open-nomad/scheduler/util.go

956 lines
29 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package scheduler
import (
"encoding/binary"
"fmt"
"math/rand"
log "github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/nomad/structs"
"golang.org/x/exp/maps"
"golang.org/x/exp/slices"
)
// allocTuple is a tuple of the allocation name and potential alloc ID
type allocTuple struct {
Name string
TaskGroup *structs.TaskGroup
Alloc *structs.Allocation
}
// diffResult is used to return the sets that result from the diff
type diffResult struct {
place, update, migrate, stop, ignore, lost, disconnecting, reconnecting []allocTuple
}
func (d *diffResult) GoString() string {
return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d) (lost %d) (disconnecting %d) (reconnecting %d)",
len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore), len(d.lost), len(d.disconnecting), len(d.reconnecting))
}
func (d *diffResult) Append(other *diffResult) {
d.place = append(d.place, other.place...)
d.update = append(d.update, other.update...)
d.migrate = append(d.migrate, other.migrate...)
d.stop = append(d.stop, other.stop...)
d.ignore = append(d.ignore, other.ignore...)
d.lost = append(d.lost, other.lost...)
d.disconnecting = append(d.disconnecting, other.disconnecting...)
d.reconnecting = append(d.reconnecting, other.reconnecting...)
}
// readyNodesInDCs returns all the ready nodes in the given datacenters and a
// mapping of each data center to the count of ready nodes.
func readyNodesInDCs(state State, dcs []string) ([]*structs.Node, map[string]struct{}, map[string]int, error) {
// Index the DCs
dcMap := make(map[string]int)
// Scan the nodes
ws := memdb.NewWatchSet()
var out []*structs.Node
notReady := map[string]struct{}{}
iter, err := state.Nodes(ws)
if err != nil {
return nil, nil, nil, err
}
for {
raw := iter.Next()
if raw == nil {
break
}
// Filter on datacenter and status
node := raw.(*structs.Node)
if !node.Ready() {
notReady[node.ID] = struct{}{}
continue
}
if node.IsInAnyDC(dcs) {
out = append(out, node)
dcMap[node.Datacenter]++
}
}
return out, notReady, dcMap, nil
}
// retryMax is used to retry a callback until it returns success or
// a maximum number of attempts is reached. An optional reset function may be
// passed which is called after each failed iteration. If the reset function is
// set and returns true, the number of attempts is reset back to max.
func retryMax(max int, cb func() (bool, error), reset func() bool) error {
attempts := 0
for attempts < max {
done, err := cb()
if err != nil {
return err
}
if done {
return nil
}
// Check if we should reset the number attempts
if reset != nil && reset() {
attempts = 0
} else {
attempts++
}
}
return &SetStatusError{
Err: fmt.Errorf("maximum attempts reached (%d)", max),
EvalStatus: structs.EvalStatusFailed,
}
}
// progressMade checks to see if the plan result made allocations or updates.
// If the result is nil, false is returned.
func progressMade(result *structs.PlanResult) bool {
return result != nil && (len(result.NodeUpdate) != 0 ||
len(result.NodeAllocation) != 0 || result.Deployment != nil ||
len(result.DeploymentUpdates) != 0)
}
// taintedNodes is used to scan the allocations and then check if the
// underlying nodes are tainted, and should force a migration of the allocation,
// or if the underlying nodes are disconnected, and should be used to calculate
// the reconnect timeout of its allocations. All the nodes returned in the map are tainted.
func taintedNodes(state State, allocs []*structs.Allocation) (map[string]*structs.Node, error) {
out := make(map[string]*structs.Node)
for _, alloc := range allocs {
if _, ok := out[alloc.NodeID]; ok {
continue
}
ws := memdb.NewWatchSet()
node, err := state.NodeByID(ws, alloc.NodeID)
if err != nil {
return nil, err
}
// If the node does not exist, we should migrate
if node == nil {
out[alloc.NodeID] = nil
continue
}
if structs.ShouldDrainNode(node.Status) || node.DrainStrategy != nil {
out[alloc.NodeID] = node
}
// Disconnected nodes are included in the tainted set so that their
// MaxClientDisconnect configuration can be included in the
// timeout calculation.
