493 lines
13 KiB
Go
493 lines
13 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"math"
|
|
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
const (
|
|
// binPackingMaxFitScore is the maximum possible bin packing fitness score.
|
|
// This is used to normalize bin packing score to a value between 0 and 1
|
|
binPackingMaxFitScore = 18.0
|
|
)
|
|
|
|
// Rank is used to provide a score and various ranking metadata
|
|
// along with a node when iterating. This state can be modified as
|
|
// various rank methods are applied.
|
|
type RankedNode struct {
|
|
Node *structs.Node
|
|
FinalScore float64
|
|
Scores []float64
|
|
TaskResources map[string]*structs.Resources
|
|
|
|
// Allocs is used to cache the proposed allocations on the
|
|
// node. This can be shared between iterators that require it.
|
|
Proposed []*structs.Allocation
|
|
}
|
|
|
|
func (r *RankedNode) GoString() string {
|
|
return fmt.Sprintf("<Node: %s Score: %0.3f>", r.Node.ID, r.FinalScore)
|
|
}
|
|
|
|
func (r *RankedNode) ProposedAllocs(ctx Context) ([]*structs.Allocation, error) {
|
|
if r.Proposed != nil {
|
|
return r.Proposed, nil
|
|
}
|
|
|
|
p, err := ctx.ProposedAllocs(r.Node.ID)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r.Proposed = p
|
|
return p, nil
|
|
}
|
|
|
|
func (r *RankedNode) SetTaskResources(task *structs.Task,
|
|
resource *structs.Resources) {
|
|
if r.TaskResources == nil {
|
|
r.TaskResources = make(map[string]*structs.Resources)
|
|
}
|
|
r.TaskResources[task.Name] = resource
|
|
}
|
|
|
|
// RankFeasibleIterator is used to iteratively yield nodes along
|
|
// with ranking metadata. The iterators may manage some state for
|
|
// performance optimizations.
|
|
type RankIterator interface {
|
|
// Next yields a ranked option or nil if exhausted
|
|
Next() *RankedNode
|
|
|
|
// Reset is invoked when an allocation has been placed
|
|
// to reset any stale state.
|
|
Reset()
|
|
}
|
|
|
|
// FeasibleRankIterator is used to consume from a FeasibleIterator
|
|
// and return an unranked node with base ranking.
|
|
type FeasibleRankIterator struct {
|
|
ctx Context
|
|
source FeasibleIterator
|
|
}
|
|
|
|
// NewFeasibleRankIterator is used to return a new FeasibleRankIterator
|
|
// from a FeasibleIterator source.
|
|
func NewFeasibleRankIterator(ctx Context, source FeasibleIterator) *FeasibleRankIterator {
|
|
iter := &FeasibleRankIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *FeasibleRankIterator) Next() *RankedNode {
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
ranked := &RankedNode{
|
|
Node: option,
|
|
}
|
|
return ranked
|
|
}
|
|
|
|
func (iter *FeasibleRankIterator) Reset() {
|
|
iter.source.Reset()
|
|
}
|
|
|
|
// StaticRankIterator is a RankIterator that returns a static set of results.
|
|
// This is largely only useful for testing.
|
|
type StaticRankIterator struct {
|
|
ctx Context
|
|
nodes []*RankedNode
|
|
offset int
|
|
seen int
|
|
}
|
|
|
|
// NewStaticRankIterator returns a new static rank iterator over the given nodes
|
|
func NewStaticRankIterator(ctx Context, nodes []*RankedNode) *StaticRankIterator {
|
|
iter := &StaticRankIterator{
|
|
ctx: ctx,
|
|
nodes: nodes,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *StaticRankIterator) Next() *RankedNode {
|
|
// Check if exhausted
|
|
n := len(iter.nodes)
|
|
if iter.offset == n || iter.seen == n {
|
|
if iter.seen != n {
|
|
iter.offset = 0
|
|
} else {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Return the next offset
|
|
offset := iter.offset
|
|
iter.offset += 1
|
|
iter.seen += 1
|
|
return iter.nodes[offset]
|
|
}
|
|
|
|
func (iter *StaticRankIterator) Reset() {
|
|
iter.seen = 0
|
|
}
|
|
|
|
// BinPackIterator is a RankIterator that scores potential options
|
|
// based on a bin-packing algorithm.
