open-nomad/client/allochealth/tracker.go
2023-04-10 15:36:59 +00:00

757 lines
22 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package allochealth
import (
"context"
"fmt"
"strings"
"sync"
"time"
"github.com/hashicorp/consul/api"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/nomad/client/serviceregistration"
"github.com/hashicorp/nomad/client/serviceregistration/checks/checkstore"
cstructs "github.com/hashicorp/nomad/client/structs"
"github.com/hashicorp/nomad/client/taskenv"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/nomad/structs"
"golang.org/x/exp/maps"
)
const (
// AllocHealthEventSource is the source used for emitting task events
AllocHealthEventSource = "Alloc Unhealthy"
// checkLookupInterval is the pace at which we check if the Consul or Nomad
// checks for an allocation are healthy or unhealthy.
checkLookupInterval = 500 * time.Millisecond
)
// Tracker tracks the health of an allocation and makes health events watchable
// via channels.
type Tracker struct {
// ctx and cancelFn is used to shutdown the tracker
ctx context.Context
cancelFn context.CancelFunc
// alloc is the alloc we are tracking
alloc *structs.Allocation
// tg is the task group we are tracking
tg *structs.TaskGroup
// minHealthyTime is the duration an alloc must remain healthy to be
// considered healthy
minHealthyTime time.Duration
// checkLookupInterval is the repeated interval after which which we check
// if the Consul checks are healthy or unhealthy.
checkLookupInterval time.Duration
// useChecks specifies whether to consider Consul and Nomad service checks.
useChecks bool
// consulCheckCount is the total number of Consul service checks in the task
// group including task level checks.
consulCheckCount int
// nomadCheckCount is the total the number of Nomad service checks in the task
// group including task level checks.
nomadCheckCount int
// allocUpdates is a listener for retrieving new alloc updates
allocUpdates *cstructs.AllocListener
// consulClient is used to look up the status of Consul service checks
consulClient serviceregistration.Handler
// checkStore is used to lookup the status of Nomad service checks
checkStore checkstore.Shim
// healthy is used to signal whether we have determined the allocation to be
// healthy or unhealthy
healthy chan bool
// allocStopped is triggered when the allocation is stopped and tracking is
// not needed
allocStopped chan struct{}
// lifecycleTasks is a map of ephemeral tasks and their lifecycle hooks.
// These tasks may terminate without affecting alloc health
lifecycleTasks map[string]string
// lock is used to lock shared fields listed below
lock sync.Mutex
// tasksHealthy marks whether all the tasks have met their health check
// (disregards Consul and Nomad checks)
tasksHealthy bool
// allocFailed marks whether the allocation failed
allocFailed bool
// checksHealthy marks whether all the task's Consul checks are healthy
checksHealthy bool
// taskHealth contains the health state for each task in the allocation
// name -> state
taskHealth map[string]*taskHealthState
// taskEnvs maps each task in the allocation to a *taskenv.TaskEnv that is
// used to interpolate runtime variables used in service definitions.
taskEnvs map[string]*taskenv.TaskEnv
// logger is for logging things
logger hclog.Logger
}
// NewTracker returns a health tracker for the given allocation.
//
// Depending on job configuration, an allocation's health takes into consideration
// - An alloc listener
// - Consul checks (via consul API)
// - Nomad checks (via client state)
func NewTracker(
parentCtx context.Context,
logger hclog.Logger,
alloc *structs.Allocation,
allocUpdates *cstructs.AllocListener,
taskEnvBuilder *taskenv.Builder,
consulClient serviceregistration.Handler,
checkStore checkstore.Shim,
minHealthyTime time.Duration,
useChecks bool,
) *Tracker {
t := &Tracker{
healthy: make(chan bool, 1),
allocStopped: make(chan struct{}),
alloc: alloc,
tg: alloc.Job.LookupTaskGroup(alloc.TaskGroup),
minHealthyTime: minHealthyTime,
useChecks: useChecks,
allocUpdates: allocUpdates,
consulClient: consulClient,
checkStore: checkStore,
checkLookupInterval: checkLookupInterval,
logger: logger,
lifecycleTasks: map[string]string{},
}
// Build the map of TaskEnv for each task. Create the group-level TaskEnv
// first because taskEnvBuilder is mutated in every loop and we can't undo
// a call to UpdateTask().