if node.Status == structs.NodeStatusDisconnected {
out[alloc.NodeID] = node
}
}
return out, nil
}
// shuffleNodes randomizes the slice order with the Fisher-Yates
// algorithm. We seed the random source with the eval ID (which is
// random) to aid in postmortem debugging of specific evaluations and
// state snapshots.
func shuffleNodes(plan *structs.Plan, index uint64, nodes []*structs.Node) {
// use the last 4 bytes because those are the random bits
// if we have sortable IDs
buf := []byte(plan.EvalID)
seed := binary.BigEndian.Uint64(buf[len(buf)-8:])
// for retried plans the index is the plan result's RefreshIndex
// so that we don't retry with the exact same shuffle
seed ^= index
r := rand.New(rand.NewSource(int64(seed >> 2)))
n := len(nodes)
for i := n - 1; i > 0; i-- {
j := r.Intn(i + 1)
nodes[i], nodes[j] = nodes[j], nodes[i]
}
}
// comparison records the _first_ detected difference between two groups during
// a comparison in tasksUpdated
//
// This is useful to provide context when debugging the result of tasksUpdated.
type comparison struct {
modified bool
label string
before any
after any
}
func difference(label string, before, after any) comparison {
// push string formatting into String(), so that we never call it in the
// hot path unless someone adds a log line to debug with this result
return comparison{
modified: true,
label: label,
before: before,
after: after,
}
}
func (c comparison) String() string {
return fmt.Sprintf("%s changed; before: %#v, after: %#v", c.label, c.before, c.after)
}
// same indicates no destructive difference between two task groups
var same = comparison{modified: false}
// tasksUpdated creates a comparison between task groups to see if the tasks, their
// drivers, environment variables or config have been modified.
func tasksUpdated(jobA, jobB *structs.Job, taskGroup string) comparison {
a := jobA.LookupTaskGroup(taskGroup)
b := jobB.LookupTaskGroup(taskGroup)
// If the number of tasks do not match, clearly there is an update
if lenA, lenB := len(a.Tasks), len(b.Tasks); lenA != lenB {
return difference("number of tasks", lenA, lenB)
}
// Check ephemeral disk
if !a.EphemeralDisk.Equal(b.EphemeralDisk) {
return difference("ephemeral disk", a.EphemeralDisk, b.EphemeralDisk)
}
// Check that the network resources haven't changed
if c := networkUpdated(a.Networks, b.Networks); c.modified {
return c
}
// Check Affinities
if c := affinitiesUpdated(jobA, jobB, taskGroup); c.modified {
return c
}
// Check Spreads
if c := spreadsUpdated(jobA, jobB, taskGroup); c.modified {
return c
}
// Check consul namespace updated
if c := consulNamespaceUpdated(a, b); c.modified {
return c
}
// Check connect service(s) updated
if c := connectServiceUpdated(a.Services, b.Services); c.modified {
return c
}
// Check if volumes are updated (no task driver can support
// altering mounts in-place)
if !maps.EqualFunc(a.Volumes, b.Volumes, func(a, b *structs.VolumeRequest) bool { return a.Equal(b) }) {
return difference("volume request", a.Volumes, b.Volumes)
}
// Check each task
for _, at := range a.Tasks {
bt := b.LookupTask(at.Name)
if bt == nil {
return difference("task deleted", at.Name, "(nil)")
}
if at.Driver != bt.Driver {
return difference("task driver", at.Driver, bt.Driver)
}
if at.User != bt.User {
return difference("task user", at.User, bt.User)
}
if !helper.OpaqueMapsEqual(at.Config, bt.Config) {
return difference("task config", at.Config, bt.Config)
}
if !maps.Equal(at.Env, bt.Env) {
return difference("task env", at.Env, bt.Env)
}
if !slices.EqualFunc(at.Artifacts, bt.Artifacts, func(a, b *structs.TaskArtifact) bool { return a.Equal(b) }) {
return difference("task artifacts", at.Artifacts, bt.Artifacts)
}
if !at.Vault.Equal(bt.Vault) {
return difference("task vault", at.Vault, bt.Vault)
