open-nomad/nomad/node_endpoint.go
Tim Gross a7a64443e1
csi: move volume claim release into volumewatcher (#7794)
This changeset adds a subsystem to run on the leader, similar to the
deployment watcher or node drainer. The `Watcher` performs a blocking
query on updates to the `CSIVolumes` table and triggers reaping of
volume claims.

This will avoid tying up scheduling workers by immediately sending
volume claim workloads into their own loop, rather than blocking the
scheduling workers in the core GC job doing things like talking to CSI
controllers

The volume watcher is enabled on leader step-up and disabled on leader
step-down.

The volume claim GC mechanism now makes an empty claim RPC for the
volume to trigger an index bump. That in turn unblocks the blocking
query in the volume watcher so it can assess which claims can be
released for a volume.
2020-04-30 09:13:00 -04:00

1922 lines
57 KiB
Go

package nomad
import (
"context"
"fmt"
"strings"
"sync"
"time"
"golang.org/x/sync/errgroup"
metrics "github.com/armon/go-metrics"
log "github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
multierror "github.com/hashicorp/go-multierror"
vapi "github.com/hashicorp/vault/api"
"github.com/hashicorp/nomad/acl"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/raft"
"github.com/pkg/errors"
)
const (
// batchUpdateInterval is how long we wait to batch updates
batchUpdateInterval = 50 * time.Millisecond
// maxParallelRequestsPerDerive is the maximum number of parallel Vault
// create token requests that may be outstanding per derive request
maxParallelRequestsPerDerive = 16
// NodeDrainEvents are the various drain messages
NodeDrainEventDrainSet = "Node drain strategy set"
NodeDrainEventDrainDisabled = "Node drain disabled"
NodeDrainEventDrainUpdated = "Node drain stategy updated"
// NodeEligibilityEventEligible is used when the nodes eligiblity is marked
// eligible
NodeEligibilityEventEligible = "Node marked as eligible for scheduling"
// NodeEligibilityEventIneligible is used when the nodes eligiblity is marked
// ineligible
NodeEligibilityEventIneligible = "Node marked as ineligible for scheduling"
// NodeHeartbeatEventReregistered is the message used when the node becomes
// reregistered by the heartbeat.
NodeHeartbeatEventReregistered = "Node reregistered by heartbeat"
)
// Node endpoint is used for client interactions
type Node struct {
srv *Server
logger log.Logger
// ctx provides context regarding the underlying connection
ctx *RPCContext
// updates holds pending client status updates for allocations
updates []*structs.Allocation
// evals holds pending rescheduling eval updates triggered by failed allocations
evals []*structs.Evaluation
// updateFuture is used to wait for the pending batch update
// to complete. This may be nil if no batch is pending.
updateFuture *structs.BatchFuture
// updateTimer is the timer that will trigger the next batch
// update, and may be nil if there is no batch pending.
updateTimer *time.Timer
// updatesLock synchronizes access to the updates list,
// the future and the timer.
updatesLock sync.Mutex
}
// Register is used to upsert a client that is available for scheduling
func (n *Node) Register(args *structs.NodeRegisterRequest, reply *structs.NodeUpdateResponse) error {
isForwarded := args.IsForwarded()
if done, err := n.srv.forward("Node.Register", args, args, reply); done {
// We have a valid node connection since there is no error from the
// forwarded server, so add the mapping to cache the
// connection and allow the server to send RPCs to the client.
if err == nil && n.ctx != nil && n.ctx.NodeID == "" && !isForwarded {
n.ctx.NodeID = args.Node.ID
n.srv.addNodeConn(n.ctx)
}
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "register"}, time.Now())
// Validate the arguments
if args.Node == nil {
return fmt.Errorf("missing node for client registration")
}
if args.Node.ID == "" {
return fmt.Errorf("missing node ID for client registration")
}
if args.Node.Datacenter == "" {
return fmt.Errorf("missing datacenter for client registration")
}
if args.Node.Name == "" {
return fmt.Errorf("missing node name for client registration")
}
if len(args.Node.Attributes) == 0 {
return fmt.Errorf("missing attributes for client registration")
}
if args.Node.SecretID == "" {
return fmt.Errorf("missing node secret ID for client registration")
}
// Default the status if none is given
if args.Node.Status == "" {
args.Node.Status = structs.NodeStatusInit
}
if !structs.ValidNodeStatus(args.Node.Status) {
return fmt.Errorf("invalid status for node")
}
// Default to eligible for scheduling if unset
if args.Node.SchedulingEligibility == "" {
args.Node.SchedulingEligibility = structs.NodeSchedulingEligible
}
// Set the timestamp when the node is registered
args.Node.StatusUpdatedAt = time.Now().Unix()
// Compute the node class
if err := args.Node.ComputeClass(); err != nil {
return fmt.Errorf("failed to computed node class: %v", err)
}
// Look for the node so we can detect a state transition
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
return err
}
ws := memdb.NewWatchSet()
originalNode, err := snap.NodeByID(ws, args.Node.ID)
if err != nil {
return err
}
// Check if the SecretID has been tampered with
if originalNode != nil {
if args.Node.SecretID != originalNode.SecretID && originalNode.SecretID != "" {
return fmt.Errorf("node secret ID does not match. Not registering node.")
}
}
// We have a valid node connection, so add the mapping to cache the
// connection and allow the server to send RPCs to the client. We only cache
// the connection if it is not being forwarded from another server.
if n.ctx != nil && n.ctx.NodeID == "" && !args.IsForwarded() {
n.ctx.NodeID = args.Node.ID
n.srv.addNodeConn(n.ctx)
}
// Commit this update via Raft
_, index, err := n.srv.raftApply(structs.NodeRegisterRequestType, args)
if err != nil {
n.logger.Error("register failed", "error", err)
return err
}
reply.NodeModifyIndex = index
// Check if we should trigger evaluations
originalStatus := structs.NodeStatusInit
if originalNode != nil {
originalStatus = originalNode.Status
}
transitionToReady := transitionedToReady(args.Node.Status, originalStatus)
if structs.ShouldDrainNode(args.Node.Status) || transitionToReady {
evalIDs, evalIndex, err := n.createNodeEvals(args.Node.ID, index)
if err != nil {
n.logger.Error("eval creation failed", "error", err)
return err
}
reply.EvalIDs = evalIDs
reply.EvalCreateIndex = evalIndex
}
// Check if we need to setup a heartbeat
if !args.Node.TerminalStatus() {
ttl, err := n.srv.resetHeartbeatTimer(args.Node.ID)
if err != nil {
n.logger.Error("heartbeat reset failed", "error", err)
return err
}
reply.HeartbeatTTL = ttl
}
// Set the reply index
reply.Index = index
snap, err = n.srv.fsm.State().Snapshot()
if err != nil {
return err
}
n.srv.peerLock.RLock()
defer n.srv.peerLock.RUnlock()
if err := n.constructNodeServerInfoResponse(snap, reply); err != nil {
n.logger.Error("failed to populate NodeUpdateResponse", "error", err)
return err
}
return nil
}
// updateNodeUpdateResponse assumes the n.srv.peerLock is held for reading.
