backoffErr(base, limit) {
return nil, "", 0, true
}
goto REQ
}
w.backoffReset()
// Check if we got a response
if resp.Eval != nil {
w.logger.Debug("dequeued evaluation", "eval_id", resp.Eval.ID, "type", resp.Eval.Type, "namespace", resp.Eval.Namespace, "job_id", resp.Eval.JobID, "node_id", resp.Eval.NodeID, "triggered_by", resp.Eval.TriggeredBy)
return resp.Eval, resp.Token, resp.GetWaitIndex(), false
}
goto REQ
}
// sendAcknowledgement should not be called directly. Call `sendAck` or `sendNack` instead.
// This function implements `ack`ing or `nack`ing the evaluation generally.
// Any errors are logged but swallowed.
func (w *Worker) sendAcknowledgement(eval *structs.Evaluation, token string, ack bool) {
defer metrics.MeasureSince([]string{"nomad", "worker", "send_ack"}, time.Now())
// Setup the request
req := structs.EvalAckRequest{
EvalID: eval.ID,
Token: token,
WriteRequest: structs.WriteRequest{
Region: w.srv.config.Region,
},
}
var resp structs.GenericResponse
// Determine if this is an Ack or Nack
verb := "ack"
endpoint := "Eval.Ack"
if !ack {
verb = "nack"
endpoint = "Eval.Nack"
}
// Make the RPC call
err := w.srv.RPC(endpoint, &req, &resp)
if err != nil {
w.logger.Error(fmt.Sprintf("failed to %s evaluation", verb), "eval_id", eval.ID, "error", err)
} else {
w.logger.Debug(fmt.Sprintf("%s evaluation", verb), "eval_id", eval.ID, "type", eval.Type, "namespace", eval.Namespace, "job_id", eval.JobID, "node_id", eval.NodeID, "triggered_by", eval.TriggeredBy)
}
}
// sendNack makes a best effort to nack the evaluation.
// Any errors are logged but swallowed.
func (w *Worker) sendNack(eval *structs.Evaluation, token string) {
w.sendAcknowledgement(eval, token, false)
}
// sendAck makes a best effort to ack the evaluation.
// Any errors are logged but swallowed.
func (w *Worker) sendAck(eval *structs.Evaluation, token string) {
w.sendAcknowledgement(eval, token, true)
}
type ErrMinIndexDeadlineExceeded struct {
waitIndex uint64
timeout time.Duration
}
// Unwrapping an ErrMinIndexDeadlineExceeded always return
// context.DeadlineExceeded
func (ErrMinIndexDeadlineExceeded) Unwrap() error {
return context.DeadlineExceeded
}
func (e ErrMinIndexDeadlineExceeded) Error() string {
return fmt.Sprintf("timed out after %s waiting for index=%d", e.timeout, e.waitIndex)
}
// snapshotMinIndex times calls to StateStore.SnapshotAfter which may block.
func (w *Worker) snapshotMinIndex(waitIndex uint64, timeout time.Duration) (*state.StateSnapshot, error) {
defer metrics.MeasureSince([]string{"nomad", "worker", "wait_for_index"}, time.Now())
ctx, cancel := context.WithTimeout(w.ctx, timeout)
snap, err := w.srv.fsm.State().SnapshotMinIndex(ctx, waitIndex)
cancel()
// Wrap error to ensure callers can detect timeouts.
if errors.Is(err, context.DeadlineExceeded) {
return nil, ErrMinIndexDeadlineExceeded{
waitIndex: waitIndex,
timeout: timeout,
}
}
return snap, err
}
// invokeScheduler is used to invoke the business logic of the scheduler
func (w *Worker) invokeScheduler(snap *state.StateSnapshot, eval *structs.Evaluation, token string) error {
defer metrics.MeasureSince([]string{"nomad", "worker", "invoke_scheduler", eval.Type}, time.Now())
// Store the evaluation token
w.evalToken = token
// Store the snapshot's index
var err error
w.snapshotIndex, err = snap.LatestIndex()
if err != nil {
return fmt.Errorf("failed to determine snapshot's index: %v", err)
}
// Create the scheduler, or use the special core scheduler
var sched scheduler.Scheduler
if eval.Type == structs.JobTypeCore {
sched = NewCoreScheduler(w.srv, snap)
} else {
sched, err = scheduler.NewScheduler(eval.Type, w.logger, w.srv.workersEventCh, snap, w)
if err != nil {
return fmt.Errorf("failed to instantiate scheduler: %v", err)
}
}
// Process the evaluation
err = sched.Process(eval)
if err != nil {
return fmt.Errorf("failed to process evaluation: %v", err)
}
return nil
}
// ServersMeetMinimumVersion allows implementations of the Scheduler interface in
// other packages to perform server version checks without direct references to
// the Nomad server.