}
if !slices.EqualFunc(at.Templates, bt.Templates, func(a, b *structs.Template) bool { return a.Equal(b) }) {
return difference("task templates", at.Templates, bt.Templates)
}
if !at.CSIPluginConfig.Equal(bt.CSIPluginConfig) {
return difference("task csi config", at.CSIPluginConfig, bt.CSIPluginConfig)
}
if !slices.EqualFunc(at.VolumeMounts, bt.VolumeMounts, func(a, b *structs.VolumeMount) bool { return a.Equal(b) }) {
return difference("task volume mount", at.VolumeMounts, bt.VolumeMounts)
}
// Check the metadata
metaA := jobA.CombinedTaskMeta(taskGroup, at.Name)
metaB := jobB.CombinedTaskMeta(taskGroup, bt.Name)
if !maps.Equal(metaA, metaB) {
return difference("task meta", metaA, metaB)
}
// Inspect the network to see if the dynamic ports are different
if c := networkUpdated(at.Resources.Networks, bt.Resources.Networks); c.modified {
return c
}
if c := nonNetworkResourcesUpdated(at.Resources, bt.Resources); c.modified {
return c
}
// Inspect Identity being exposed
if !at.Identity.Equal(bt.Identity) {
return difference("task identity", at.Identity, bt.Identity)
}
// Most LogConfig updates are in-place but if we change Enabled we need
// to recreate the task to stop/start log collection and change the
// stdout/stderr of the task
if at.LogConfig.Enabled != bt.LogConfig.Enabled {
return difference("task log enabled", at.LogConfig.Enabled, bt.LogConfig.Enabled)
}
}
// none of the fields that trigger a destructive update were modified,
// indicating this group can be updated in-place or ignored
return same
}
func nonNetworkResourcesUpdated(a, b *structs.Resources) comparison {
// Inspect the non-network resources
switch {
case a.CPU != b.CPU:
return difference("task cpu", a.CPU, b.CPU)
case a.Cores != b.Cores:
return difference("task cores", a.Cores, b.Cores)
case a.MemoryMB != b.MemoryMB:
return difference("task memory", a.MemoryMB, b.MemoryMB)
case a.MemoryMaxMB != b.MemoryMaxMB:
return difference("task memory max", a.MemoryMaxMB, b.MemoryMaxMB)
case !a.Devices.Equal(&b.Devices):
return difference("task devices", a.Devices, b.Devices)
}
return same
}
// consulNamespaceUpdated returns true if the Consul namespace in the task group
// has been changed.
//
// This is treated as a destructive update unlike ordinary Consul service configuration
// because Namespaces directly impact networking validity among Consul intentions.
// Forcing the task through a reschedule is a sure way of breaking no-longer valid
// network connections.
func consulNamespaceUpdated(tgA, tgB *structs.TaskGroup) comparison {
// job.ConsulNamespace is pushed down to the TGs, just check those
if a, b := tgA.Consul.GetNamespace(), tgB.Consul.GetNamespace(); a != b {
return difference("consul namespace", a, b)
}
return same
}
// connectServiceUpdated returns true if any services with a connect block have
// been changed in such a way that requires a destructive update.
//
// Ordinary services can be updated in-place by updating the service definition
// in Consul. Connect service changes mostly require destroying the task.
func connectServiceUpdated(servicesA, servicesB []*structs.Service) comparison {
for _, serviceA := range servicesA {
if serviceA.Connect != nil {
for _, serviceB := range servicesB {
if serviceA.Name == serviceB.Name {
if c := connectUpdated(serviceA.Connect, serviceB.Connect); c.modified {
return c
}
// Part of the Connect plumbing is derived from port label,
// if that changes we need to destroy the task.
if serviceA.PortLabel != serviceB.PortLabel {
return difference("connect service port label", serviceA.PortLabel, serviceB.PortLabel)
}
break
}
}
}
}
return same
}
// connectUpdated returns true if the connect block has been updated in a manner
// that will require a destructive update.