func (n *Node) constructNodeServerInfoResponse(snap *state.StateSnapshot, reply *structs.NodeUpdateResponse) error {
reply.LeaderRPCAddr = string(n.srv.raft.Leader())
// Reply with config information required for future RPC requests
reply.Servers = make([]*structs.NodeServerInfo, 0, len(n.srv.localPeers))
for _, v := range n.srv.localPeers {
reply.Servers = append(reply.Servers,
&structs.NodeServerInfo{
RPCAdvertiseAddr: v.RPCAddr.String(),
RPCMajorVersion: int32(v.MajorVersion),
RPCMinorVersion: int32(v.MinorVersion),
Datacenter: v.Datacenter,
})
}
// TODO(sean@): Use an indexed node count instead
//
// Snapshot is used only to iterate over all nodes to create a node
// count to send back to Nomad Clients in their heartbeat so Clients
// can estimate the size of the cluster.
ws := memdb.NewWatchSet()
iter, err := snap.Nodes(ws)
if err == nil {
for {
raw := iter.Next()
if raw == nil {
break
}
reply.NumNodes++
}
}
return nil
}
// Deregister is used to remove a client from the cluster. If a client should
// just be made unavailable for scheduling, a status update is preferred.
func (n *Node) Deregister(args *structs.NodeDeregisterRequest, reply *structs.NodeUpdateResponse) error {
if done, err := n.srv.forward("Node.Deregister", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "deregister"}, time.Now())
if args.NodeID == "" {
return fmt.Errorf("missing node ID for client deregistration")
}
// deregister takes a batch
repack := &structs.NodeBatchDeregisterRequest{
NodeIDs: []string{args.NodeID},
WriteRequest: args.WriteRequest,
}
return n.deregister(repack, reply, func() (interface{}, uint64, error) {
return n.srv.raftApply(structs.NodeDeregisterRequestType, args)
})
}
// BatchDeregister is used to remove client nodes from the cluster.
func (n *Node) BatchDeregister(args *structs.NodeBatchDeregisterRequest, reply *structs.NodeUpdateResponse) error {
if done, err := n.srv.forward("Node.BatchDeregister", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "batch_deregister"}, time.Now())
if len(args.NodeIDs) == 0 {
return fmt.Errorf("missing node IDs for client deregistration")
}
return n.deregister(args, reply, func() (interface{}, uint64, error) {
return n.srv.raftApply(structs.NodeBatchDeregisterRequestType, args)
})
}
// deregister takes a raftMessage closure, to support both Deregister and BatchDeregister
func (n *Node) deregister(args *structs.NodeBatchDeregisterRequest,
reply *structs.NodeUpdateResponse,
raftApplyFn func() (interface{}, uint64, error),
) error {
// Check request permissions
if aclObj, err := n.srv.ResolveToken(args.AuthToken); err != nil {
return err
} else if aclObj != nil && !aclObj.AllowNodeWrite() {
return structs.ErrPermissionDenied
}
// Look for the node
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
return err
}
ws := memdb.NewWatchSet()
for _, nodeID := range args.NodeIDs {
node, err := snap.NodeByID(ws, nodeID)
if err != nil {
return err
}
if node == nil {
return fmt.Errorf("node not found")
}
}
// Commit this update via Raft
_, index, err := raftApplyFn()
if err != nil {
n.logger.Error("raft message failed", "error", err)
return err
}
for _, nodeID := range args.NodeIDs {
// Clear the heartbeat timer if any
n.srv.clearHeartbeatTimer(nodeID)
// Create the evaluations for this node
evalIDs, evalIndex, err := n.createNodeEvals(nodeID, index)
if err != nil {
n.logger.Error("eval creation failed", "error", err)
return err
}
// Determine if there are any Vault accessors on the node
if accessors, err := snap.VaultAccessorsByNode(ws, nodeID); err != nil {
n.logger.Error("looking up vault accessors for node failed", "node_id", nodeID, "error", err)
return err
} else if l := len(accessors); l > 0 {
n.logger.Debug("revoking vault accessors on node due to deregister", "num_accessors", l, "node_id", nodeID)
if err := n.srv.vault.RevokeTokens(context.Background(), accessors, true); err != nil {
n.logger.Error("revoking vault accessors for node failed", "node_id", nodeID, "error", err)
return err
}
}
// Determine if there are any SI token accessors on the node
if accessors, err := snap.SITokenAccessorsByNode(ws, nodeID); err != nil {
n.logger.Error("looking up si accessors for node failed", "node_id", nodeID, "error", err)
return err
} else if l := len(accessors); l > 0 {
n.logger.Debug("revoking si accessors on node due to deregister", "num_accessors", l, "node_id", nodeID)
// Unlike with the Vault integration, there's no error returned here, since
// bootstrapping the Consul client is elsewhere. Errors in revocation trigger
// background retry attempts rather than inline error handling.
_ = n.srv.consulACLs.RevokeTokens(context.Background(), accessors, true)
}
reply.EvalIDs = append(reply.EvalIDs, evalIDs...)
// Set the reply eval create index just the first time
if reply.EvalCreateIndex == 0 {
reply.EvalCreateIndex = evalIndex
}
}
reply.NodeModifyIndex = index
reply.Index = index
return nil
}
// UpdateStatus is used to update the status of a client node
func (n *Node) UpdateStatus(args *structs.NodeUpdateStatusRequest, reply *structs.NodeUpdateResponse) error {
isForwarded := args.IsForwarded()
if done, err := n.srv.forward("Node.UpdateStatus", args, args, reply); done {
// We have a valid node connection since there is no error from the
// forwarded server, so add the mapping to cache the
// connection and allow the server to send RPCs to the client.
if err == nil && n.ctx != nil && n.ctx.NodeID == "" && !isForwarded {
n.ctx.NodeID = args.NodeID
n.srv.addNodeConn(n.ctx)
}
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "update_status"}, time.Now())
// Verify the arguments
if args.NodeID == "" {
return fmt.Errorf("missing node ID for client status update")
}
if !structs.ValidNodeStatus(args.Status) {
return fmt.Errorf("invalid status for node")
}
// Look for the node
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
return err
}
ws := memdb.NewWatchSet()
node, err := snap.NodeByID(ws, args.NodeID)
if err != nil {
return err
}
if node == nil {
return fmt.Errorf("node not found")
}
// We have a valid node connection, so add the mapping to cache the
// connection and allow the server to send RPCs to the client. We only cache
// the connection if it is not being forwarded from another server.
if n.ctx != nil && n.ctx.NodeID == "" && !args.IsForwarded() {
n.ctx.NodeID = args.NodeID
n.srv.addNodeConn(n.ctx)
}
// XXX: Could use the SecretID here but have to update the heartbeat system
// to track SecretIDs.
// Update the timestamp of when the node status was updated
args.UpdatedAt = time.Now().Unix()
// Commit this update via Raft
var index uint64
if node.Status != args.Status {
// Attach an event if we are updating the node status to ready when it
// is down via a heartbeat
if node.Status == structs.NodeStatusDown && args.NodeEvent == nil {
args.NodeEvent = structs.NewNodeEvent().
SetSubsystem(structs.NodeEventSubsystemCluster).
