open-nomad/vendor/github.com/cilium/ebpf/elf_reader.go

699 lines
20 KiB
Go

package ebpf
import (
"bytes"
"debug/elf"
"encoding/binary"
"io"
"math"
"os"
"strings"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/btf"
"github.com/cilium/ebpf/internal/unix"
"golang.org/x/xerrors"
)
type elfCode struct {
*elf.File
symbols []elf.Symbol
symbolsPerSection map[elf.SectionIndex]map[uint64]elf.Symbol
license string
version uint32
}
// LoadCollectionSpec parses an ELF file into a CollectionSpec.
func LoadCollectionSpec(file string) (*CollectionSpec, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
defer f.Close()
spec, err := LoadCollectionSpecFromReader(f)
if err != nil {
return nil, xerrors.Errorf("file %s: %w", file, err)
}
return spec, nil
}
// LoadCollectionSpecFromReader parses an ELF file into a CollectionSpec.
func LoadCollectionSpecFromReader(rd io.ReaderAt) (*CollectionSpec, error) {
f, err := elf.NewFile(rd)
if err != nil {
return nil, err
}
defer f.Close()
symbols, err := f.Symbols()
if err != nil {
return nil, xerrors.Errorf("load symbols: %v", err)
}
ec := &elfCode{f, symbols, symbolsPerSection(symbols), "", 0}
var (
licenseSection *elf.Section
versionSection *elf.Section
btfMaps = make(map[elf.SectionIndex]*elf.Section)
progSections = make(map[elf.SectionIndex]*elf.Section)
relSections = make(map[elf.SectionIndex]*elf.Section)
mapSections = make(map[elf.SectionIndex]*elf.Section)
dataSections = make(map[elf.SectionIndex]*elf.Section)
)
for i, sec := range ec.Sections {
switch {
case strings.HasPrefix(sec.Name, "license"):
licenseSection = sec
case strings.HasPrefix(sec.Name, "version"):
versionSection = sec
case strings.HasPrefix(sec.Name, "maps"):
mapSections[elf.SectionIndex(i)] = sec
case sec.Name == ".maps":
btfMaps[elf.SectionIndex(i)] = sec
case sec.Name == ".bss" || sec.Name == ".rodata" || sec.Name == ".data":
dataSections[elf.SectionIndex(i)] = sec
case sec.Type == elf.SHT_REL:
if int(sec.Info) >= len(ec.Sections) {
return nil, xerrors.Errorf("found relocation section %v for missing section %v", i, sec.Info)
}
// Store relocations under the section index of the target
idx := elf.SectionIndex(sec.Info)
if relSections[idx] != nil {
return nil, xerrors.Errorf("section %d has multiple relocation sections", sec.Info)
}
relSections[idx] = sec
case sec.Type == elf.SHT_PROGBITS && (sec.Flags&elf.SHF_EXECINSTR) != 0 && sec.Size > 0:
progSections[elf.SectionIndex(i)] = sec
}
}
ec.license, err = loadLicense(licenseSection)
if err != nil {
return nil, xerrors.Errorf("load license: %w", err)
}
ec.version, err = loadVersion(versionSection, ec.ByteOrder)
if err != nil {
return nil, xerrors.Errorf("load version: %w", err)
}
btfSpec, err := btf.LoadSpecFromReader(rd)
if err != nil {
return nil, xerrors.Errorf("load BTF: %w", err)
}
maps := make(map[string]*MapSpec)
if err := ec.loadMaps(maps, mapSections); err != nil {
return nil, xerrors.Errorf("load maps: %w", err)
}
if len(btfMaps) > 0 {
if err := ec.loadBTFMaps(maps, btfMaps, btfSpec); err != nil {
return nil, xerrors.Errorf("load BTF maps: %w", err)
}
}
if len(dataSections) > 0 {
if err := ec.loadDataSections(maps, dataSections, btfSpec); err != nil {
return nil, xerrors.Errorf("load data sections: %w", err)
}
}
relocations, err := ec.loadRelocations(relSections)
if err != nil {
return nil, xerrors.Errorf("load relocations: %w", err)