//
// Fields that can be updated through consul-sync do not need a destructive
// update.
func connectUpdated(connectA, connectB *structs.ConsulConnect) comparison {
if connectA == nil && connectB == nil {
return same
}
if connectA == nil && connectB != nil {
return difference("connect added", connectA, connectB)
}
if connectA != nil && connectB == nil {
return difference("connect removed", connectA, connectB)
}
if connectA.Native != connectB.Native {
return difference("connect native", connectA.Native, connectB.Native)
}
if !connectA.Gateway.Equal(connectB.Gateway) {
return difference("connect gateway", connectA.Gateway, connectB.Gateway)
}
if !connectA.SidecarTask.Equal(connectB.SidecarTask) {
return difference("connect sidecar task", connectA.SidecarTask, connectB.SidecarTask)
}
// not everything in sidecar_service needs task destruction
if c := connectSidecarServiceUpdated(connectA.SidecarService, connectB.SidecarService); c.modified {
return c
}
return same
}
func connectSidecarServiceUpdated(ssA, ssB *structs.ConsulSidecarService) comparison {
if ssA == nil && ssB == nil {
return same
}
if ssA == nil && ssB != nil {
return difference("connect service add", ssA, ssB)
}
if ssA != nil && ssB == nil {
return difference("connect service delete", ssA, ssB)
}
if ssA.Port != ssB.Port {
return difference("connect port", ssA.Port, ssB.Port)
}
// sidecar_service.tags (handled in-place via registration)
// sidecar_service.proxy (handled in-place via registration + xDS)
return same
}
func networkUpdated(netA, netB []*structs.NetworkResource) comparison {
if lenNetA, lenNetB := len(netA), len(netB); lenNetA != lenNetB {
return difference("network lengths", lenNetA, lenNetB)
}
for idx := range netA {
an := netA[idx]
bn := netB[idx]
if an.Mode != bn.Mode {
return difference("network mode", an.Mode, bn.Mode)
}
if an.MBits != bn.MBits {
return difference("network mbits", an.MBits, bn.MBits)
}
if an.Hostname != bn.Hostname {
return difference("network hostname", an.Hostname, bn.Hostname)
}
if !an.DNS.Equal(bn.DNS) {
return difference("network dns", an.DNS, bn.DNS)
}
aPorts, bPorts := networkPortMap(an), networkPortMap(bn)
if !aPorts.Equal(bPorts) {
return difference("network port map", aPorts, bPorts)
}
}
return same
}
// networkPortMap takes a network resource and returns a AllocatedPorts.
// The value for dynamic ports is disregarded even if it is set. This
// makes this function suitable for comparing two network resources for changes.
func networkPortMap(n *structs.NetworkResource) structs.AllocatedPorts {
var m structs.AllocatedPorts
for _, p := range n.ReservedPorts {
m = append(m, structs.AllocatedPortMapping{
Label: p.Label,
Value: p.Value,
To: p.To,
HostIP: p.HostNetwork,
})
}
for _, p := range n.DynamicPorts {
m = append(m, structs.AllocatedPortMapping{
Label: p.Label,
Value: -1,
To: p.To,
HostIP: p.HostNetwork,
})
}
return m
}
func affinitiesUpdated(jobA, jobB *structs.Job, taskGroup string) comparison {
var affinitiesA structs.Affinities
var affinitiesB structs.Affinities
// accumulate job affinities
affinitiesA = append(affinitiesA, jobA.Affinities...)
affinitiesB = append(affinitiesB, jobB.Affinities...)
tgA := jobA.LookupTaskGroup(taskGroup)
tgB := jobB.LookupTaskGroup(taskGroup)
// append group level affinities
affinitiesA = append(affinitiesA, tgA.Affinities...)
affinitiesB = append(affinitiesB, tgB.Affinities...)
// append task level affinities for A
for _, task := range tgA.Tasks {
affinitiesA = append(affinitiesA, task.Affinities...)
}
// append task level affinities for B
for _, task := range tgB.Tasks {
affinitiesB = append(affinitiesB, task.Affinities...)