SetMessage(NodeHeartbeatEventReregistered)
}
_, index, err = n.srv.raftApply(structs.NodeUpdateStatusRequestType, args)
if err != nil {
n.logger.Error("status update failed", "error", err)
return err
}
reply.NodeModifyIndex = index
}
// Check if we should trigger evaluations
transitionToReady := transitionedToReady(args.Status, node.Status)
if structs.ShouldDrainNode(args.Status) || transitionToReady {
evalIDs, evalIndex, err := n.createNodeEvals(args.NodeID, index)
if err != nil {
n.logger.Error("eval creation failed", "error", err)
return err
}
reply.EvalIDs = evalIDs
reply.EvalCreateIndex = evalIndex
}
// Check if we need to setup a heartbeat
switch args.Status {
case structs.NodeStatusDown:
// Determine if there are any Vault accessors on the node to cleanup
if accessors, err := n.srv.State().VaultAccessorsByNode(ws, args.NodeID); err != nil {
n.logger.Error("looking up vault accessors for node failed", "node_id", args.NodeID, "error", err)
return err
} else if l := len(accessors); l > 0 {
n.logger.Debug("revoking vault accessors on node due to down state", "num_accessors", l, "node_id", args.NodeID)
if err := n.srv.vault.RevokeTokens(context.Background(), accessors, true); err != nil {
n.logger.Error("revoking vault accessors for node failed", "node_id", args.NodeID, "error", err)
return err
}
}
// Determine if there are any SI token accessors on the node to cleanup
if accessors, err := n.srv.State().SITokenAccessorsByNode(ws, args.NodeID); err != nil {
n.logger.Error("looking up SI accessors for node failed", "node_id", args.NodeID, "error", err)
return err
} else if l := len(accessors); l > 0 {
n.logger.Debug("revoking SI accessors on node due to down state", "num_accessors", l, "node_id", args.NodeID)
_ = n.srv.consulACLs.RevokeTokens(context.Background(), accessors, true)
}
default:
ttl, err := n.srv.resetHeartbeatTimer(args.NodeID)
if err != nil {
n.logger.Error("heartbeat reset failed", "error", err)
return err
}
reply.HeartbeatTTL = ttl
}
// Set the reply index and leader
reply.Index = index
n.srv.peerLock.RLock()
defer n.srv.peerLock.RUnlock()
if err := n.constructNodeServerInfoResponse(snap, reply); err != nil {
n.logger.Error("failed to populate NodeUpdateResponse", "error", err)
return err
}
return nil
}
// transitionedToReady is a helper that takes a nodes new and old status and
// returns whether it has transitioned to ready.
func transitionedToReady(newStatus, oldStatus string) bool {
initToReady := oldStatus == structs.NodeStatusInit && newStatus == structs.NodeStatusReady
terminalToReady := oldStatus == structs.NodeStatusDown && newStatus == structs.NodeStatusReady
return initToReady || terminalToReady
}
// UpdateDrain is used to update the drain mode of a client node
func (n *Node) UpdateDrain(args *structs.NodeUpdateDrainRequest,
reply *structs.NodeDrainUpdateResponse) error {
if done, err := n.srv.forward("Node.UpdateDrain", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "update_drain"}, time.Now())
// Check node write permissions
if aclObj, err := n.srv.ResolveToken(args.AuthToken); err != nil {
return err
} else if aclObj != nil && !aclObj.AllowNodeWrite() {
return structs.ErrPermissionDenied
}
// Verify the arguments
if args.NodeID == "" {
return fmt.Errorf("missing node ID for drain update")
}
if args.NodeEvent != nil {
return fmt.Errorf("node event must not be set")
}
// Look for the node
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
return err
}
node, err := snap.NodeByID(nil, args.NodeID)
if err != nil {
return err
}
if node == nil {
return fmt.Errorf("node not found")
}
now := time.Now().UTC()
// Update the timestamp of when the node status was updated
args.UpdatedAt = now.Unix()
// COMPAT: Remove in 0.9. Attempt to upgrade the request if it is of the old
// format.
if args.Drain && args.DrainStrategy == nil {
args.DrainStrategy = &structs.DrainStrategy{
DrainSpec: structs.DrainSpec{
Deadline: -1 * time.Second, // Force drain
},
}
}
// Setup drain strategy
if args.DrainStrategy != nil {
// Mark start time for the drain
if node.DrainStrategy == nil {
args.DrainStrategy.StartedAt = now
} else {
args.DrainStrategy.StartedAt = node.DrainStrategy.StartedAt
}
// Mark the deadline time
if args.DrainStrategy.Deadline.Nanoseconds() > 0 {
args.DrainStrategy.ForceDeadline = now.Add(args.DrainStrategy.Deadline)
}
}
// Construct the node event
args.NodeEvent = structs.NewNodeEvent().SetSubsystem(structs.NodeEventSubsystemDrain)
if node.DrainStrategy == nil && args.DrainStrategy != nil {
args.NodeEvent.SetMessage(NodeDrainEventDrainSet)
} else if node.DrainStrategy != nil && args.DrainStrategy != nil {
args.NodeEvent.SetMessage(NodeDrainEventDrainUpdated)
} else if node.DrainStrategy != nil && args.DrainStrategy == nil {
args.NodeEvent.SetMessage(NodeDrainEventDrainDisabled)
} else {
args.NodeEvent = nil
}
// Commit this update via Raft
_, index, err := n.srv.raftApply(structs.NodeUpdateDrainRequestType, args)
if err != nil {
n.logger.Error("drain update failed", "error", err)
return err
}
reply.NodeModifyIndex = index
// If the node is transitioning to be eligible, create Node evaluations
// because there may be a System job registered that should be evaluated.
if node.SchedulingEligibility == structs.NodeSchedulingIneligible && args.MarkEligible && args.DrainStrategy == nil {
evalIDs, evalIndex, err := n.createNodeEvals(args.NodeID, index)
if err != nil {
n.logger.Error("eval creation failed", "error", err)
return err
}
reply.EvalIDs = evalIDs
reply.EvalCreateIndex = evalIndex
}
// Set the reply index
reply.Index = index
return nil
}
// UpdateEligibility is used to update the scheduling eligibility of a node
func (n *Node) UpdateEligibility(args *structs.NodeUpdateEligibilityRequest,
reply *structs.NodeEligibilityUpdateResponse) error {
if done, err := n.srv.forward("Node.UpdateEligibility", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "update_eligibility"}, time.Now())
// Check node write permissions
if aclObj, err := n.srv.ResolveToken(args.AuthToken); err != nil {
return err
} else if aclObj != nil && !aclObj.AllowNodeWrite() {
return structs.ErrPermissionDenied
}
// Verify the arguments
if args.NodeID == "" {
return fmt.Errorf("missing node ID for setting scheduling eligibility")
}
if args.NodeEvent != nil {
return fmt.Errorf("node event must not be set")
}
// Check that only allowed types are set
switch args.Eligibility {
case structs.NodeSchedulingEligible, structs.NodeSchedulingIneligible:
default:
return fmt.Errorf("invalid scheduling eligibility %q", args.Eligibility)
}
// Look for the node
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
return err
}
node, err := snap.NodeByID(nil, args.NodeID)
if err != nil {
return err
}
if node == nil {
return fmt.Errorf("node not found")
}
if node.DrainStrategy != nil && args.Eligibility == structs.NodeSchedulingEligible {
return fmt.Errorf("can not set node's scheduling eligibility to eligible while it is draining")
}
switch args.Eligibility {
case structs.NodeSchedulingEligible, structs.NodeSchedulingIneligible:
default:
return fmt.Errorf("invalid scheduling eligibility %q", args.Eligibility)
}
// Update the timestamp of when the node status was updated
args.UpdatedAt = time.Now().Unix()
// Construct the node event
args.NodeEvent = structs.NewNodeEvent().SetSubsystem(structs.NodeEventSubsystemCluster)
if node.SchedulingEligibility == args.Eligibility {
return nil // Nothing to do
} else if args.Eligibility == structs.NodeSchedulingEligible {
args.NodeEvent.SetMessage(NodeEligibilityEventEligible)
} else {
args.NodeEvent.SetMessage(NodeEligibilityEventIneligible)
}
// Commit this update via Raft
outErr, index, err := n.srv.raftApply(structs.NodeUpdateEligibilityRequestType, args)
if err != nil {
n.logger.Error("eligibility update failed", "error", err)
return err
}
if outErr != nil {
if err, ok := outErr.(error); ok && err != nil {
n.logger.Error("eligibility update failed", "error", err)
return err
}
}
// If the node is transitioning to be eligible, create Node evaluations
// because there may be a System job registered that should be evaluated.