}
progs, err := ec.loadPrograms(progSections, relocations, btfSpec)
if err != nil {
return nil, xerrors.Errorf("load programs: %w", err)
}
return &CollectionSpec{maps, progs}, nil
}
func loadLicense(sec *elf.Section) (string, error) {
if sec == nil {
return "", xerrors.New("missing license section")
}
data, err := sec.Data()
if err != nil {
return "", xerrors.Errorf("section %s: %v", sec.Name, err)
}
return string(bytes.TrimRight(data, "\000")), nil
}
func loadVersion(sec *elf.Section, bo binary.ByteOrder) (uint32, error) {
if sec == nil {
return 0, nil
}
var version uint32
if err := binary.Read(sec.Open(), bo, &version); err != nil {
return 0, xerrors.Errorf("section %s: %v", sec.Name, err)
}
return version, nil
}
func (ec *elfCode) loadPrograms(progSections map[elf.SectionIndex]*elf.Section, relocations map[elf.SectionIndex]map[uint64]elf.Symbol, btf *btf.Spec) (map[string]*ProgramSpec, error) {
var (
progs []*ProgramSpec
libs []*ProgramSpec
)
for idx, sec := range progSections {
syms := ec.symbolsPerSection[idx]
if len(syms) == 0 {
return nil, xerrors.Errorf("section %v: missing symbols", sec.Name)
}
funcSym, ok := syms[0]
if !ok {
return nil, xerrors.Errorf("section %v: no label at start", sec.Name)
}
insns, length, err := ec.loadInstructions(sec, syms, relocations[idx])
if err != nil {
return nil, xerrors.Errorf("program %s: can't unmarshal instructions: %w", funcSym.Name, err)
}
progType, attachType, attachTo := getProgType(sec.Name)
spec := &ProgramSpec{
Name: funcSym.Name,
Type: progType,
AttachType: attachType,
AttachTo: attachTo,
License: ec.license,
KernelVersion: ec.version,
Instructions: insns,
ByteOrder: ec.ByteOrder,
}
if btf != nil {
spec.BTF, err = btf.Program(sec.Name, length)
if err != nil {
return nil, xerrors.Errorf("BTF for section %s (program %s): %w", sec.Name, funcSym.Name, err)
}
}
if spec.Type == UnspecifiedProgram {
// There is no single name we can use for "library" sections,
// since they may contain multiple functions. We'll decode the
// labels they contain later on, and then link sections that way.
libs = append(libs, spec)
} else {
progs = append(progs, spec)
}
}
res := make(map[string]*ProgramSpec, len(progs))
for _, prog := range progs {
err := link(prog, libs)
if err != nil {
return nil, xerrors.Errorf("program %s: %w", prog.Name, err)
}
res[prog.Name] = prog
}
return res, nil
}
func (ec *elfCode) loadInstructions(section *elf.Section, symbols, relocations map[uint64]elf.Symbol) (asm.Instructions, uint64, error) {
var (
r = section.Open()
insns asm.Instructions
offset uint64
)
for {
var ins asm.Instruction
n, err := ins.Unmarshal(r, ec.ByteOrder)
if err == io.EOF {
return insns, offset, nil
}
if err != nil {
return nil, 0, xerrors.Errorf("offset %d: %w", offset, err)
}
ins.Symbol = symbols[offset].Name
if rel, ok := relocations[offset]; ok {
if err = ec.relocateInstruction(&ins, rel); err != nil {
return nil, 0, xerrors.Errorf("offset %d: can't relocate instruction: %w", offset, err)
}
}
insns = append(insns, ins)
offset += n
}
}
func (ec *elfCode) relocateInstruction(ins *asm.Instruction, rel elf.Symbol) error {
var (
typ = elf.ST_TYPE(rel.Info)
bind = elf.ST_BIND(rel.Info)
name = rel.Name
)
if typ == elf.STT_SECTION {
// Symbols with section type do not have a name set. Get it
// from the section itself.
