open-nomad/nomad/rpc.go

416 lines
12 KiB
Go

package nomad
import (
"context"
"crypto/tls"
"fmt"
"io"
"math/rand"
"net"
"net/rpc"
"strings"
"time"
metrics "github.com/armon/go-metrics"
"github.com/hashicorp/consul/lib"
memdb "github.com/hashicorp/go-memdb"
msgpackrpc "github.com/hashicorp/net-rpc-msgpackrpc"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/raft"
"github.com/hashicorp/yamux"
)
type RPCType byte
const (
rpcNomad RPCType = 0x01
rpcRaft = 0x02
rpcMultiplex = 0x03
rpcTLS = 0x04
)
const (
// maxQueryTime is used to bound the limit of a blocking query
maxQueryTime = 300 * time.Second
// defaultQueryTime is the amount of time we block waiting for a change
// if no time is specified. Previously we would wait the maxQueryTime.
defaultQueryTime = 300 * time.Second
// jitterFraction is a the limit to the amount of jitter we apply
// to a user specified MaxQueryTime. We divide the specified time by
// the fraction. So 16 == 6.25% limit of jitter. This jitter is also
// applied to RPCHoldTimeout.
jitterFraction = 16
// Warn if the Raft command is larger than this.
// If it's over 1MB something is probably being abusive.
raftWarnSize = 1024 * 1024
// enqueueLimit caps how long we will wait to enqueue
// a new Raft command. Something is probably wrong if this
// value is ever reached. However, it prevents us from blocking
// the requesting goroutine forever.
enqueueLimit = 30 * time.Second
)
// NewClientCodec returns a new rpc.ClientCodec to be used to make RPC calls to
// the Nomad Server.
func NewClientCodec(conn io.ReadWriteCloser) rpc.ClientCodec {
return msgpackrpc.NewCodecFromHandle(true, true, conn, structs.HashiMsgpackHandle)
}
// NewServerCodec returns a new rpc.ServerCodec to be used by the Nomad Server
// to handle rpcs.
func NewServerCodec(conn io.ReadWriteCloser) rpc.ServerCodec {
return msgpackrpc.NewCodecFromHandle(true, true, conn, structs.HashiMsgpackHandle)
}
// listen is used to listen for incoming RPC connections
func (s *Server) listen(ctx context.Context) {
for {
select {
case <-ctx.Done():
s.logger.Println("[INFO] nomad.rpc: Closing server RPC connection")
return
default:
}
// Accept a connection
conn, err := s.rpcListener.Accept()
if err != nil {
if s.shutdown {
return
}
s.logger.Printf("[ERR] nomad.rpc: failed to accept RPC conn: %v", err)
continue
}
go s.handleConn(conn, false, ctx)
metrics.IncrCounter([]string{"nomad", "rpc", "accept_conn"}, 1)
}
}
// handleConn is used to determine if this is a Raft or
// Nomad type RPC connection and invoke the correct handler
func (s *Server) handleConn(conn net.Conn, isTLS bool, ctx context.Context) {
// Read a single byte
buf := make([]byte, 1)
if _, err := conn.Read(buf); err != nil {
if err != io.EOF {
s.logger.Printf("[ERR] nomad.rpc: failed to read byte: %v", err)
}
conn.Close()
return
}
// Enforce TLS if EnableRPC is set
if s.config.TLSConfig.EnableRPC && !isTLS && RPCType(buf[0]) != rpcTLS {
if !s.config.TLSConfig.RPCUpgradeMode {
s.logger.Printf("[WARN] nomad.rpc: Non-TLS connection attempted from %s with RequireTLS set", conn.RemoteAddr().String())
conn.Close()
return
}
}
// Switch on the byte
switch RPCType(buf[0]) {
case rpcNomad:
s.handleNomadConn(conn, ctx)
case rpcRaft:
metrics.IncrCounter([]string{"nomad", "rpc", "raft_handoff"}, 1)
s.raftLayer.Handoff(conn, ctx)
case rpcMultiplex:
s.handleMultiplex(conn, ctx)
case rpcTLS:
if s.rpcTLS == nil {
s.logger.Printf("[WARN] nomad.rpc: TLS connection attempted, server not configured for TLS")
conn.Close()
return
}
conn = tls.Server(conn, s.rpcTLS)
s.handleConn(conn, true, ctx)
default:
s.logger.Printf("[ERR] nomad.rpc: unrecognized RPC byte: %v", buf[0])
conn.Close()
return
}
}
// handleMultiplex is used to multiplex a single incoming connection
// using the Yamux multiplexer
func (s *Server) handleMultiplex(conn net.Conn, ctx context.Context) {
defer conn.Close()
conf := yamux.DefaultConfig()