if node.SchedulingEligibility == structs.NodeSchedulingIneligible && args.Eligibility == structs.NodeSchedulingEligible {
evalIDs, evalIndex, err := n.createNodeEvals(args.NodeID, index)
if err != nil {
n.logger.Error("eval creation failed", "error", err)
return err
}
reply.EvalIDs = evalIDs
reply.EvalCreateIndex = evalIndex
}
// Set the reply index
reply.Index = index
return nil
}
// Evaluate is used to force a re-evaluation of the node
func (n *Node) Evaluate(args *structs.NodeEvaluateRequest, reply *structs.NodeUpdateResponse) error {
if done, err := n.srv.forward("Node.Evaluate", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "evaluate"}, time.Now())
// Check node write permissions
if aclObj, err := n.srv.ResolveToken(args.AuthToken); err != nil {
return err
} else if aclObj != nil && !aclObj.AllowNodeWrite() {
return structs.ErrPermissionDenied
}
// Verify the arguments
if args.NodeID == "" {
return fmt.Errorf("missing node ID for evaluation")
}
// Look for the node
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
return err
}
ws := memdb.NewWatchSet()
node, err := snap.NodeByID(ws, args.NodeID)
if err != nil {
return err
}
if node == nil {
return fmt.Errorf("node not found")
}
// Create the evaluation
evalIDs, evalIndex, err := n.createNodeEvals(args.NodeID, node.ModifyIndex)
if err != nil {
n.logger.Error("eval creation failed", "error", err)
return err
}
reply.EvalIDs = evalIDs
reply.EvalCreateIndex = evalIndex
// Set the reply index
reply.Index = evalIndex
n.srv.peerLock.RLock()
defer n.srv.peerLock.RUnlock()
if err := n.constructNodeServerInfoResponse(snap, reply); err != nil {
n.logger.Error("failed to populate NodeUpdateResponse", "error", err)
return err
}
return nil
}
// GetNode is used to request information about a specific node
func (n *Node) GetNode(args *structs.NodeSpecificRequest,
reply *structs.SingleNodeResponse) error {
if done, err := n.srv.forward("Node.GetNode", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "get_node"}, time.Now())
// Check node read permissions
if aclObj, err := n.srv.ResolveToken(args.AuthToken); err != nil {
// If ResolveToken had an unexpected error return that
if err != structs.ErrTokenNotFound {
return err
}
// Attempt to lookup AuthToken as a Node.SecretID since nodes
// call this endpoint and don't have an ACL token.
node, stateErr := n.srv.fsm.State().NodeBySecretID(nil, args.AuthToken)
if stateErr != nil {
// Return the original ResolveToken error with this err
var merr multierror.Error
merr.Errors = append(merr.Errors, err, stateErr)
return merr.ErrorOrNil()
}
// Not a node or a valid ACL token
if node == nil {
return structs.ErrTokenNotFound
}
} else if aclObj != nil && !aclObj.AllowNodeRead() {
return structs.ErrPermissionDenied
}
// Setup the blocking query
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, state *state.StateStore) error {
// Verify the arguments
if args.NodeID == "" {
return fmt.Errorf("missing node ID")
}
// Look for the node
out, err := state.NodeByID(ws, args.NodeID)
if err != nil {
return err
}
// Setup the output
if out != nil {
// Clear the secret ID
reply.Node = out.Copy()
reply.Node.SecretID = ""
reply.Index = out.ModifyIndex
} else {
// Use the last index that affected the nodes table
index, err := state.Index("nodes")
if err != nil {
return err
}
reply.Node = nil
reply.Index = index
}
// Set the query response
n.srv.setQueryMeta(&reply.QueryMeta)
return nil
}}
return n.srv.blockingRPC(&opts)
}
// GetAllocs is used to request allocations for a specific node
func (n *Node) GetAllocs(args *structs.NodeSpecificRequest,
reply *structs.NodeAllocsResponse) error {
if done, err := n.srv.forward("Node.GetAllocs", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "get_allocs"}, time.Now())
// Check node read and namespace job read permissions
aclObj, err := n.srv.ResolveToken(args.AuthToken)
if err != nil {
return err
}
if aclObj != nil && !aclObj.AllowNodeRead() {
return structs.ErrPermissionDenied
}
// cache namespace perms
readableNamespaces := map[string]bool{}
// readNS is a caching namespace read-job helper
readNS := func(ns string) bool {
if aclObj == nil {
// ACLs are disabled; everything is readable
return true
}
if readable, ok := readableNamespaces[ns]; ok {
// cache hit
return readable
}
// cache miss
readable := aclObj.AllowNsOp(ns, acl.NamespaceCapabilityReadJob)
readableNamespaces[ns] = readable
return readable
}
// Verify the arguments
if args.NodeID == "" {
return fmt.Errorf("missing node ID")
}
// Setup the blocking query
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, state *state.StateStore) error {
// Look for the node
allocs, err := state.AllocsByNode(ws, args.NodeID)
if err != nil {
return err
}
// Setup the output
if n := len(allocs); n != 0 {
reply.Allocs = make([]*structs.Allocation, 0, n)
for _, alloc := range allocs {
if readNS(alloc.Namespace) {
reply.Allocs = append(reply.Allocs, alloc)
}
// Get the max of all allocs since
// subsequent requests need to start
// from the latest index
reply.Index = maxUint64(reply.Index, alloc.ModifyIndex)
}
} else {
reply.Allocs = nil
// Use the last index that affected the nodes table
index, err := state.Index("allocs")
if err != nil {
return err
}
// Must provide non-zero index to prevent blocking
// Index 1 is impossible anyways (due to Raft internals)
if index == 0 {
reply.Index = 1
} else {
reply.Index = index
}
}
return nil
}}
return n.srv.blockingRPC(&opts)
}
// GetClientAllocs is used to request a lightweight list of alloc modify indexes
// per allocation.
func (n *Node) GetClientAllocs(args *structs.NodeSpecificRequest,
reply *structs.NodeClientAllocsResponse) error {
isForwarded := args.IsForwarded()
if done, err := n.srv.forward("Node.GetClientAllocs", args, args, reply); done {
// We have a valid node connection since there is no error from the
// forwarded server, so add the mapping to cache the
// connection and allow the server to send RPCs to the client.