}
// finally check if all the affinities from both jobs match
if !affinitiesA.Equal(&affinitiesB) {
return difference("affinities", affinitiesA, affinitiesB)
}
return same
}
func spreadsUpdated(jobA, jobB *structs.Job, taskGroup string) comparison {
var spreadsA []*structs.Spread
var spreadsB []*structs.Spread
// accumulate job spreads
spreadsA = append(spreadsA, jobA.Spreads...)
spreadsB = append(spreadsB, jobB.Spreads...)
tgA := jobA.LookupTaskGroup(taskGroup)
tgB := jobB.LookupTaskGroup(taskGroup)
// append group spreads
spreadsA = append(spreadsA, tgA.Spreads...)
spreadsB = append(spreadsB, tgB.Spreads...)
if !slices.EqualFunc(spreadsA, spreadsB, func(a, b *structs.Spread) bool {
return a.Equal(b)
}) {
return difference("spreads", spreadsA, spreadsB)
}
return same
}
// setStatus is used to update the status of the evaluation
func setStatus(logger log.Logger, planner Planner,
eval, nextEval, spawnedBlocked *structs.Evaluation,
tgMetrics map[string]*structs.AllocMetric, status, desc string,
queuedAllocs map[string]int, deploymentID string) error {
logger.Debug("setting eval status", "status", status)
newEval := eval.Copy()
newEval.Status = status
newEval.StatusDescription = desc
newEval.DeploymentID = deploymentID
newEval.FailedTGAllocs = tgMetrics
if nextEval != nil {
newEval.NextEval = nextEval.ID
}
if spawnedBlocked != nil {
newEval.BlockedEval = spawnedBlocked.ID
}
if queuedAllocs != nil {
newEval.QueuedAllocations = queuedAllocs
}
return planner.UpdateEval(newEval)
}
// inplaceUpdate attempts to update allocations in-place where possible. It
// returns the allocs that couldn't be done inplace and then those that could.
func inplaceUpdate(ctx Context, eval *structs.Evaluation, job *structs.Job,
stack Stack, updates []allocTuple) (destructive, inplace []allocTuple) {
// doInplace manipulates the updates map to make the current allocation
// an inplace update.
doInplace := func(cur, last, inplaceCount *int) {
updates[*cur], updates[*last-1] = updates[*last-1], updates[*cur]
*cur--
*last--
*inplaceCount++
}
ws := memdb.NewWatchSet()
n := len(updates)
inplaceCount := 0
for i := 0; i < n; i++ {
// Get the update
update := updates[i]
// Check if the task drivers or config has changed, requires
// a rolling upgrade since that cannot be done in-place.
existing := update.Alloc.Job
if c := tasksUpdated(job, existing, update.TaskGroup.Name); c.modified {
continue
}
// Terminal batch allocations are not filtered when they are completed
// successfully. We should avoid adding the allocation to the plan in
// the case that it is an in-place update to avoid both additional data
// in the plan and work for the clients.
if update.Alloc.TerminalStatus() {
doInplace(&i, &n, &inplaceCount)
continue
}
// Get the existing node
node, err := ctx.State().NodeByID(ws, update.Alloc.NodeID)
if err != nil {
ctx.Logger().Error("failed to get node", "node_id", update.Alloc.NodeID, "error", err)
continue
}
if node == nil {
continue
}
// The alloc is on a node that's now in an ineligible DC
if !node.IsInAnyDC(job.Datacenters) {
continue
}
// Set the existing node as the base set
stack.SetNodes([]*structs.Node{node})
// Stage an eviction of the current allocation. This is done so that
// the current allocation is discounted when checking for feasibility.
// Otherwise we would be trying to fit the tasks current resources and
// updated resources. After select is called we can remove the evict.
ctx.Plan().AppendStoppedAlloc(update.Alloc, allocInPlace, "", "")
// Attempt to match the task group
option := stack.Select(update.TaskGroup,
&SelectOptions{AllocName: update.Alloc.Name})
// Pop the allocation
ctx.Plan().PopUpdate(update.Alloc)
// Skip if we could not do an in-place update
if option == nil {
continue
}
// Restore the network and device offers from the existing allocation.