t.taskEnvs = make(map[string]*taskenv.TaskEnv, len(t.tg.Tasks)+1)
t.taskEnvs[""] = taskEnvBuilder.Build()
t.taskHealth = make(map[string]*taskHealthState, len(t.tg.Tasks))
for _, task := range t.tg.Tasks {
t.taskHealth[task.Name] = &taskHealthState{task: task}
if task.Lifecycle != nil && !task.Lifecycle.Sidecar {
t.lifecycleTasks[task.Name] = task.Lifecycle.Hook
}
t.taskEnvs[task.Name] = taskEnvBuilder.UpdateTask(alloc, task).Build()
c, n := countChecks(task.Services)
t.consulCheckCount += c
t.nomadCheckCount += n
}
c, n := countChecks(t.tg.Services)
t.consulCheckCount += c
t.nomadCheckCount += n
t.ctx, t.cancelFn = context.WithCancel(parentCtx)
return t
}
func countChecks(services []*structs.Service) (consul, nomad int) {
for _, service := range services {
switch service.Provider {
case structs.ServiceProviderNomad:
nomad += len(service.Checks)
default:
consul += len(service.Checks)
}
}
return
}
// Start starts the watcher.
func (t *Tracker) Start() {
go t.watchTaskEvents()
switch {
case !t.useChecks:
return
case t.consulCheckCount > 0:
go t.watchConsulEvents()
case t.nomadCheckCount > 0:
go t.watchNomadEvents()
}
}
// HealthyCh returns a channel that will emit a boolean indicating the health of
// the allocation.
func (t *Tracker) HealthyCh() <-chan bool {
return t.healthy
}
// AllocStoppedCh returns a channel that will be fired if the allocation is
// stopped. This means that health will not be set.
func (t *Tracker) AllocStoppedCh() <-chan struct{} {
return t.allocStopped
}
// TaskEvents returns a map of events by task. This should only be called after
// health has been determined. Only tasks that have contributed to the
// allocation being unhealthy will have an event.
func (t *Tracker) TaskEvents() map[string]*structs.TaskEvent {
t.lock.Lock()
defer t.lock.Unlock()
// Nothing to do since the failure wasn't task related
if t.allocFailed {
return nil
}
deadline, _ := t.ctx.Deadline()
events := make(map[string]*structs.TaskEvent, len(t.tg.Tasks))
// Go through are task information and build the event map
for task, state := range t.taskHealth {
useChecks := t.tg.Update.HealthCheck == structs.UpdateStrategyHealthCheck_Checks
if e, ok := state.event(deadline, t.tg.Update.HealthyDeadline, t.tg.Update.MinHealthyTime, useChecks); ok {
events[task] = structs.NewTaskEvent(AllocHealthEventSource).SetMessage(e)
}
}
return events
}
// setTaskHealth is used to set the tasks health as healthy or unhealthy. If the
// allocation is terminal, health is immediately broadcast.
func (t *Tracker) setTaskHealth(healthy, terminal bool) {
t.lock.Lock()
defer t.lock.Unlock()
t.tasksHealthy = healthy
// if unhealthy, force waiting for new checks health status
if !terminal && !healthy {
t.checksHealthy = false
return
}
// If we are marked healthy but we also require Consul checks to be healthy
// and they are not yet, return, unless the task is terminal.
usesConsulChecks := t.useChecks && t.consulCheckCount > 0
if !terminal && healthy && usesConsulChecks && !t.checksHealthy {
return
}
// If we are marked healthy but also require Nomad checks to be healthy and
// they are not yet, return, unless the task is terminal.
usesNomadChecks := t.useChecks && t.nomadCheckCount > 0
if !terminal && healthy && usesNomadChecks && !t.checksHealthy {
return
}
select {
case t.healthy <- healthy:
// nothing
default:
}
// Shutdown the tracker
t.cancelFn()
}
// setCheckHealth is used to mark the checks as either healthy or unhealthy.