if err == nil && n.ctx != nil && n.ctx.NodeID == "" && !isForwarded {
n.ctx.NodeID = args.NodeID
n.srv.addNodeConn(n.ctx)
}
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "get_client_allocs"}, time.Now())
// Verify the arguments
if args.NodeID == "" {
return fmt.Errorf("missing node ID")
}
// numOldAllocs is used to detect if there is a garbage collection event
// that effects the node. When an allocation is garbage collected, that does
// not change the modify index changes and thus the query won't unblock,
// even though the set of allocations on the node has changed.
var numOldAllocs int
// Setup the blocking query
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, state *state.StateStore) error {
// Look for the node
node, err := state.NodeByID(ws, args.NodeID)
if err != nil {
return err
}
var allocs []*structs.Allocation
if node != nil {
if args.SecretID == "" {
return fmt.Errorf("missing node secret ID for client status update")
} else if args.SecretID != node.SecretID {
return fmt.Errorf("node secret ID does not match")
}
// We have a valid node connection, so add the mapping to cache the
// connection and allow the server to send RPCs to the client. We only cache
// the connection if it is not being forwarded from another server.
if n.ctx != nil && n.ctx.NodeID == "" && !args.IsForwarded() {
n.ctx.NodeID = args.NodeID
n.srv.addNodeConn(n.ctx)
}
var err error
allocs, err = state.AllocsByNode(ws, args.NodeID)
if err != nil {
return err
}
}
reply.Allocs = make(map[string]uint64)
reply.MigrateTokens = make(map[string]string)
// preferTableIndex is used to determine whether we should build the
// response index based on the full table indexes versus the modify
// indexes of the allocations on the specific node. This is
// preferred in the case that the node doesn't yet have allocations
// or when we detect a GC that effects the node.
preferTableIndex := true
// Setup the output
if numAllocs := len(allocs); numAllocs != 0 {
preferTableIndex = false
for _, alloc := range allocs {
reply.Allocs[alloc.ID] = alloc.AllocModifyIndex
// If the allocation is going to do a migration, create a
// migration token so that the client can authenticate with
// the node hosting the previous allocation.
if alloc.ShouldMigrate() {
prevAllocation, err := state.AllocByID(ws, alloc.PreviousAllocation)
if err != nil {
return err
}
if prevAllocation != nil && prevAllocation.NodeID != alloc.NodeID {
allocNode, err := state.NodeByID(ws, prevAllocation.NodeID)
if err != nil {
return err
}
if allocNode == nil {
// Node must have been GC'd so skip the token
continue
}
token, err := structs.GenerateMigrateToken(prevAllocation.ID, allocNode.SecretID)
if err != nil {
return err
}
reply.MigrateTokens[alloc.ID] = token
}
}
reply.Index = maxUint64(reply.Index, alloc.ModifyIndex)
}
// Determine if we have less allocations than before. This
// indicates there was a garbage collection
if numAllocs < numOldAllocs {
preferTableIndex = true
}
// Store the new number of allocations
numOldAllocs = numAllocs
}
if preferTableIndex {
// Use the last index that affected the nodes table
index, err := state.Index("allocs")
if err != nil {
return err
}
// Must provide non-zero index to prevent blocking
// Index 1 is impossible anyways (due to Raft internals)
if index == 0 {
reply.Index = 1
} else {
reply.Index = index
}
}
return nil
}}
return n.srv.blockingRPC(&opts)
}
// UpdateAlloc is used to update the client status of an allocation
func (n *Node) UpdateAlloc(args *structs.AllocUpdateRequest, reply *structs.GenericResponse) error {
if done, err := n.srv.forward("Node.UpdateAlloc", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "update_alloc"}, time.Now())
// Ensure at least a single alloc
if len(args.Alloc) == 0 {
return fmt.Errorf("must update at least one allocation")
}
// Ensure that evals aren't set from client RPCs
// We create them here before the raft update
if len(args.Evals) != 0 {
return fmt.Errorf("evals field must not be set")
}
// Update modified timestamp for client initiated allocation updates
now := time.Now()
var evals []*structs.Evaluation
// A set of de-duplicated volumes that need volume claim GC.
// Later we'll create a gc eval for each volume.
volumesToGC := make(map[string][]string) // ID+namespace -> [id, namespace]
for _, allocToUpdate := range args.Alloc {
allocToUpdate.ModifyTime = now.UTC().UnixNano()
if !allocToUpdate.TerminalStatus() {
continue
}
alloc, _ := n.srv.State().AllocByID(nil, allocToUpdate.ID)
if alloc == nil {
continue
}
// if the job has been purged, this will always return error
job, err := n.srv.State().JobByID(nil, alloc.Namespace, alloc.JobID)
if err != nil {
n.logger.Debug("UpdateAlloc unable to find job", "job", alloc.JobID, "error", err)
continue
}
if job == nil {
n.logger.Debug("UpdateAlloc unable to find job", "job", alloc.JobID)
continue
}
taskGroup := job.LookupTaskGroup(alloc.TaskGroup)
if taskGroup == nil {
continue
}
// If the terminal alloc has CSI volumes, add its job to the list
// of jobs we're going to call volume claim GC on.
for _, vol := range taskGroup.Volumes {
if vol.Type == structs.VolumeTypeCSI {
volumesToGC[vol.Source+alloc.Namespace] = []string{vol.Source, alloc.Namespace}
}
}
// Add an evaluation if this is a failed alloc that is eligible for rescheduling
if allocToUpdate.ClientStatus == structs.AllocClientStatusFailed && alloc.FollowupEvalID == "" && alloc.RescheduleEligible(taskGroup.ReschedulePolicy, now) {
eval := &structs.Evaluation{
ID: uuid.Generate(),
Namespace: alloc.Namespace,
TriggeredBy: structs.EvalTriggerRetryFailedAlloc,
JobID: alloc.JobID,
Type: job.Type,
Priority: job.Priority,
Status: structs.EvalStatusPending,
CreateTime: now.UTC().UnixNano(),
ModifyTime: now.UTC().UnixNano(),
}
evals = append(evals, eval)
}
}
// Add an evaluation for garbage collecting the the CSI volume claims
// of terminal allocs
for _, volAndNamespace := range volumesToGC {
// we have to build this eval by hand rather than calling srv.CoreJob
// here because we need to use the volume's namespace
eval := &structs.Evaluation{
ID: uuid.Generate(),
Namespace: volAndNamespace[1],
Priority: structs.CoreJobPriority,
Type: structs.JobTypeCore,
TriggeredBy: structs.EvalTriggerAllocStop,
JobID: structs.CoreJobCSIVolumeClaimGC + ":" + volAndNamespace[0],
LeaderACL: n.srv.getLeaderAcl(),
Status: structs.EvalStatusPending,
CreateTime: now.UTC().UnixNano(),
ModifyTime: now.UTC().UnixNano(),
}
evals = append(evals, eval)
}
// Add this to the batch
n.updatesLock.Lock()
n.updates = append(n.updates, args.Alloc...)
n.evals = append(n.evals, evals...)