conf.LogOutput = s.config.LogOutput
server, _ := yamux.Server(conn, conf)
for {
sub, err := server.Accept()
if err != nil {
if err != io.EOF {
s.logger.Printf("[ERR] nomad.rpc: multiplex conn accept failed: %v", err)
}
return
}
go s.handleNomadConn(sub, ctx)
}
}
// handleNomadConn is used to service a single Nomad RPC connection
func (s *Server) handleNomadConn(conn net.Conn, ctx context.Context) {
defer conn.Close()
rpcCodec := NewServerCodec(conn)
for {
select {
case <-ctx.Done():
s.logger.Println("[INFO] nomad.rpc: Closing server RPC connection")
return
case <-s.shutdownCh:
return
default:
}
if err := s.rpcServer.ServeRequest(rpcCodec); err != nil {
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
s.logger.Printf("[ERR] nomad.rpc: RPC error: %v (%v)", err, conn)
metrics.IncrCounter([]string{"nomad", "rpc", "request_error"}, 1)
}
return
}
metrics.IncrCounter([]string{"nomad", "rpc", "request"}, 1)
}
}
// forward is used to forward to a remote region or to forward to the local leader
// Returns a bool of if forwarding was performed, as well as any error
func (s *Server) forward(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) {
var firstCheck time.Time
region := info.RequestRegion()
if region == "" {
return true, fmt.Errorf("missing target RPC")
}
// Handle region forwarding
if region != s.config.Region {
err := s.forwardRegion(region, method, args, reply)
return true, err
}
// Check if we can allow a stale read
if info.IsRead() && info.AllowStaleRead() {
return false, nil
}
CHECK_LEADER:
// Find the leader
isLeader, remoteServer := s.getLeader()
// Handle the case we are the leader
if isLeader {
return false, nil
}
// Handle the case of a known leader
if remoteServer != nil {
err := s.forwardLeader(remoteServer, method, args, reply)
return true, err
}
// Gate the request until there is a leader
if firstCheck.IsZero() {
firstCheck = time.Now()
}
if time.Now().Sub(firstCheck) < s.config.RPCHoldTimeout {
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction)
select {
case <-time.After(jitter):
goto CHECK_LEADER
case <-s.shutdownCh:
}
}
// No leader found and hold time exceeded
return true, structs.ErrNoLeader
}
// getLeader returns if the current node is the leader, and if not
// then it returns the leader which is potentially nil if the cluster
// has not yet elected a leader.
func (s *Server) getLeader() (bool, *serverParts) {
// Check if we are the leader
if s.IsLeader() {
return true, nil
}
// Get the leader
leader := s.raft.Leader()
if leader == "" {
return false, nil
}
// Lookup the server
s.peerLock.RLock()
server := s.localPeers[leader]
s.peerLock.RUnlock()
// Server could be nil
return false, server
}
// forwardLeader is used to forward an RPC call to the leader, or fail if no leader
func (s *Server) forwardLeader(server *serverParts, method string, args interface{}, reply interface{}) error {
// Handle a missing server
if server == nil {
return structs.ErrNoLeader
}
return s.connPool.RPC(s.config.Region, server.Addr, server.MajorVersion, method, args, reply)
}
// forwardRegion is used to forward an RPC call to a remote region, or fail if no servers
func (s *Server) forwardRegion(region, method string, args interface{}, reply interface{}) error {
// Bail if we can't find any servers
s.peerLock.RLock()
servers := s.peers[region]
if len(servers) == 0 {
s.peerLock.RUnlock()
s.logger.Printf("[WARN] nomad.rpc: RPC request for region '%s', no path found",
region)
return structs.ErrNoRegionPath
}
// Select a random addr
offset := rand.Intn(len(servers))
server := servers[offset]
s.peerLock.RUnlock()
// Forward to remote Nomad
metrics.IncrCounter([]string{"nomad", "rpc", "cross-region", region}, 1)
return s.connPool.RPC(region, server.Addr, server.MajorVersion, method, args, reply)
}
// raftApplyFuture is used to encode a message, run it through raft, and return the Raft future.