// returns true if health is propagated and no more health monitoring is needed
//
// todo: this is currently being shared by watchConsulEvents and watchNomadEvents
// and must be split up if/when we support registering services (and thus checks)
// of different providers.
func (t *Tracker) setCheckHealth(healthy bool) bool {
t.lock.Lock()
defer t.lock.Unlock()
// check health should always be false if tasks are unhealthy
// as checks might be missing from unhealthy tasks
t.checksHealthy = healthy && t.tasksHealthy
// Only signal if we are healthy and so is the tasks
if !t.checksHealthy {
return false
}
select {
case t.healthy <- healthy:
// nothing
default:
}
// Shutdown the tracker, things are healthy so nothing to do
t.cancelFn()
return true
}
// markAllocStopped is used to mark the allocation as having stopped.
func (t *Tracker) markAllocStopped() {
close(t.allocStopped)
t.cancelFn()
}
// watchTaskEvents is a long lived watcher that watches for the health of the
// allocation's tasks.
func (t *Tracker) watchTaskEvents() {
alloc := t.alloc
allStartedTime := time.Time{}
waiter := newHealthyFuture()
for {
// If the alloc is being stopped by the server just exit
switch alloc.DesiredStatus {
case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict:
t.logger.Trace("desired status is terminal for alloc", "alloc_id", alloc.ID, "desired_status", alloc.DesiredStatus)
t.markAllocStopped()
return
}
// Store the task states
t.lock.Lock()
for task, state := range alloc.TaskStates {
//TODO(schmichael) for now skip unknown tasks as
//they're task group services which don't currently
//support checks anyway
if v, ok := t.taskHealth[task]; ok {
v.state = state
}
}
t.lock.Unlock()
// Detect if the alloc is unhealthy or if all tasks have started yet
latestStartTime := time.Time{}
for taskName, state := range alloc.TaskStates {
// If the task is a poststop task we do not want to evaluate it
// since it will remain pending until the main task has finished
// or exited.
if t.lifecycleTasks[taskName] == structs.TaskLifecycleHookPoststop {
continue
}
// If this is a poststart task which has already succeeded, we
// should skip evaluation.
if t.lifecycleTasks[taskName] == structs.TaskLifecycleHookPoststart && state.Successful() {
continue
}
// One of the tasks has failed so we can exit watching
if state.Failed || (!state.FinishedAt.IsZero() && t.lifecycleTasks[taskName] != structs.TaskLifecycleHookPrestart) {
t.setTaskHealth(false, true)
return
}
if state.State == structs.TaskStatePending {
latestStartTime = time.Time{}
break
} else if state.StartedAt.After(latestStartTime) {
// task is either running or exited successfully
latestStartTime = state.StartedAt
}
}
// If the alloc is marked as failed by the client but none of the
// individual tasks failed, that means something failed at the alloc
// level.
if alloc.ClientStatus == structs.AllocClientStatusFailed {
t.lock.Lock()
t.allocFailed = true
t.lock.Unlock()
t.setTaskHealth(false, true)
return
}
if !latestStartTime.Equal(allStartedTime) {
// reset task health
t.setTaskHealth(false, false)
// Prevent the timer from firing at the old start time
waiter.disable()
// Set the timer since all tasks are started
if !latestStartTime.IsZero() {
allStartedTime = latestStartTime
waiter.wait(t.minHealthyTime)
}
}
select {
case <-t.ctx.Done():
return
case newAlloc, ok := <-t.allocUpdates.Ch():
if !ok {
return
}
alloc = newAlloc
case <-waiter.C():
t.setTaskHealth(true, false)
}
}
}
// healthyFuture is used to fire after checks have been healthy for MinHealthyTime
type healthyFuture struct {
timer *time.Timer
}
// newHealthyFuture will create a healthyFuture in a disabled state, and
// will do nothing until a call to wait takes place
func newHealthyFuture() *healthyFuture {
timer := time.NewTimer(0)
ht := &healthyFuture{timer: timer}
ht.disable()
return ht
}
// disable the healthyFuture from triggering
func (h *healthyFuture) disable() {
if !h.timer.Stop() {
// must ensure channel is clear
// https://pkg.go.dev/time#Timer.Stop
select {
case <-h.timer.C:
default:
}
}
}
// wait will reset the healthyFuture to trigger after dur passes.
func (h *healthyFuture) wait(dur time.Duration) {
// must ensure timer is stopped
// https://pkg.go.dev/time#Timer.Reset
h.disable()
h.timer.Reset(dur)
}
// C returns a channel on which the future will send when ready.
func (h *healthyFuture) C() <-chan time.Time {
return h.timer.C
}
// watchConsulEvents is a watcher for the health of the allocation's Consul
// checks. If all checks report healthy the watcher will exit after the
// MinHealthyTime has been reached, otherwise the watcher will continue to
// check unhealthy checks until the ctx is cancelled.