// Start a new batch if none
future := n.updateFuture
if future == nil {
future = structs.NewBatchFuture()
n.updateFuture = future
n.updateTimer = time.AfterFunc(batchUpdateInterval, func() {
// Get the pending updates
n.updatesLock.Lock()
updates := n.updates
evals := n.evals
future := n.updateFuture
n.updates = nil
n.evals = nil
n.updateFuture = nil
n.updateTimer = nil
n.updatesLock.Unlock()
// Perform the batch update
n.batchUpdate(future, updates, evals)
})
}
n.updatesLock.Unlock()
// Wait for the future
if err := future.Wait(); err != nil {
return err
}
// Setup the response
reply.Index = future.Index()
return nil
}
// batchUpdate is used to update all the allocations
func (n *Node) batchUpdate(future *structs.BatchFuture, updates []*structs.Allocation, evals []*structs.Evaluation) {
// Group pending evals by jobID to prevent creating unnecessary evals
evalsByJobId := make(map[structs.NamespacedID]struct{})
var trimmedEvals []*structs.Evaluation
for _, eval := range evals {
namespacedID := structs.NamespacedID{
ID: eval.JobID,
Namespace: eval.Namespace,
}
_, exists := evalsByJobId[namespacedID]
if !exists {
now := time.Now().UTC().UnixNano()
eval.CreateTime = now
eval.ModifyTime = now
trimmedEvals = append(trimmedEvals, eval)
evalsByJobId[namespacedID] = struct{}{}
}
}
if len(trimmedEvals) > 0 {
n.logger.Debug("adding evaluations for rescheduling failed allocations", "num_evals", len(trimmedEvals))
}
// Prepare the batch update
batch := &structs.AllocUpdateRequest{
Alloc: updates,
Evals: trimmedEvals,
WriteRequest: structs.WriteRequest{Region: n.srv.config.Region},
}
// Commit this update via Raft
var mErr multierror.Error
_, index, err := n.srv.raftApply(structs.AllocClientUpdateRequestType, batch)
if err != nil {
n.logger.Error("alloc update failed", "error", err)
mErr.Errors = append(mErr.Errors, err)
}
// For each allocation we are updating, check if we should revoke any
// - Vault token accessors
// - Service Identity token accessors
var (
revokeVault []*structs.VaultAccessor
revokeSI []*structs.SITokenAccessor
)
for _, alloc := range updates {
// Skip any allocation that isn't dead on the client
if !alloc.Terminated() {
continue
}
ws := memdb.NewWatchSet()
// Determine if there are any orphaned Vault accessors for the allocation
if accessors, err := n.srv.State().VaultAccessorsByAlloc(ws, alloc.ID); err != nil {
n.logger.Error("looking up vault accessors for alloc failed", "alloc_id", alloc.ID, "error", err)
mErr.Errors = append(mErr.Errors, err)
} else {
revokeVault = append(revokeVault, accessors...)
}
// Determine if there are any orphaned SI accessors for the allocation
if accessors, err := n.srv.State().SITokenAccessorsByAlloc(ws, alloc.ID); err != nil {
n.logger.Error("looking up si accessors for alloc failed", "alloc_id", alloc.ID, "error", err)
mErr.Errors = append(mErr.Errors, err)
} else {
revokeSI = append(revokeSI, accessors...)
}
}
// Revoke any orphaned Vault token accessors
if l := len(revokeVault); l > 0 {
n.logger.Debug("revoking vault accessors due to terminal allocations", "num_accessors", l)
if err := n.srv.vault.RevokeTokens(context.Background(), revokeVault, true); err != nil {
n.logger.Error("batched vault accessor revocation failed", "error", err)
mErr.Errors = append(mErr.Errors, err)
}
}
// Revoke any orphaned SI token accessors
if l := len(revokeSI); l > 0 {
n.logger.Debug("revoking si accessors due to terminal allocations", "num_accessors", l)
_ = n.srv.consulACLs.RevokeTokens(context.Background(), revokeSI, true)
}
// Respond to the future
future.Respond(index, mErr.ErrorOrNil())
}
// List is used to list the available nodes
func (n *Node) List(args *structs.NodeListRequest,
reply *structs.NodeListResponse) error {
if done, err := n.srv.forward("Node.List", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "list"}, time.Now())
// Check node read permissions
if aclObj, err := n.srv.ResolveToken(args.AuthToken); err != nil {
return err
} else if aclObj != nil && !aclObj.AllowNodeRead() {
return structs.ErrPermissionDenied
}
// Setup the blocking query
opts := blockingOptions{
queryOpts: &args.QueryOptions,
queryMeta: &reply.QueryMeta,
run: func(ws memdb.WatchSet, state *state.StateStore) error {
// Capture all the nodes
var err error
var iter memdb.ResultIterator
if prefix := args.QueryOptions.Prefix; prefix != "" {
iter, err = state.NodesByIDPrefix(ws, prefix)
} else {
iter, err = state.Nodes(ws)
}
if err != nil {
return err
}
var nodes []*structs.NodeListStub
for {
raw := iter.Next()
if raw == nil {
break
}
node := raw.(*structs.Node)
nodes = append(nodes, node.Stub())
}
reply.Nodes = nodes
// Use the last index that affected the jobs table
index, err := state.Index("nodes")
if err != nil {
return err
}
reply.Index = index
// Set the query response
n.srv.setQueryMeta(&reply.QueryMeta)
return nil
}}
return n.srv.blockingRPC(&opts)
}
// createNodeEvals is used to create evaluations for each alloc on a node.
// Each Eval is scoped to a job, so we need to potentially trigger many evals.
func (n *Node) createNodeEvals(nodeID string, nodeIndex uint64) ([]string, uint64, error) {
// Snapshot the state
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
return nil, 0, fmt.Errorf("failed to snapshot state: %v", err)
}
// Find all the allocations for this node
ws := memdb.NewWatchSet()
allocs, err := snap.AllocsByNode(ws, nodeID)
if err != nil {
return nil, 0, fmt.Errorf("failed to find allocs for '%s': %v", nodeID, err)
}
sysJobsIter, err := snap.JobsByScheduler(ws, "system")
if err != nil {
return nil, 0, fmt.Errorf("failed to find system jobs for '%s': %v", nodeID, err)
}
var sysJobs []*structs.Job
for job := sysJobsIter.Next(); job != nil; job = sysJobsIter.Next() {
sysJobs = append(sysJobs, job.(*structs.Job))
}
// Fast-path if nothing to do
if len(allocs) == 0 && len(sysJobs) == 0 {
return nil, 0, nil
}
// Create an eval for each JobID affected
var evals []*structs.Evaluation
var evalIDs []string
jobIDs := make(map[string]struct{})
now := time.Now().UTC().UnixNano()
for _, alloc := range allocs {
// Deduplicate on JobID
if _, ok := jobIDs[alloc.JobID]; ok {
continue
}
jobIDs[alloc.JobID] = struct{}{}
// Create a new eval
eval := &structs.Evaluation{
ID: uuid.Generate(),
Namespace: alloc.Namespace,
Priority: alloc.Job.Priority,
Type: alloc.Job.Type,
TriggeredBy: structs.EvalTriggerNodeUpdate,
JobID: alloc.JobID,
NodeID: nodeID,
NodeModifyIndex: nodeIndex,
Status: structs.EvalStatusPending,
CreateTime: now,
ModifyTime: now,
}
evals = append(evals, eval)
evalIDs = append(evalIDs, eval.ID)
}
// Create an evaluation for each system job.