idx := int(rel.Section)
if idx > len(ec.Sections) {
return xerrors.New("out-of-bounds section index")
}
name = ec.Sections[idx].Name
}
outer:
switch {
case ins.OpCode == asm.LoadImmOp(asm.DWord):
// There are two distinct types of a load from a map:
// a direct one, where the value is extracted without
// a call to map_lookup_elem in eBPF, and an indirect one
// that goes via the helper. They are distinguished by
// different relocations.
switch typ {
case elf.STT_SECTION:
// This is a direct load since the referenced symbol is a
// section. Weirdly, the offset of the real symbol in the
// section is encoded in the instruction stream.
if bind != elf.STB_LOCAL {
return xerrors.Errorf("direct load: %s: unsupported relocation %s", name, bind)
}
// For some reason, clang encodes the offset of the symbol its
// section in the first basic BPF instruction, while the kernel
// expects it in the second one.
ins.Constant <<= 32
ins.Src = asm.PseudoMapValue
case elf.STT_NOTYPE:
if bind == elf.STB_GLOBAL && rel.Section == elf.SHN_UNDEF {
// This is a relocation generated by inline assembly.
// We can't do more than assigning ins.Reference.
break outer
}
// This is an ELF generated on clang < 8, which doesn't tag
// relocations appropriately.
fallthrough
case elf.STT_OBJECT:
if bind != elf.STB_GLOBAL {
return xerrors.Errorf("load: %s: unsupported binding: %s", name, bind)
}
ins.Src = asm.PseudoMapFD
default:
return xerrors.Errorf("load: %s: unsupported relocation: %s", name, typ)
}
// Mark the instruction as needing an update when creating the
// collection.
if err := ins.RewriteMapPtr(-1); err != nil {
return err
}
case ins.OpCode.JumpOp() == asm.Call:
if ins.Src != asm.PseudoCall {
return xerrors.Errorf("call: %s: incorrect source register", name)
}
switch typ {
case elf.STT_NOTYPE, elf.STT_FUNC:
if bind != elf.STB_GLOBAL {
return xerrors.Errorf("call: %s: unsupported binding: %s", name, bind)
}
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return xerrors.Errorf("call: %s: unsupported binding: %s", name, bind)
}
// The function we want to call is in the indicated section,
// at the offset encoded in the instruction itself. Reverse
// the calculation to find the real function we're looking for.
// A value of -1 references the first instruction in the section.
offset := int64(int32(ins.Constant)+1) * asm.InstructionSize
if offset < 0 {
return xerrors.Errorf("call: %s: invalid offset %d", name, offset)
}
sym, ok := ec.symbolsPerSection[rel.Section][uint64(offset)]
if !ok {
return xerrors.Errorf("call: %s: no symbol at offset %d", name, offset)
}
ins.Constant = -1
name = sym.Name
default:
return xerrors.Errorf("call: %s: invalid symbol type %s", name, typ)
}
default:
return xerrors.Errorf("relocation for unsupported instruction: %s", ins.OpCode)
}
ins.Reference = name
return nil
}
func (ec *elfCode) loadMaps(maps map[string]*MapSpec, mapSections map[elf.SectionIndex]*elf.Section) error {
for idx, sec := range mapSections {
syms := ec.symbolsPerSection[idx]
if len(syms) == 0 {
return xerrors.Errorf("section %v: no symbols", sec.Name)
}
if sec.Size%uint64(len(syms)) != 0 {
return xerrors.Errorf("section %v: map descriptors are not of equal size", sec.Name)
}
var (
r = sec.Open()
size = sec.Size / uint64(len(syms))
)
for i, offset := 0, uint64(0); i < len(syms); i, offset = i+1, offset+size {
mapSym, ok := syms[offset]
if !ok {
return xerrors.Errorf("section %s: missing symbol for map at offset %d", sec.Name, offset)
}
if maps[mapSym.Name] != nil {