|
|
type BinPackIterator struct {
|
|
ctx Context
|
|
source RankIterator
|
|
evict bool
|
|
priority int
|
|
taskGroup *structs.TaskGroup
|
|
}
|
|
|
|
// NewBinPackIterator returns a BinPackIterator which tries to fit tasks
|
|
// potentially evicting other tasks based on a given priority.
|
|
func NewBinPackIterator(ctx Context, source RankIterator, evict bool, priority int) *BinPackIterator {
|
|
iter := &BinPackIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
evict: evict,
|
|
priority: priority,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *BinPackIterator) SetPriority(p int) {
|
|
iter.priority = p
|
|
}
|
|
|
|
func (iter *BinPackIterator) SetTaskGroup(taskGroup *structs.TaskGroup) {
|
|
iter.taskGroup = taskGroup
|
|
}
|
|
|
|
func (iter *BinPackIterator) Next() *RankedNode {
|
|
OUTER:
|
|
for {
|
|
// Get the next potential option
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
|
|
// Get the proposed allocations
|
|
proposed, err := option.ProposedAllocs(iter.ctx)
|
|
if err != nil {
|
|
iter.ctx.Logger().Named("binpack").Error("failed retrieving proposed allocations", "error", err)
|
|
continue
|
|
}
|
|
|
|
// Index the existing network usage
|
|
netIdx := structs.NewNetworkIndex()
|
|
netIdx.SetNode(option.Node)
|
|
netIdx.AddAllocs(proposed)
|
|
|
|
// Assign the resources for each task
|
|
total := &structs.Resources{
|
|
DiskMB: iter.taskGroup.EphemeralDisk.SizeMB,
|
|
}
|
|
for _, task := range iter.taskGroup.Tasks {
|
|
taskResources := task.Resources.Copy()
|
|
|
|
// Check if we need a network resource
|
|
if len(taskResources.Networks) > 0 {
|
|
ask := taskResources.Networks[0]
|
|
offer, err := netIdx.AssignNetwork(ask)
|
|
if offer == nil {
|
|
iter.ctx.Metrics().ExhaustedNode(option.Node,
|
|
fmt.Sprintf("network: %s", err))
|
|
netIdx.Release()
|
|
continue OUTER
|
|
}
|
|
|
|
// Reserve this to prevent another task from colliding
|
|
netIdx.AddReserved(offer)
|
|
|
|
// Update the network ask to the offer
|
|
taskResources.Networks = []*structs.NetworkResource{offer}
|
|
}
|
|
|
|
// Store the task resource
|
|
option.SetTaskResources(task, taskResources)
|
|
|
|
// Accumulate the total resource requirement
|
|
total.Add(taskResources)
|
|
}
|
|
|
|
// Add the resources we are trying to fit
|
|
proposed = append(proposed, &structs.Allocation{Resources: total})
|
|
|
|
// Check if these allocations fit, if they do not, simply skip this node
|
|
fit, dim, util, _ := structs.AllocsFit(option.Node, proposed, netIdx)
|
|
netIdx.Release()
|
|
if !fit {
|
|
iter.ctx.Metrics().ExhaustedNode(option.Node, dim)
|
|
continue
|
|
}
|
|
|
|
// XXX: For now we completely ignore evictions. We should use that flag
|
|
// to determine if its possible to evict other lower priority allocations
|
|
// to make room. This explodes the search space, so it must be done
|
|
// carefully.
|
|
|
|
// Score the fit normally otherwise
|
|
fitness := structs.ScoreFit(option.Node, util)
|
|
normalizedFit := fitness / binPackingMaxFitScore
|
|
option.Scores = append(option.Scores, normalizedFit)
|
|
iter.ctx.Metrics().ScoreNode(option.Node, "binpack", normalizedFit)
|
|
return option
|
|
}
|
|
}
|
|
|
|
func (iter *BinPackIterator) Reset() {
|
|
iter.source.Reset()
|
|
}
|
|
|
|
// JobAntiAffinityIterator is used to apply an anti-affinity to allocating
|
|
// along side other allocations from this job. This is used to help distribute
|
|
// load across the cluster.