for _, job := range sysJobs {
// Still dedup on JobID as the node may already have the system job.
if _, ok := jobIDs[job.ID]; ok {
continue
}
jobIDs[job.ID] = struct{}{}
// Create a new eval
eval := &structs.Evaluation{
ID: uuid.Generate(),
Namespace: job.Namespace,
Priority: job.Priority,
Type: job.Type,
TriggeredBy: structs.EvalTriggerNodeUpdate,
JobID: job.ID,
NodeID: nodeID,
NodeModifyIndex: nodeIndex,
Status: structs.EvalStatusPending,
CreateTime: now,
ModifyTime: now,
}
evals = append(evals, eval)
evalIDs = append(evalIDs, eval.ID)
}
// Create the Raft transaction
update := &structs.EvalUpdateRequest{
Evals: evals,
WriteRequest: structs.WriteRequest{Region: n.srv.config.Region},
}
// Commit this evaluation via Raft
// XXX: There is a risk of partial failure where the node update succeeds
// but that the EvalUpdate does not.
_, evalIndex, err := n.srv.raftApply(structs.EvalUpdateRequestType, update)
if err != nil {
return nil, 0, err
}
return evalIDs, evalIndex, nil
}
// DeriveVaultToken is used by the clients to request wrapped Vault tokens for
// tasks
func (n *Node) DeriveVaultToken(args *structs.DeriveVaultTokenRequest, reply *structs.DeriveVaultTokenResponse) error {
setError := func(e error, recoverable bool) {
if e != nil {
if re, ok := e.(*structs.RecoverableError); ok {
reply.Error = re // No need to wrap if error is already a RecoverableError
} else {
reply.Error = structs.NewRecoverableError(e, recoverable).(*structs.RecoverableError)
}
n.logger.Error("DeriveVaultToken failed", "recoverable", recoverable, "error", e)
}
}
if done, err := n.srv.forward("Node.DeriveVaultToken", args, args, reply); done {
setError(err, structs.IsRecoverable(err) || err == structs.ErrNoLeader)
return nil
}
defer metrics.MeasureSince([]string{"nomad", "client", "derive_vault_token"}, time.Now())
// Verify the arguments
if args.NodeID == "" {
setError(fmt.Errorf("missing node ID"), false)
return nil
}
if args.SecretID == "" {
setError(fmt.Errorf("missing node SecretID"), false)
return nil
}
if args.AllocID == "" {
setError(fmt.Errorf("missing allocation ID"), false)
return nil
}
if len(args.Tasks) == 0 {
setError(fmt.Errorf("no tasks specified"), false)
return nil
}
// Verify the following:
// * The Node exists and has the correct SecretID
// * The Allocation exists on the specified Node
// * The Allocation contains the given tasks and they each require Vault
// tokens
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
setError(err, false)
return nil
}
ws := memdb.NewWatchSet()
node, err := snap.NodeByID(ws, args.NodeID)
if err != nil {
setError(err, false)
return nil
}
if node == nil {
setError(fmt.Errorf("Node %q does not exist", args.NodeID), false)
return nil
}
if node.SecretID != args.SecretID {
setError(fmt.Errorf("SecretID mismatch"), false)
return nil
}
alloc, err := snap.AllocByID(ws, args.AllocID)
if err != nil {
setError(err, false)
return nil
}
if alloc == nil {
setError(fmt.Errorf("Allocation %q does not exist", args.AllocID), false)
return nil
}
if alloc.NodeID != args.NodeID {
setError(fmt.Errorf("Allocation %q not running on Node %q", args.AllocID, args.NodeID), false)
return nil
}
if alloc.TerminalStatus() {
setError(fmt.Errorf("Can't request Vault token for terminal allocation"), false)
return nil
}
// Check the policies
policies := alloc.Job.VaultPolicies()
if policies == nil {
setError(fmt.Errorf("Job doesn't require Vault policies"), false)
return nil
}
tg, ok := policies[alloc.TaskGroup]
if !ok {
setError(fmt.Errorf("Task group does not require Vault policies"), false)
return nil
}
var unneeded []string
for _, task := range args.Tasks {
taskVault := tg[task]
if taskVault == nil || len(taskVault.Policies) == 0 {
unneeded = append(unneeded, task)
}
}
if len(unneeded) != 0 {
e := fmt.Errorf("Requested Vault tokens for tasks without defined Vault policies: %s",
strings.Join(unneeded, ", "))
setError(e, false)
return nil
}
// At this point the request is valid and we should contact Vault for
// tokens.
// Create an error group where we will spin up a fixed set of goroutines to
// handle deriving tokens but where if any fails the whole group is
// canceled.
g, ctx := errgroup.WithContext(context.Background())
// Cap the handlers
handlers := len(args.Tasks)
if handlers > maxParallelRequestsPerDerive {
handlers = maxParallelRequestsPerDerive
}
// Create the Vault Tokens
input := make(chan string, handlers)
results := make(map[string]*vapi.Secret, len(args.Tasks))
for i := 0; i < handlers; i++ {
g.Go(func() error {
for {
select {
case task, ok := <-input:
if !ok {
return nil
}
secret, err := n.srv.vault.CreateToken(ctx, alloc, task)
if err != nil {
return err
}
results[task] = secret
case <-ctx.Done():
return nil
}
}
})
}
// Send the input
go func() {
defer close(input)
for _, task := range args.Tasks {
select {
case <-ctx.Done():
return
case input <- task:
}
}
}()
// Wait for everything to complete or for an error
createErr := g.Wait()
// Retrieve the results
accessors := make([]*structs.VaultAccessor, 0, len(results))
tokens := make(map[string]string, len(results))
for task, secret := range results {
w := secret.WrapInfo
tokens[task] = w.Token
accessor := &structs.VaultAccessor{
Accessor: w.WrappedAccessor,
Task: task,
NodeID: alloc.NodeID,
AllocID: alloc.ID,
CreationTTL: w.TTL,
}
accessors = append(accessors, accessor)
}
// If there was an error revoke the created tokens
if createErr != nil {
n.logger.Error("Vault token creation for alloc failed", "alloc_id", alloc.ID, "error", createErr)
if revokeErr := n.srv.vault.RevokeTokens(context.Background(), accessors, false); revokeErr != nil {
n.logger.Error("Vault token revocation for alloc failed", "alloc_id", alloc.ID, "error", revokeErr)
}
if rerr, ok := createErr.(*structs.RecoverableError); ok {
reply.Error = rerr
} else {
reply.Error = structs.NewRecoverableError(createErr, false).(*structs.RecoverableError)
}
return nil
}
// Commit to Raft before returning any of the tokens
req := structs.VaultAccessorsRequest{Accessors: accessors}
_, index, err := n.srv.raftApply(structs.VaultAccessorRegisterRequestType, &req)
if err != nil {
n.logger.Error("registering Vault accessors for alloc failed", "alloc_id", alloc.ID, "error", err)
// Determine if we can recover from the error
retry := false
switch err {
case raft.ErrNotLeader, raft.ErrLeadershipLost, raft.ErrRaftShutdown, raft.ErrEnqueueTimeout:
retry = true
}
setError(err, retry)
return nil
}
reply.Index = index
reply.Tasks = tokens
n.srv.setQueryMeta(&reply.QueryMeta)
return nil
}
func (n *Node) DeriveSIToken(args *structs.DeriveSITokenRequest, reply *structs.DeriveSITokenResponse) error {
setError := func(e error, recoverable bool) {
if e != nil {
if re, ok := e.(*structs.RecoverableError); ok {
reply.Error = re // No need to wrap if error is already a RecoverableError
} else {
reply.Error = structs.NewRecoverableError(e, recoverable).(*structs.RecoverableError)
}
n.logger.Error("DeriveSIToken failed", "recoverable", recoverable, "error", e)
}
}
if done, err := n.srv.forward("Node.DeriveSIToken", args, args, reply); done {
setError(err, structs.IsRecoverable(err) || err == structs.ErrNoLeader)
return nil
}
defer metrics.MeasureSince([]string{"nomad", "client", "derive_si_token"}, time.Now())
// Verify the arguments
if err := args.Validate(); err != nil {
setError(err, false)
return nil
}
// Get the ClusterID
clusterID, err := n.srv.ClusterID()
if err != nil {
setError(err, false)
return nil
}
// Verify the following:
// * The Node exists and has the correct SecretID.