//
// Does not watch Nomad service checks; see watchNomadEvents for those.
func (t *Tracker) watchConsulEvents() {
// checkTicker is the ticker that triggers us to look at the checks in Consul
checkTicker := time.NewTicker(t.checkLookupInterval)
defer checkTicker.Stop()
// waiter is used to fire when the checks have been healthy for the MinHealthyTime
waiter := newHealthyFuture()
// primed marks whether the healthy waiter has been set
primed := false
// Store whether the last Consul checks call was successful or not
consulChecksErr := false
// allocReg are the registered objects in Consul for the allocation
var allocReg *serviceregistration.AllocRegistration
OUTER:
for {
select {
// we are shutting down
case <-t.ctx.Done():
return
// it is time to check the checks
case <-checkTicker.C:
newAllocReg, err := t.consulClient.AllocRegistrations(t.alloc.ID)
if err != nil {
if !consulChecksErr {
consulChecksErr = true
t.logger.Warn("error looking up Consul registrations for allocation", "error", err, "alloc_id", t.alloc.ID)
}
continue OUTER
} else {
consulChecksErr = false
allocReg = newAllocReg
}
// enough time has passed with healthy checks
case <-waiter.C():
if t.setCheckHealth(true) {
// final health set and propagated
return
}
// checks are healthy but tasks are unhealthy,
// reset and wait until all is healthy
primed = false
}
if allocReg == nil {
continue
}
// Store the task registrations
t.lock.Lock()
for task, reg := range allocReg.Tasks {
if v, ok := t.taskHealth[task]; ok {
v.taskRegistrations = reg
}
}
t.lock.Unlock()
// Detect if all the checks are passing
passed := true
// interpolate services to replace runtime variables
consulServices := t.tg.ConsulServices()
interpolatedServices := make([]*structs.Service, 0, len(consulServices))
for _, service := range consulServices {
env := t.taskEnvs[service.TaskName]
if env == nil {
// This is not expected to happen, but guard against a nil
// task environment that could case a panic.
t.logger.Error("failed to interpolate service runtime variables: task environment not found",
"alloc_id", t.alloc.ID, "task", service.TaskName)
continue
}
interpolatedService := taskenv.InterpolateService(env, service)
interpolatedServices = append(interpolatedServices, interpolatedService)
}
// scan for missing or unhealthy consul checks
if !evaluateConsulChecks(interpolatedServices, allocReg) {
t.setCheckHealth(false)
passed = false
}
if !passed {
// Reset the timer since we have transitioned back to unhealthy
if primed {
primed = false
waiter.disable()
}
} else if !primed {
// Reset the timer to fire after MinHealthyTime
primed = true
waiter.wait(t.minHealthyTime)
}
}
}
func evaluateConsulChecks(services []*structs.Service, registrations *serviceregistration.AllocRegistration) bool {
// First, identify any case where a check definition is missing or outdated
// on the Consul side. Note that because check names are not unique, we must
// also keep track of the counts on each side and make sure those also match.
expChecks := make(map[string]int)
regChecks := make(map[string]int)
for _, service := range services {
for _, check := range service.Checks {
expChecks[check.Name]++
}
}
for _, task := range registrations.Tasks {
for _, service := range task.Services {
for _, check := range service.Checks {
regChecks[check.Name]++
}
}
}
if !maps.Equal(expChecks, regChecks) {
return false
}
// Now we can simply scan the status of each Check reported by Consul.
for _, task := range registrations.Tasks {
for _, service := range task.Services {
for _, check := range service.Checks {
onUpdate := service.CheckOnUpdate[check.CheckID]
switch check.Status {
case api.HealthWarning:
if onUpdate != structs.OnUpdateIgnoreWarn && onUpdate != structs.OnUpdateIgnore {
return false
}
case api.HealthCritical:
if onUpdate != structs.OnUpdateIgnore {
return false
}
}
}
}
}
// All checks are present and healthy.
return true
}
// watchNomadEvents is a watcher for the health of the allocation's Nomad checks.
