open-nomad/nomad/structs/funcs.go

140 lines
3.7 KiB
Go

package structs
import (
crand "crypto/rand"
"fmt"
"math"
)
// RemoveAllocs is used to remove any allocs with the given IDs
// from the list of allocations
func RemoveAllocs(alloc []*Allocation, remove []*Allocation) []*Allocation {
// Convert remove into a set
removeSet := make(map[string]struct{})
for _, remove := range remove {
removeSet[remove.ID] = struct{}{}
}
n := len(alloc)
for i := 0; i < n; i++ {
if _, ok := removeSet[alloc[i].ID]; ok {
alloc[i], alloc[n-1] = alloc[n-1], nil
i--
n--
}
}
alloc = alloc[:n]
return alloc
}
// FilterTerminalAllocs filters out all allocations in a terminal state
func FilterTerminalAllocs(allocs []*Allocation) []*Allocation {
n := len(allocs)
for i := 0; i < n; i++ {
if allocs[i].TerminalStatus() {
allocs[i], allocs[n-1] = allocs[n-1], nil
i--
n--
}
}
return allocs[:n]
}
// AllocsFit checks if a given set of allocations will fit on a node.
// The netIdx can optionally be provided if its already been computed.
// If the netIdx is provided, it is assumed that the client has already
// ensured there are no collisions.
func AllocsFit(node *Node, allocs []*Allocation, netIdx *NetworkIndex) (bool, string, *Resources, error) {
// Compute the utilization from zero
used := new(Resources)
// Add the reserved resources of the node
if node.Reserved != nil {
if err := used.Add(node.Reserved); err != nil {
return false, "", nil, err
}
}
// For each alloc, add the resources
for _, alloc := range allocs {
if err := used.Add(alloc.Resources); err != nil {
return false, "", nil, err
}
}
// Check that the node resources are a super set of those
// that are being allocated
if superset, dimension := node.Resources.Superset(used); !superset {
return false, dimension, used, nil
}
// Create the network index if missing
if netIdx == nil {
netIdx = NewNetworkIndex()
if netIdx.SetNode(node) || netIdx.AddAllocs(allocs) {
return false, "reserved port collision", used, nil
}
}
// Check if the network is overcommitted
if netIdx.Overcommitted() {
return false, "bandwidth exceeded", used, nil
}
// Allocations fit!
return true, "", used, nil
}
// ScoreFit is used to score the fit based on the Google work published here:
// http://www.columbia.edu/~cs2035/courses/ieor4405.S13/datacenter_scheduling.ppt
// This is equivalent to their BestFit v3
func ScoreFit(node *Node, util *Resources) float64 {
// Determine the node availability
nodeCpu := float64(node.Resources.CPU)
if node.Reserved != nil {
nodeCpu -= float64(node.Reserved.CPU)
}
nodeMem := float64(node.Resources.MemoryMB)
if node.Reserved != nil {
nodeMem -= float64(node.Reserved.MemoryMB)
}
// Compute the free percentage
freePctCpu := 1 - (float64(util.CPU) / nodeCpu)
freePctRam := 1 - (float64(util.MemoryMB) / nodeMem)
// Total will be "maximized" the smaller the value is.
// At 100% utilization, the total is 2, while at 0% util it is 20.
total := math.Pow(10, freePctCpu) + math.Pow(10, freePctRam)
// Invert so that the "maximized" total represents a high-value
// score. Because the floor is 20, we simply use that as an anchor.
// This means at a perfect fit, we return 18 as the score.
score := 20.0 - total
// Bound the score, just in case
// If the score is over 18, that means we've overfit the node.
if score > 18.0 {
score = 18.0
} else if score < 0 {
score = 0
}
return score
}
// GenerateUUID is used to generate a random UUID
func GenerateUUID() string {
buf := make([]byte, 16)
if _, err := crand.Read(buf); err != nil {
panic(fmt.Errorf("failed to read random bytes: %v", err))
}
return fmt.Sprintf("%08x-%04x-%04x-%04x-%12x",
buf[0:4],
buf[4:6],
buf[6:8],
buf[8:10],
buf[10:16])
}