func (w *Worker) ServersMeetMinimumVersion(minVersion *version.Version, checkFailedServers bool) bool {
return ServersMeetMinimumVersion(w.srv.Members(), w.srv.Region(), minVersion, checkFailedServers)
}
// SubmitPlan is used to submit a plan for consideration. This allows
// the worker to act as the planner for the scheduler.
func (w *Worker) SubmitPlan(plan *structs.Plan) (*structs.PlanResult, scheduler.State, error) {
// Check for a shutdown before plan submission. Checking server state rather than
// worker state to allow work in flight to complete before stopping.
if w.srv.IsShutdown() {
return nil, nil, fmt.Errorf("shutdown while planning")
}
defer metrics.MeasureSince([]string{"nomad", "worker", "submit_plan"}, time.Now())
// Add the evaluation token to the plan
plan.EvalToken = w.evalToken
// Add SnapshotIndex to ensure leader's StateStore processes the Plan
// at or after the index it was created.
plan.SnapshotIndex = w.snapshotIndex
// Normalize stopped and preempted allocs before RPC
normalizePlan := ServersMeetMinimumVersion(w.srv.Members(), w.srv.Region(), MinVersionPlanNormalization, true)
if normalizePlan {
plan.NormalizeAllocations()
}
// Setup the request
req := structs.PlanRequest{
Plan: plan,
WriteRequest: structs.WriteRequest{
Region: w.srv.config.Region,
},
}
var resp structs.PlanResponse
SUBMIT:
// Make the RPC call
if err := w.srv.RPC("Plan.Submit", &req, &resp); err != nil {
w.logger.Error("failed to submit plan for evaluation", "eval_id", plan.EvalID, "error", err)
if w.shouldResubmit(err) && !w.backoffErr(backoffBaselineSlow, backoffLimitSlow) {
goto SUBMIT
}
return nil, nil, err
} else {
w.logger.Debug("submitted plan for evaluation", "eval_id", plan.EvalID)
w.backoffReset()
}
// Look for a result
result := resp.Result
if result == nil {
return nil, nil, fmt.Errorf("missing result")
}
// Check if a state update is required. This could be required if we
// planned based on stale data, which is causing issues. For example, a
// node failure since the time we've started planning or conflicting task
// allocations.
var state scheduler.State
if result.RefreshIndex != 0 {
// Wait for the raft log to catchup to the evaluation
w.logger.Debug("refreshing state", "refresh_index", result.RefreshIndex, "eval_id", plan.EvalID)
var err error
state, err = w.snapshotMinIndex(result.RefreshIndex, raftSyncLimit)
if err != nil {
return nil, nil, err
}
}
// Return the result and potential state update
return result, state, nil
}
// UpdateEval is used to submit an updated evaluation. This allows
// the worker to act as the planner for the scheduler.
func (w *Worker) UpdateEval(eval *structs.Evaluation) error {
// Check for a shutdown before plan submission. Checking server state rather than
// worker state to allow a workers work in flight to complete before stopping.
if w.srv.IsShutdown() {
return fmt.Errorf("shutdown while planning")
}
defer metrics.MeasureSince([]string{"nomad", "worker", "update_eval"}, time.Now())
// Store the snapshot index in the eval
eval.SnapshotIndex = w.snapshotIndex
eval.UpdateModifyTime()
// Setup the request
req := structs.EvalUpdateRequest{
Evals: []*structs.Evaluation{eval},
EvalToken: w.evalToken,
WriteRequest: structs.WriteRequest{
Region: w.srv.config.Region,
},
}
var resp structs.GenericResponse
SUBMIT:
// Make the RPC call
if err := w.srv.RPC("Eval.Update", &req, &resp); err != nil {
w.logger.Error("failed to update evaluation", "eval", log.Fmt("%#v", eval), "error", err)
if w.shouldResubmit(err) && !w.backoffErr(backoffBaselineSlow, backoffLimitSlow) {
goto SUBMIT
}
return err
} else {
w.logger.Debug("updated evaluation", "eval", log.Fmt("%#v", eval))
w.backoffReset()
}
return nil
}
// CreateEval is used to create a new evaluation. This allows
// the worker to act as the planner for the scheduler.