// If all checks report healthy the watcher will exit after the MinHealthyTime has
// been reached, otherwise the watcher will continue to check unhealthy checks until
// the ctx is cancelled.
//
// Does not watch Consul service checks; see watchConsulEvents for those.
func (t *Tracker) watchNomadEvents() {
// checkTicker is the ticker that triggers us to look at the checks in Nomad
checkTicker, cancel := helper.NewSafeTimer(t.checkLookupInterval)
defer cancel()
// waiter is used to fire when the checks have been healthy for the MinHealthyTime
waiter := newHealthyFuture()
// allocID of the allocation we are watching checks for
allocID := t.alloc.ID
// primed marks whether the healthy waiter has been set
primed := false
// latest set of nomad check results
var results map[structs.CheckID]*structs.CheckQueryResult
for {
select {
// tracker has been canceled, so stop waiting
case <-t.ctx.Done():
return
// it is time to check the checks
case <-checkTicker.C:
results = t.checkStore.List(allocID)
checkTicker.Reset(t.checkLookupInterval)
// enough time has passed with healthy checks
case <-waiter.C():
if t.setCheckHealth(true) { // todo(shoenig) this needs to be split between Consul and Nomad
return // final health set and propagated
}
// checks are healthy but tasks are unhealthy, reset and wait
primed = false
}
// scan to see if any checks are failing
passing := true
for _, result := range results {
switch result.Status {
case structs.CheckSuccess:
continue
case structs.CheckFailure:
if result.Mode == structs.Readiness {
continue
}
passing = false
default:
// i.e. pending check; do not consider healthy or ready
passing = false
}
if !passing {
break // 1+ check is failing; no need to continue
}
}
if !passing {
// at least one check is failing, transition to unhealthy
t.setCheckHealth(false)
primed = false
waiter.disable()
}
if passing && !primed {
// healthy but not yet primed, set timer to wait
primed = true
waiter.wait(t.minHealthyTime)
}
}
}
// taskHealthState captures all known health information about a task. It is
// largely used to determine if the task has contributed to the allocation being
// unhealthy.
type taskHealthState struct {
task *structs.Task
state *structs.TaskState
taskRegistrations *serviceregistration.ServiceRegistrations
}
// event takes the deadline time for the allocation to be healthy and the update
// strategy of the group. It returns true if the task has contributed to the
// allocation being unhealthy and if so, an event description of why.
func (t *taskHealthState) event(deadline time.Time, healthyDeadline, minHealthyTime time.Duration, useChecks bool) (string, bool) {
desiredChecks := 0
for _, s := range t.task.Services {
if nc := len(s.Checks); nc > 0 {
desiredChecks += nc
}
}
requireChecks := (desiredChecks > 0) && useChecks
if t.state != nil {
if t.state.Failed {
return "Unhealthy because of failed task", true
}
switch t.state.State {
case structs.TaskStatePending:
return fmt.Sprintf("Task not running by healthy_deadline of %v", healthyDeadline), true
case structs.TaskStateDead:
// non-sidecar hook lifecycle tasks are healthy if they exit with success
if t.task.Lifecycle == nil || t.task.Lifecycle.Sidecar {
return "Unhealthy because of dead task", true
}
case structs.TaskStateRunning:
// We are running so check if we have been running long enough
if t.state.StartedAt.Add(minHealthyTime).After(deadline) {
return fmt.Sprintf("Task not running for min_healthy_time of %v by healthy_deadline of %v", minHealthyTime, healthyDeadline), true
}
}
}
if t.taskRegistrations != nil {
var notPassing []string
passing := 0
OUTER:
for _, sreg := range t.taskRegistrations.Services {
for _, check := range sreg.Checks {
if check.Status != api.HealthPassing {
notPassing = append(notPassing, sreg.Service.Service)
continue OUTER
} else {
passing++
}
}
}
if len(notPassing) != 0 {
return fmt.Sprintf("Services not healthy by deadline: %s", strings.Join(notPassing, ", ")), true
}
if passing != desiredChecks {
return fmt.Sprintf("Only %d out of %d checks registered and passing", passing, desiredChecks), true
}
} else if requireChecks {
return "Service checks not registered", true
}
return "", false
}