// We do not allow network resources (reserved/dynamic ports)
// to be updated. This is guarded in taskUpdated, so we can
// safely restore those here.
for task, resources := range option.TaskResources {
var networks structs.Networks
var devices []*structs.AllocatedDeviceResource
if update.Alloc.AllocatedResources != nil {
if tr, ok := update.Alloc.AllocatedResources.Tasks[task]; ok {
networks = tr.Networks
devices = tr.Devices
}
} else if tr, ok := update.Alloc.TaskResources[task]; ok {
networks = tr.Networks
}
// Add the networks and devices back
resources.Networks = networks
resources.Devices = devices
}
// Create a shallow copy
newAlloc := new(structs.Allocation)
*newAlloc = *update.Alloc
// Update the allocation
newAlloc.EvalID = eval.ID
newAlloc.Job = nil // Use the Job in the Plan
newAlloc.Resources = nil // Computed in Plan Apply
newAlloc.AllocatedResources = &structs.AllocatedResources{
Tasks: option.TaskResources,
TaskLifecycles: option.TaskLifecycles,
Shared: structs.AllocatedSharedResources{
DiskMB: int64(update.TaskGroup.EphemeralDisk.SizeMB),
Ports: update.Alloc.AllocatedResources.Shared.Ports,
Networks: update.Alloc.AllocatedResources.Shared.Networks.Copy(),
},
}
newAlloc.Metrics = ctx.Metrics()
ctx.Plan().AppendAlloc(newAlloc, nil)
// Remove this allocation from the slice
doInplace(&i, &n, &inplaceCount)
}
if len(updates) > 0 {
ctx.Logger().Debug("made in-place updates", "in-place", inplaceCount, "total_updates", len(updates))
}
return updates[:n], updates[n:]
}
// desiredUpdates takes the diffResult as well as the set of inplace and
// destructive updates and returns a map of task groups to their set of desired
// updates.
func desiredUpdates(diff *diffResult, inplaceUpdates,
destructiveUpdates []allocTuple) map[string]*structs.DesiredUpdates {
desiredTgs := make(map[string]*structs.DesiredUpdates)
for _, tuple := range diff.place {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Place++
}
for _, tuple := range diff.stop {
name := tuple.Alloc.TaskGroup
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Stop++
}
for _, tuple := range diff.ignore {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Ignore++
}
for _, tuple := range diff.migrate {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Migrate++
}
for _, tuple := range inplaceUpdates {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.InPlaceUpdate++
}
for _, tuple := range destructiveUpdates {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.DestructiveUpdate++
}
return desiredTgs
}
// adjustQueuedAllocations decrements the number of allocations pending per task
// group based on the number of allocations successfully placed
func adjustQueuedAllocations(logger log.Logger, result *structs.PlanResult, queuedAllocs map[string]int) {
if result == nil {
return
}
for _, allocations := range result.NodeAllocation {
for _, allocation := range allocations {
// Ensure that the allocation is newly created. We check that
// the CreateIndex is equal to the ModifyIndex in order to check
// that the allocation was just created. We do not check that
// the CreateIndex is equal to the results AllocIndex because
// the allocations we get back have gone through the planner's
// optimistic snapshot and thus their indexes may not be
// correct, but they will be consistent.
if allocation.CreateIndex != allocation.ModifyIndex {
continue
}
if _, ok := queuedAllocs[allocation.TaskGroup]; ok {
queuedAllocs[allocation.TaskGroup]--
} else {
logger.Error("allocation placed but task group is not in list of unplaced allocations", "task_group", allocation.TaskGroup)
}
}
}
}
// updateNonTerminalAllocsToLost updates the allocations which are in pending/running state
// on tainted node to lost, but only for allocs already DesiredStatus stop or evict
func updateNonTerminalAllocsToLost(plan *structs.Plan, tainted map[string]*structs.Node, allocs []*structs.Allocation) {
for _, alloc := range allocs {
node, ok := tainted[alloc.NodeID]
if !ok {
continue
}
// Only handle down nodes or nodes that are gone (node == nil)
if node != nil && node.Status != structs.NodeStatusDown {
continue
}
// If the alloc is already correctly marked lost, we're done
if (alloc.DesiredStatus == structs.AllocDesiredStatusStop ||
alloc.DesiredStatus == structs.AllocDesiredStatusEvict) &&
(alloc.ClientStatus == structs.AllocClientStatusRunning ||
alloc.ClientStatus == structs.AllocClientStatusPending) {
plan.AppendStoppedAlloc(alloc, allocLost, structs.AllocClientStatusLost, "")
}
}
}
// genericAllocUpdateFn is a factory for the scheduler to create an allocUpdateType
// function to be passed into the reconciler. The factory takes objects that
// exist only in the scheduler context and returns a function that can be used
// by the reconciler to make decisions about how to update an allocation. The
// factory allows the reconciler to be unaware of how to determine the type of
// update necessary and can minimize the set of objects it is exposed to.