|
|
type JobAntiAffinityIterator struct {
|
|
ctx Context
|
|
source RankIterator
|
|
jobID string
|
|
taskGroup string
|
|
desiredCount int
|
|
}
|
|
|
|
// NewJobAntiAffinityIterator is used to create a JobAntiAffinityIterator that
|
|
// applies the given penalty for co-placement with allocs from this job.
|
|
func NewJobAntiAffinityIterator(ctx Context, source RankIterator, jobID string) *JobAntiAffinityIterator {
|
|
iter := &JobAntiAffinityIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
jobID: jobID,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *JobAntiAffinityIterator) SetJob(job *structs.Job) {
|
|
iter.jobID = job.ID
|
|
}
|
|
|
|
func (iter *JobAntiAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) {
|
|
iter.taskGroup = tg.Name
|
|
iter.desiredCount = tg.Count
|
|
}
|
|
|
|
func (iter *JobAntiAffinityIterator) Next() *RankedNode {
|
|
for {
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
|
|
// Get the proposed allocations
|
|
proposed, err := option.ProposedAllocs(iter.ctx)
|
|
if err != nil {
|
|
iter.ctx.Logger().Named("job_anti_affinity").Error("failed retrieving proposed allocations", "error", err)
|
|
continue
|
|
}
|
|
|
|
// Determine the number of collisions
|
|
collisions := 0
|
|
for _, alloc := range proposed {
|
|
if alloc.JobID == iter.jobID && alloc.TaskGroup == iter.taskGroup {
|
|
collisions += 1
|
|
}
|
|
}
|
|
|
|
// Calculate the penalty based on number of collisions
|
|
// TODO(preetha): Figure out if batch jobs need a different scoring penalty where collisions matter less
|
|
if collisions > 0 {
|
|
scorePenalty := -1 * float64(collisions+1) / float64(iter.desiredCount)
|
|
option.Scores = append(option.Scores, scorePenalty)
|
|
iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", scorePenalty)
|
|
}
|
|
return option
|
|
}
|
|
}
|
|
|
|
func (iter *JobAntiAffinityIterator) Reset() {
|
|
iter.source.Reset()
|
|
}
|
|
|
|
// NodeReschedulingPenaltyIterator is used to apply a penalty to
|
|
// a node that had a previous failed allocation for the same job.
|
|
// This is used when attempting to reschedule a failed alloc
|
|
type NodeReschedulingPenaltyIterator struct {
|
|
ctx Context
|
|
source RankIterator
|
|
penaltyNodes map[string]struct{}
|
|
}
|
|
|
|
// NewNodeReschedulingPenaltyIterator is used to create a NodeReschedulingPenaltyIterator that
|
|
// applies the given scoring penalty for placement onto nodes in penaltyNodes
|
|
func NewNodeReschedulingPenaltyIterator(ctx Context, source RankIterator) *NodeReschedulingPenaltyIterator {
|
|
iter := &NodeReschedulingPenaltyIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *NodeReschedulingPenaltyIterator) SetPenaltyNodes(penaltyNodes map[string]struct{}) {
|
|
iter.penaltyNodes = penaltyNodes
|
|
}
|
|
|
|
func (iter *NodeReschedulingPenaltyIterator) Next() *RankedNode {
|
|
for {
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
|
|
_, ok := iter.penaltyNodes[option.Node.ID]
|
|
if ok {
|
|
option.Scores = append(option.Scores, -1)
|
|
iter.ctx.Metrics().ScoreNode(option.Node, "node-reschedule-penalty", -1)
|
|
}
|
|
return option
|
|
}
|
|
}
|
|
|
|
func (iter *NodeReschedulingPenaltyIterator) Reset() {
|
|
iter.penaltyNodes = make(map[string]struct{})
|
|
iter.source.Reset()
|
|
}
|
|
|
|
// NodeAffinityIterator is used to resolve any affinity rules in the job or task group,
|
|
// and apply a weighted score to nodes if they match.
|
|
type NodeAffinityIterator struct {
|
|
ctx Context
|
|
source RankIterator
|
|
jobAffinities []*structs.Affinity
|
|
affinities []*structs.Affinity
|
|
}
|
|
|
|
// NewNodeAffinityIterator is used to create a NodeAffinityIterator that
|
|
// applies a weighted score according to whether nodes match any
|
|
// affinities in the job or task group.