// * The Allocation exists on the specified Node.
// * The Allocation contains the given tasks, and each task requires a
// SI token.
snap, err := n.srv.fsm.State().Snapshot()
if err != nil {
setError(err, false)
return nil
}
node, err := snap.NodeByID(nil, args.NodeID)
if err != nil {
setError(err, false)
return nil
}
if node == nil {
setError(errors.Errorf("Node %q does not exist", args.NodeID), false)
return nil
}
if node.SecretID != args.SecretID {
setError(errors.Errorf("SecretID mismatch"), false)
return nil
}
alloc, err := snap.AllocByID(nil, args.AllocID)
if err != nil {
setError(err, false)
return nil
}
if alloc == nil {
setError(errors.Errorf("Allocation %q does not exist", args.AllocID), false)
return nil
}
if alloc.NodeID != args.NodeID {
setError(errors.Errorf("Allocation %q not running on node %q", args.AllocID, args.NodeID), false)
return nil
}
if alloc.TerminalStatus() {
setError(errors.Errorf("Cannot request SI token for terminal allocation"), false)
return nil
}
// make sure task group contains at least one connect enabled service
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
setError(errors.Errorf("Allocation %q does not contain TaskGroup %q", args.AllocID, alloc.TaskGroup), false)
return nil
}
if !tg.UsesConnect() {
setError(errors.Errorf("TaskGroup %q does not use Connect", tg.Name), false)
return nil
}
// make sure each task in args.Tasks is a connect-enabled task
// note: the tasks at this point should be the "connect-sidecar-<id>" name
//
unneeded := tasksNotUsingConnect(tg, args.Tasks)
if len(unneeded) > 0 {
setError(fmt.Errorf(
"Requested Consul Service Identity tokens for tasks that are not Connect enabled: %v",
strings.Join(unneeded, ", "),
), false)
}
// At this point the request is valid and we should contact Consul for tokens.
// A lot of the following is copied from DeriveVaultToken which has been
// working fine for years.
// Create an error group where we will spin up a fixed set of goroutines to
// handle deriving tokens but where if any fails the whole group is
// canceled.
g, ctx := errgroup.WithContext(context.Background())
// Cap the worker threads
numWorkers := len(args.Tasks)
if numWorkers > maxParallelRequestsPerDerive {
numWorkers = maxParallelRequestsPerDerive
}
// would like to pull some of this out...
// Create the SI tokens
input := make(chan string, numWorkers)
results := make(map[string]*structs.SIToken, numWorkers)
for i := 0; i < numWorkers; i++ {
g.Go(func() error {
for {
select {
case task, ok := <-input:
if !ok {
return nil
}
sii := ServiceIdentityIndex{
ClusterID: clusterID,
AllocID: alloc.ID,
TaskName: task,
}
secret, err := n.srv.consulACLs.CreateToken(ctx, sii)
if err != nil {
return err
}
results[task] = secret
case <-ctx.Done():
return nil
}
}
})
}
// Send the input
go func() {
defer close(input)
for _, task := range args.Tasks {
select {
case <-ctx.Done():
return
case input <- task:
}
}
}()
// Wait for everything to complete or for an error
createErr := g.Wait()
accessors := make([]*structs.SITokenAccessor, 0, len(results))
tokens := make(map[string]string, len(results))
for task, secret := range results {
tokens[task] = secret.SecretID
accessor := &structs.SITokenAccessor{
NodeID: alloc.NodeID,
AllocID: alloc.ID,
TaskName: task,
AccessorID: secret.AccessorID,
}
accessors = append(accessors, accessor)
}
// If there was an error, revoke all created tokens. These tokens have not
// yet been committed to the persistent store.
if createErr != nil {
n.logger.Error("Consul Service Identity token creation for alloc failed", "alloc_id", alloc.ID, "error", createErr)
_ = n.srv.consulACLs.RevokeTokens(context.Background(), accessors, false)
if recoverable, ok := createErr.(*structs.RecoverableError); ok {
reply.Error = recoverable
} else {
reply.Error = structs.NewRecoverableError(createErr, false).(*structs.RecoverableError)
}
return nil
}
// Commit the derived tokens to raft before returning them
requested := structs.SITokenAccessorsRequest{Accessors: accessors}
_, index, err := n.srv.raftApply(structs.ServiceIdentityAccessorRegisterRequestType, &requested)
if err != nil {
n.logger.Error("registering Service Identity token accessors for alloc failed", "alloc_id", alloc.ID, "error", err)
// Determine if we can recover from the error
retry := false
switch err {
case raft.ErrNotLeader, raft.ErrLeadershipLost, raft.ErrRaftShutdown, raft.ErrEnqueueTimeout:
retry = true
}
setError(err, retry)
return nil
}
// We made it! Now we can set the reply.
reply.Index = index
reply.Tokens = tokens
n.srv.setQueryMeta(&reply.QueryMeta)
return nil
}
func tasksNotUsingConnect(tg *structs.TaskGroup, tasks []string) []string {
var unneeded []string
for _, task := range tasks {
tgTask := tg.LookupTask(task)
if !taskUsesConnect(tgTask) {
unneeded = append(unneeded, task)
}
}
return unneeded
}
func taskUsesConnect(task *structs.Task) bool {
if task == nil {
// not even in the task group
return false
}
// todo(shoenig): TBD what Kind does a native task have?
return task.Kind.IsConnectProxy()
}
func (n *Node) EmitEvents(args *structs.EmitNodeEventsRequest, reply *structs.EmitNodeEventsResponse) error {
if done, err := n.srv.forward("Node.EmitEvents", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"nomad", "client", "emit_events"}, time.Now())
if len(args.NodeEvents) == 0 {
return fmt.Errorf("no node events given")
}
for nodeID, events := range args.NodeEvents {
if len(events) == 0 {
return fmt.Errorf("no node events given for node %q", nodeID)
}
}
_, index, err := n.srv.raftApply(structs.UpsertNodeEventsType, args)
if err != nil {
n.logger.Error("upserting node events failed", "error", err)
return err
}
reply.Index = index
return nil
}