261 lines
6.4 KiB
Go
261 lines
6.4 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
// Rank is used to provide a score and various ranking metadata
|
|
// along with a node when iterating. This state can be modified as
|
|
// various rank methods are applied.
|
|
type RankedNode struct {
|
|
Node *structs.Node
|
|
Score float64
|
|
|
|
// Allocs is used to cache the proposed allocations on the
|
|
// node. This can be shared between iterators that require it.
|
|
Proposed []*structs.Allocation
|
|
}
|
|
|
|
func (r *RankedNode) GoString() string {
|
|
return fmt.Sprintf("<Node: %s Score: %0.3f>", r.Node.ID, r.Score)
|
|
}
|
|
|
|
// RankFeasibleIterator is used to iteratively yield nodes along
|
|
// with ranking metadata. The iterators may manage some state for
|
|
// performance optimizations.
|
|
type RankIterator interface {
|
|
// Next yields a ranked option or nil if exhausted
|
|
Next() *RankedNode
|
|
|
|
// Reset is invoked when an allocation has been placed
|
|
// to reset any stale state.
|
|
Reset()
|
|
}
|
|
|
|
// FeasibleRankIterator is used to consume from a FeasibleIterator
|
|
// and return an unranked node with base ranking.
|
|
type FeasibleRankIterator struct {
|
|
ctx Context
|
|
source FeasibleIterator
|
|
}
|
|
|
|
// NewFeasibleRankIterator is used to return a new FeasibleRankIterator
|
|
// from a FeasibleIterator source.
|
|
func NewFeasibleRankIterator(ctx Context, source FeasibleIterator) *FeasibleRankIterator {
|
|
iter := &FeasibleRankIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *FeasibleRankIterator) Next() *RankedNode {
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
ranked := &RankedNode{
|
|
Node: option,
|
|
}
|
|
return ranked
|
|
}
|
|
|
|
func (iter *FeasibleRankIterator) Reset() {
|
|
iter.source.Reset()
|
|
}
|
|
|
|
// StaticRankIterator is a RankIterator that returns a static set of results.
|
|
// This is largely only useful for testing.
|
|
type StaticRankIterator struct {
|
|
ctx Context
|
|
nodes []*RankedNode
|
|
offset int
|
|
seen int
|
|
}
|
|
|
|
// NewStaticRankIterator returns a new static rank iterator over the given nodes
|
|
func NewStaticRankIterator(ctx Context, nodes []*RankedNode) *StaticRankIterator {
|
|
iter := &StaticRankIterator{
|
|
ctx: ctx,
|
|
nodes: nodes,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *StaticRankIterator) Next() *RankedNode {
|
|
// Check if exhausted
|
|
n := len(iter.nodes)
|
|
if iter.offset == n || iter.seen == n {
|
|
if iter.seen != n {
|
|
iter.offset = 0
|
|
} else {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Return the next offset
|
|
offset := iter.offset
|
|
iter.offset += 1
|
|
iter.seen += 1
|
|
return iter.nodes[offset]
|
|
}
|
|
|
|
func (iter *StaticRankIterator) Reset() {
|
|
iter.seen = 0
|
|
}
|
|
|
|
// BinPackIterator is a RankIterator that scores potential options
|
|
// based on a bin-packing algorithm.
|
|
type BinPackIterator struct {
|
|
ctx Context
|
|
source RankIterator
|
|
resources *structs.Resources
|
|
evict bool
|
|
priority int
|
|
}
|
|
|
|
// NewBinPackIterator returns a BinPackIterator which tries to fit the given
|
|
// resources, potentially evicting other tasks based on a given priority.