func genericAllocUpdateFn(ctx Context, stack Stack, evalID string) allocUpdateType {
return func(existing *structs.Allocation, newJob *structs.Job, newTG *structs.TaskGroup) (ignore, destructive bool, updated *structs.Allocation) {
// Same index, so nothing to do
if existing.Job.JobModifyIndex == newJob.JobModifyIndex {
return true, false, nil
}
// Check if the task drivers or config has changed, requires
// a destructive upgrade since that cannot be done in-place.
if c := tasksUpdated(newJob, existing.Job, newTG.Name); c.modified {
return false, true, nil
}
// Terminal batch allocations are not filtered when they are completed
// successfully. We should avoid adding the allocation to the plan in
// the case that it is an in-place update to avoid both additional data
// in the plan and work for the clients.
if existing.TerminalStatus() {
return true, false, nil
}
// Get the existing node
ws := memdb.NewWatchSet()
node, err := ctx.State().NodeByID(ws, existing.NodeID)
if err != nil {
ctx.Logger().Error("failed to get node", "node_id", existing.NodeID, "error", err)
return true, false, nil
}
if node == nil {
return false, true, nil
}
// The alloc is on a node that's now in an ineligible DC
if !node.IsInAnyDC(newJob.Datacenters) {
return false, true, nil
}
// Set the existing node as the base set
stack.SetNodes([]*structs.Node{node})
// Stage an eviction of the current allocation. This is done so that
// the current allocation is discounted when checking for feasibility.
// Otherwise we would be trying to fit the tasks current resources and
// updated resources. After select is called we can remove the evict.
ctx.Plan().AppendStoppedAlloc(existing, allocInPlace, "", "")
// Attempt to match the task group
option := stack.Select(newTG, &SelectOptions{AllocName: existing.Name})
// Pop the allocation
ctx.Plan().PopUpdate(existing)
// Require destructive if we could not do an in-place update
if option == nil {
return false, true, nil
}
// Restore the network and device offers from the existing allocation.
// We do not allow network resources (reserved/dynamic ports)
// to be updated. This is guarded in taskUpdated, so we can
// safely restore those here.
for task, resources := range option.TaskResources {
var networks structs.Networks
var devices []*structs.AllocatedDeviceResource
if existing.AllocatedResources != nil {
if tr, ok := existing.AllocatedResources.Tasks[task]; ok {
networks = tr.Networks
devices = tr.Devices
}
} else if tr, ok := existing.TaskResources[task]; ok {
networks = tr.Networks
}
// Add the networks back
resources.Networks = networks
resources.Devices = devices
}
// Create a shallow copy
newAlloc := new(structs.Allocation)
*newAlloc = *existing
// Update the allocation
newAlloc.EvalID = evalID
newAlloc.Job = nil // Use the Job in the Plan
newAlloc.Resources = nil // Computed in Plan Apply
newAlloc.AllocatedResources = &structs.AllocatedResources{
Tasks: option.TaskResources,
TaskLifecycles: option.TaskLifecycles,
Shared: structs.AllocatedSharedResources{
DiskMB: int64(newTG.EphemeralDisk.SizeMB),
},
}
// Since this is an inplace update, we should copy network and port
// information from the original alloc. This is similar to how
// we copy network info for task level networks above.
//
// existing.AllocatedResources is nil on Allocations created by
// Nomad v0.8 or earlier.
if existing.AllocatedResources != nil {
newAlloc.AllocatedResources.Shared.Networks = existing.AllocatedResources.Shared.Networks
newAlloc.AllocatedResources.Shared.Ports = existing.AllocatedResources.Shared.Ports
}
// Use metrics from existing alloc for in place upgrade
// This is because if the inplace upgrade succeeded, any scoring metadata from
// when it first went through the scheduler should still be preserved. Using scoring
// metadata from the context would incorrectly replace it with metadata only from a single node that the
// allocation is already on.
newAlloc.Metrics = existing.Metrics.Copy()
return false, false, newAlloc
}
}