func (w *Worker) CreateEval(eval *structs.Evaluation) error {
// Check for a shutdown before plan submission. This consults the server Shutdown state
// instead of the worker's to prevent aborting work in flight.
if w.srv.IsShutdown() {
return fmt.Errorf("shutdown while planning")
}
defer metrics.MeasureSince([]string{"nomad", "worker", "create_eval"}, time.Now())
// Store the snapshot index in the eval
eval.SnapshotIndex = w.snapshotIndex
now := time.Now().UTC().UnixNano()
eval.CreateTime = now
eval.ModifyTime = now
// Setup the request
req := structs.EvalUpdateRequest{
Evals: []*structs.Evaluation{eval},
EvalToken: w.evalToken,
WriteRequest: structs.WriteRequest{
Region: w.srv.config.Region,
},
}
var resp structs.GenericResponse
SUBMIT:
// Make the RPC call
if err := w.srv.RPC("Eval.Create", &req, &resp); err != nil {
w.logger.Error("failed to create evaluation", "eval", log.Fmt("%#v", eval), "error", err)
if w.shouldResubmit(err) && !w.backoffErr(backoffBaselineSlow, backoffLimitSlow) {
goto SUBMIT
}
return err
} else {
w.logger.Debug("created evaluation", "eval", log.Fmt("%#v", eval))
w.backoffReset()
}
return nil
}
// ReblockEval is used to reinsert a blocked evaluation into the blocked eval
// tracker. This allows the worker to act as the planner for the scheduler.
func (w *Worker) ReblockEval(eval *structs.Evaluation) error {
// Check for a shutdown before plan submission. This checks the server state rather than
// the worker's to prevent erroring on work in flight that would complete otherwise.
if w.srv.IsShutdown() {
return fmt.Errorf("shutdown while planning")
}
defer metrics.MeasureSince([]string{"nomad", "worker", "reblock_eval"}, time.Now())
// Update the evaluation if the queued jobs is not same as what is
// recorded in the job summary
ws := memdb.NewWatchSet()
summary, err := w.srv.fsm.state.JobSummaryByID(ws, eval.Namespace, eval.JobID)
if err != nil {
return fmt.Errorf("couldn't retrieve job summary: %v", err)
}
if summary != nil {
var hasChanged bool
for tg, summary := range summary.Summary {
if queued, ok := eval.QueuedAllocations[tg]; ok {
if queued != summary.Queued {
hasChanged = true
break
}
}
}
if hasChanged {
if err := w.UpdateEval(eval); err != nil {
return err
}
}
}
// Store the snapshot index in the eval
eval.SnapshotIndex = w.snapshotIndex
eval.UpdateModifyTime()
// Setup the request
req := structs.EvalUpdateRequest{
Evals: []*structs.Evaluation{eval},
EvalToken: w.evalToken,
WriteRequest: structs.WriteRequest{
Region: w.srv.config.Region,
},
}
var resp structs.GenericResponse
SUBMIT:
// Make the RPC call
if err := w.srv.RPC("Eval.Reblock", &req, &resp); err != nil {
w.logger.Error("failed to reblock evaluation", "eval", log.Fmt("%#v", eval), "error", err)
if w.shouldResubmit(err) && !w.backoffErr(backoffBaselineSlow, backoffLimitSlow) {
goto SUBMIT
}
return err
} else {
w.logger.Debug("reblocked evaluation", "eval", log.Fmt("%#v", eval))
w.backoffReset()
}
return nil
}
// shouldResubmit checks if a given error should be swallowed and the plan
// resubmitted after a backoff. Usually these are transient errors that
// the cluster should heal from quickly.
func (w *Worker) shouldResubmit(err error) bool {
s := err.Error()
switch {
case strings.Contains(s, "No cluster leader"):
return true
case strings.Contains(s, "plan queue is disabled"):
return true
default:
return false
}
}
// backoffErr is used to do an exponential back off on error. This is
// maintained statefully for the worker. Returns if attempts should be
// abandoned due to shutdown.
// This uses the worker's context in order to immediately stop the
// backoff if the server or the worker is shutdown.
func (w *Worker) backoffErr(base, limit time.Duration) bool {
w.setWorkloadStatus(WorkloadBackoff)
backoff := (1 << (2 * w.failures)) * base
if backoff > limit {
backoff = limit
} else {
w.failures++
}
select {
case <-time.After(backoff):
return false
case <-w.ctx.Done():
return true
}
}
// backoffReset is used to reset the failure count for
// exponential backoff
func (w *Worker) backoffReset() {
w.failures = 0
}