|
|
func NewBinPackIterator(ctx Context, source RankIterator, resources *structs.Resources, evict bool, priority int) *BinPackIterator {
|
|
iter := &BinPackIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
resources: resources,
|
|
evict: evict,
|
|
priority: priority,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *BinPackIterator) SetResources(r *structs.Resources) {
|
|
iter.resources = r
|
|
}
|
|
|
|
func (iter *BinPackIterator) SetPriority(p int) {
|
|
iter.priority = p
|
|
}
|
|
|
|
func (iter *BinPackIterator) Next() *RankedNode {
|
|
for {
|
|
// Get the next potential option
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
nodeID := option.Node.ID
|
|
|
|
// Get the proposed allocations
|
|
var proposed []*structs.Allocation
|
|
if option.Proposed != nil {
|
|
proposed = option.Proposed
|
|
} else {
|
|
p, err := iter.ctx.ProposedAllocs(nodeID)
|
|
if err != nil {
|
|
iter.ctx.Logger().Printf("[ERR] sched.binpack: failed to get proposed allocations for '%s': %v",
|
|
nodeID, err)
|
|
continue
|
|
}
|
|
proposed = p
|
|
option.Proposed = p
|
|
}
|
|
|
|
// Add the resources we are trying to fit
|
|
proposed = append(proposed, &structs.Allocation{Resources: iter.resources})
|
|
|
|
// Check if these allocations fit, if they do not, simply skip this node
|
|
fit, util, _ := structs.AllocsFit(option.Node, proposed)
|
|
if !fit {
|
|
iter.ctx.Metrics().ExhaustedNode(option.Node)
|
|
continue
|
|
}
|
|
|
|
// XXX: For now we completely ignore evictions. We should use that flag
|
|
// to determine if its possible to evict other lower priority allocations
|
|
// to make room. This explodes the search space, so it must be done
|
|
// carefully.
|
|
|
|
// Score the fit normally otherwise
|
|
fitness := structs.ScoreFit(option.Node, util)
|
|
option.Score += fitness
|
|
iter.ctx.Metrics().ScoreNode(option.Node, "binpack", fitness)
|
|
return option
|
|
}
|
|
}
|
|
|
|
func (iter *BinPackIterator) Reset() {
|
|
iter.source.Reset()
|
|
}
|
|
|
|
// JobAntiAffinityIterator is used to apply an anti-affinity to allocating
|
|
// along side other allocations from this job. This is used to help distribute
|
|
// load across the cluster.
|
|
type JobAntiAffinityIterator struct {
|
|
ctx Context
|
|
source RankIterator
|
|
penalty float64
|
|
jobID string
|
|
}
|
|
|
|
// NewJobAntiAffinityIterator is used to create a JobAntiAffinityIterator that
|
|
// applies the given penalty for co-placement with allocs from this job.
|
|
func NewJobAntiAffinityIterator(ctx Context, source RankIterator, penalty float64, jobID string) *JobAntiAffinityIterator {
|
|
iter := &JobAntiAffinityIterator{
|
|
ctx: ctx,
|
|
source: source,
|
|
penalty: penalty,
|
|
jobID: jobID,
|
|
}
|
|
return iter
|
|
}
|
|
|
|
func (iter *JobAntiAffinityIterator) SetJob(jobID string) {
|
|
iter.jobID = jobID
|
|
}
|
|
|
|
func (iter *JobAntiAffinityIterator) Next() *RankedNode {
|
|
for {
|
|
option := iter.source.Next()
|
|
if option == nil {
|
|
return nil
|
|
}
|
|
nodeID := option.Node.ID
|
|
|
|
// Get the proposed allocations
|
|
var proposed []*structs.Allocation
|
|
if option.Proposed != nil {
|
|
proposed = option.Proposed
|
|
} else {
|
|
p, err := iter.ctx.ProposedAllocs(nodeID)
|
|
if err != nil {
|
|
iter.ctx.Logger().Printf("[ERR] sched.job-anti-affinity: failed to get proposed allocations for '%s': %v",
|
|
nodeID, err)
|
|
continue
|
|
}
|
|
proposed = p
|
|
option.Proposed = p
|
|
}
|
|
|
|
// Determine the number of collisions
|
|
collisions := 0
|
|
for _, alloc := range proposed {
|
|
if alloc.JobID == iter.jobID {
|
|
collisions += 1
|
|
}
|
|
}
|
|
|
|
// Apply a penalty if there are collisions
|
|
if collisions > 0 {
|
|
scorePenalty := float64(collisions) * iter.penalty
|
|
option.Score -= scorePenalty
|
|
iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", scorePenalty)
|
|
}
|
|
return option
|
|
}
|
|
}
|
|
|
|
func (iter *JobAntiAffinityIterator) Reset() {
|
|
iter.source.Reset()
|
|
}
|