|
|
func NewNodeAffinityIterator(ctx Context, source RankIterator) *NodeAffinityIterator {
|
|
return &NodeAffinityIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
}
|
|
}
|
|
|
|
func (iter *NodeAffinityIterator) SetJob(job *structs.Job) {
|
|
iter.jobAffinities = job.Affinities
|
|
}
|
|
|
|
func (iter *NodeAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) {
|
|
// Merge job affinities
|
|
if iter.jobAffinities != nil {
|
|
iter.affinities = append(iter.affinities, iter.jobAffinities...)
|
|
}
|
|
|
|
// Merge task group affinities and task affinities
|
|
if tg.Affinities != nil {
|
|
iter.affinities = append(iter.affinities, tg.Affinities...)
|
|
}
|
|
for _, task := range tg.Tasks {
|
|
if task.Affinities != nil {
|
|
iter.affinities = append(iter.affinities, task.Affinities...)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (iter *NodeAffinityIterator) Reset() {
|
|
iter.source.Reset()
|
|
// This method is called between each task group, so only reset the merged list
|
|
iter.affinities = nil
|
|
}
|
|
|
|
func (iter *NodeAffinityIterator) hasAffinities() bool {
|
|
return len(iter.affinities) > 0
|
|
}
|
|
|
|
func (iter *NodeAffinityIterator) Next() *RankedNode {
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
if !iter.hasAffinities() {
|
|
return option
|
|
}
|
|
// TODO(preetha): we should calculate normalized weights once and reuse it here
|
|
sumWeight := 0.0
|
|
for _, affinity := range iter.affinities {
|
|
sumWeight += math.Abs(affinity.Weight)
|
|
}
|
|
|
|
totalAffinityScore := 0.0
|
|
for _, affinity := range iter.affinities {
|
|
if matchesAffinity(iter.ctx, affinity, option.Node) {
|
|
totalAffinityScore += affinity.Weight
|
|
}
|
|
}
|
|
normScore := totalAffinityScore / sumWeight
|
|
if totalAffinityScore != 0.0 {
|
|
option.Scores = append(option.Scores, normScore)
|
|
iter.ctx.Metrics().ScoreNode(option.Node, "node-affinity", normScore)
|
|
}
|
|
return option
|
|
}
|
|
|
|
func matchesAffinity(ctx Context, affinity *structs.Affinity, option *structs.Node) bool {
|
|
//TODO(preetha): Add a step here that filters based on computed node class for potential speedup
|
|
// Resolve the targets
|
|
lVal, ok := resolveTarget(affinity.LTarget, option)
|
|
if !ok {
|
|
return false
|
|
}
|
|
rVal, ok := resolveTarget(affinity.RTarget, option)
|
|
if !ok {
|
|
return false
|
|
}
|
|
|
|
// Check if satisfied
|
|
return checkAffinity(ctx, affinity.Operand, lVal, rVal)
|
|
}
|
|
|
|
// ScoreNormalizationIterator is used to combine scores from various prior
|
|
// iterators and combine them into one final score. The current implementation
|
|
// averages the scores together.
|
|
type ScoreNormalizationIterator struct {
|
|
ctx Context
|
|
source RankIterator
|
|
}
|
|
|
|
// NewScoreNormalizationIterator is used to create a ScoreNormalizationIterator that
|
|
// averages scores from various iterators into a final score.
|
|
func NewScoreNormalizationIterator(ctx Context, source RankIterator) *ScoreNormalizationIterator {
|
|
return &ScoreNormalizationIterator{
|
|
ctx: ctx,
|
|
source: source}
|
|
}
|
|
|
|
func (iter *ScoreNormalizationIterator) Reset() {
|
|
iter.source.Reset()
|
|
}
|
|
|
|
func (iter *ScoreNormalizationIterator) Next() *RankedNode {
|
|
option := iter.source.Next()
|
|
if option == nil || len(option.Scores) == 0 {
|
|
return option
|
|
}
|
|
numScorers := len(option.Scores)
|
|
sum := 0.0
|
|
for _, score := range option.Scores {
|
|
sum += score
|
|
}
|
|
option.FinalScore = sum / float64(numScorers)
|
|
//TODO(preetha): Turn map in allocmetrics into a heap of topK scores
|
|
iter.ctx.Metrics().ScoreNode(option.Node, "normalized-score", option.FinalScore)
|
|
return option
|
|
}
|