func (s *Server) raftApplyFuture(t structs.MessageType, msg interface{}) (raft.ApplyFuture, error) {
buf, err := structs.Encode(t, msg)
if err != nil {
return nil, fmt.Errorf("Failed to encode request: %v", err)
}
// Warn if the command is very large
if n := len(buf); n > raftWarnSize {
s.logger.Printf("[WARN] nomad: Attempting to apply large raft entry (type %d) (%d bytes)", t, n)
}
future := s.raft.Apply(buf, enqueueLimit)
return future, nil
}
// raftApplyFn is the function signature for applying a msg to Raft
type raftApplyFn func(t structs.MessageType, msg interface{}) (interface{}, uint64, error)
// raftApply is used to encode a message, run it through raft, and return
// the FSM response along with any errors
func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, uint64, error) {
future, err := s.raftApplyFuture(t, msg)
if err != nil {
return nil, 0, err
}
if err := future.Error(); err != nil {
return nil, 0, err
}
return future.Response(), future.Index(), nil
}
// setQueryMeta is used to populate the QueryMeta data for an RPC call
func (s *Server) setQueryMeta(m *structs.QueryMeta) {
if s.IsLeader() {
m.LastContact = 0
m.KnownLeader = true
} else {
m.LastContact = time.Now().Sub(s.raft.LastContact())
m.KnownLeader = (s.raft.Leader() != "")
}
}
// queryFn is used to perform a query operation. If a re-query is needed, the
// passed-in watch set will be used to block for changes. The passed-in state
// store should be used (vs. calling fsm.State()) since the given state store
// will be correctly watched for changes if the state store is restored from
// a snapshot.
type queryFn func(memdb.WatchSet, *state.StateStore) error
// blockingOptions is used to parameterize blockingRPC
type blockingOptions struct {
queryOpts *structs.QueryOptions
queryMeta *structs.QueryMeta
run queryFn
}
// blockingRPC is used for queries that need to wait for a
// minimum index. This is used to block and wait for changes.
func (s *Server) blockingRPC(opts *blockingOptions) error {
ctx := context.Background()
var cancel context.CancelFunc
var state *state.StateStore
// Fast path non-blocking
if opts.queryOpts.MinQueryIndex == 0 {
goto RUN_QUERY
}
// Restrict the max query time, and ensure there is always one
if opts.queryOpts.MaxQueryTime > maxQueryTime {
opts.queryOpts.MaxQueryTime = maxQueryTime
} else if opts.queryOpts.MaxQueryTime <= 0 {
opts.queryOpts.MaxQueryTime = defaultQueryTime
}
// Apply a small amount of jitter to the request
opts.queryOpts.MaxQueryTime += lib.RandomStagger(opts.queryOpts.MaxQueryTime / jitterFraction)
// Setup a query timeout
ctx, cancel = context.WithTimeout(context.Background(), opts.queryOpts.MaxQueryTime)
defer cancel()
RUN_QUERY:
// Update the query meta data
s.setQueryMeta(opts.queryMeta)
// Increment the rpc query counter
metrics.IncrCounter([]string{"nomad", "rpc", "query"}, 1)
// We capture the state store and its abandon channel but pass a snapshot to
// the blocking query function. We operate on the snapshot to allow separate
// calls to the state store not all wrapped within the same transaction.
state = s.fsm.State()
abandonCh := state.AbandonCh()
snap, _ := state.Snapshot()
stateSnap := &snap.StateStore
// We can skip all watch tracking if this isn't a blocking query.
var ws memdb.WatchSet
if opts.queryOpts.MinQueryIndex > 0 {
ws = memdb.NewWatchSet()
// This channel will be closed if a snapshot is restored and the
// whole state store is abandoned.
ws.Add(abandonCh)
}
// Block up to the timeout if we didn't see anything fresh.
err := opts.run(ws, stateSnap)
// Check for minimum query time
if err == nil && opts.queryOpts.MinQueryIndex > 0 && opts.queryMeta.Index <= opts.queryOpts.MinQueryIndex {
if err := ws.WatchCtx(ctx); err == nil {
goto RUN_QUERY
}
}
return err
}