open-nomad/scheduler/util.go

233 lines
5.8 KiB
Go

package scheduler
import (
"fmt"
"math/rand"
"reflect"
"github.com/hashicorp/nomad/nomad/structs"
)
// allocTuple is a tuple of the allocation name and potential alloc ID
type allocTuple struct {
Name string
TaskGroup *structs.TaskGroup
Alloc *structs.Allocation
}
// materializeTaskGroups is used to materialize all the task groups
// a job requires. This is used to do the count expansion.
func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup {
out := make(map[string]*structs.TaskGroup)
for _, tg := range job.TaskGroups {
for i := 0; i < tg.Count; i++ {
name := fmt.Sprintf("%s.%s[%d]", job.Name, tg.Name, i)
out[name] = tg
}
}
return out
}
// diffResult is used to return the sets that result from the diff
type diffResult struct {
place, update, migrate, stop, ignore []allocTuple
}
func (d *diffResult) GoString() string {
return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d)",
len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore))
}
// diffAllocs is used to do a set difference between the target allocations
// and the existing allocations. This returns 5 sets of results, the list of
// named task groups that need to be placed (no existing allocation), the
// allocations that need to be updated (job definition is newer), allocs that
// need to be migrated (node is draining), the allocs that need to be evicted
// (no longer required), and those that should be ignored.
func diffAllocs(job *structs.Job, taintedNodes map[string]bool,
required map[string]*structs.TaskGroup, allocs []*structs.Allocation) *diffResult {
result := &diffResult{}
// Scan the existing updates
existing := make(map[string]struct{})
for _, exist := range allocs {
// Index the existing node
name := exist.Name
existing[name] = struct{}{}
// Check for the definition in the required set
tg, ok := required[name]
// If not required, we stop the alloc
if !ok {
result.stop = append(result.stop, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
continue
}
// If we are on a tainted node, we must migrate
if taintedNodes[exist.NodeID] {
result.migrate = append(result.migrate, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
continue
}
// If the definition is updated we need to update
// XXX: This is an extremely conservative approach. We can check
// if the job definition has changed in a way that affects
// this allocation and potentially ignore it.
if job.ModifyIndex != exist.Job.ModifyIndex {
result.update = append(result.update, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
continue
}
// Everything is up-to-date
result.ignore = append(result.ignore, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
}
// Scan the required groups
for name, tg := range required {
// Check for an existing allocation
_, ok := existing[name]
// Require a placement if no existing allocation. If there
// is an existing allocation, we would have checked for a potential
// update or ignore above.
if !ok {
result.place = append(result.place, allocTuple{
Name: name,
TaskGroup: tg,
})
}
}
return result
}
// readyNodesInDCs returns all the ready nodes in the given datacenters
func readyNodesInDCs(state State, dcs []string) ([]*structs.Node, error) {
// Index the DCs
dcMap := make(map[string]struct{}, len(dcs))
for _, dc := range dcs {
dcMap[dc] = struct{}{}
}
// Scan the nodes
var out []*structs.Node
iter, err := state.Nodes()
if err != nil {
return nil, err
}
for {
raw := iter.Next()
if raw == nil {
break
}
// Filter on datacenter and status
node := raw.(*structs.Node)
if node.Status != structs.NodeStatusReady {
continue
}
if node.Drain {
continue
}
if _, ok := dcMap[node.Datacenter]; !ok {
continue
}
out = append(out, node)
}
return out, nil
}
// retryMax is used to retry a callback until it returns success or
// a maximum number of attempts is reached
func retryMax(max int, cb func() (bool, error)) error {
attempts := 0
for attempts < max {
done, err := cb()
if err != nil {
return err
}
if done {
return nil
}
attempts += 1
}
return &SetStatusError{
Err: fmt.Errorf("maximum attempts reached (%d)", max),
EvalStatus: structs.EvalStatusFailed,
}
}
// taintedNodes is used to scan the allocations and then check if the
// underlying nodes are tainted, and should force a migration of the allocation.
func taintedNodes(state State, allocs []*structs.Allocation) (map[string]bool, error) {
out := make(map[string]bool)
for _, alloc := range allocs {
if _, ok := out[alloc.NodeID]; ok {
continue
}
node, err := state.NodeByID(alloc.NodeID)
if err != nil {
return nil, err
}
// If the node does not exist, we should migrate
if node == nil {
out[alloc.NodeID] = true
continue
}
out[alloc.NodeID] = structs.ShouldDrainNode(node.Status) || node.Drain
}
return out, nil
}
// shuffleNodes randomizes the slice order with the Fisher-Yates algorithm
func shuffleNodes(nodes []*structs.Node) {
n := len(nodes)
for i := n - 1; i > 0; i-- {
j := rand.Intn(i + 1)
nodes[i], nodes[j] = nodes[j], nodes[i]
}
}
// tasksUpdated does a diff between task groups to see if the
// tasks, their drivers or config have updated.
func tasksUpdated(a, b *structs.TaskGroup) bool {
// If the number of tasks do not match, clearly there is an update
if len(a.Tasks) != len(b.Tasks) {
return true
}
// Check each task
for _, at := range a.Tasks {
bt := b.LookupTask(at.Name)
if bt == nil {
return true
}
if at.Driver != bt.Driver {
return true
}
if !reflect.DeepEqual(at.Config, bt.Config) {
return true
}
}
return false
}