return xerrors.Errorf("section %v: map %v already exists", sec.Name, mapSym)
}
lr := io.LimitReader(r, int64(size))
spec := MapSpec{
Name: SanitizeName(mapSym.Name, -1),
}
switch {
case binary.Read(lr, ec.ByteOrder, &spec.Type) != nil:
return xerrors.Errorf("map %v: missing type", mapSym)
case binary.Read(lr, ec.ByteOrder, &spec.KeySize) != nil:
return xerrors.Errorf("map %v: missing key size", mapSym)
case binary.Read(lr, ec.ByteOrder, &spec.ValueSize) != nil:
return xerrors.Errorf("map %v: missing value size", mapSym)
case binary.Read(lr, ec.ByteOrder, &spec.MaxEntries) != nil:
return xerrors.Errorf("map %v: missing max entries", mapSym)
case binary.Read(lr, ec.ByteOrder, &spec.Flags) != nil:
return xerrors.Errorf("map %v: missing flags", mapSym)
}
if _, err := io.Copy(internal.DiscardZeroes{}, lr); err != nil {
return xerrors.Errorf("map %v: unknown and non-zero fields in definition", mapSym)
}
maps[mapSym.Name] = &spec
}
}
return nil
}
func (ec *elfCode) loadBTFMaps(maps map[string]*MapSpec, mapSections map[elf.SectionIndex]*elf.Section, spec *btf.Spec) error {
if spec == nil {
return xerrors.Errorf("missing BTF")
}
for idx, sec := range mapSections {
syms := ec.symbolsPerSection[idx]
if len(syms) == 0 {
return xerrors.Errorf("section %v: no symbols", sec.Name)
}
for _, sym := range syms {
name := sym.Name
if maps[name] != nil {
return xerrors.Errorf("section %v: map %v already exists", sec.Name, sym)
}
btfMap, btfMapMembers, err := spec.Map(name)
if err != nil {
return xerrors.Errorf("map %v: can't get BTF: %w", name, err)
}
spec, err := mapSpecFromBTF(btfMap, btfMapMembers)
if err != nil {
return xerrors.Errorf("map %v: %w", name, err)
}
maps[name] = spec
}
}
return nil
}
func mapSpecFromBTF(btfMap *btf.Map, btfMapMembers []btf.Member) (*MapSpec, error) {
var (
mapType, flags, maxEntries uint32
err error
)
for _, member := range btfMapMembers {
switch member.Name {
case "type":
mapType, err = uintFromBTF(member.Type)
if err != nil {
return nil, xerrors.Errorf("can't get type: %w", err)
}
case "map_flags":
flags, err = uintFromBTF(member.Type)
if err != nil {
return nil, xerrors.Errorf("can't get BTF map flags: %w", err)
}
case "max_entries":
maxEntries, err = uintFromBTF(member.Type)
if err != nil {
return nil, xerrors.Errorf("can't get BTF map max entries: %w", err)
}
case "key":
case "value":
default:
return nil, xerrors.Errorf("unrecognized field %s in BTF map definition", member.Name)
}
}
keySize, err := btf.Sizeof(btf.MapKey(btfMap))
if err != nil {
return nil, xerrors.Errorf("can't get size of BTF key: %w", err)
}
valueSize, err := btf.Sizeof(btf.MapValue(btfMap))
if err != nil {
return nil, xerrors.Errorf("can't get size of BTF value: %w", err)
}
return &MapSpec{
Type: MapType(mapType),
KeySize: uint32(keySize),
ValueSize: uint32(valueSize),
MaxEntries: maxEntries,
Flags: flags,
BTF: btfMap,
}, nil
}
// uintFromBTF resolves the __uint macro, which is a pointer to a sized
// array, e.g. for int (*foo)[10], this function will return 10.
func uintFromBTF(typ btf.Type) (uint32, error) {
ptr, ok := typ.(*btf.Pointer)
if !ok {
return 0, xerrors.Errorf("not a pointer: %v", typ)
}
arr, ok := ptr.Target.(*btf.Array)
if !ok {
return 0, xerrors.Errorf("not a pointer to array: %v", typ)
}
return arr.Nelems, nil
}
func (ec *elfCode) loadDataSections(maps map[string]*MapSpec, dataSections map[elf.SectionIndex]*elf.Section, spec *btf.Spec) error {
if spec == nil {
return xerrors.New("data sections require BTF, make sure all consts are marked as static")
}
for _, sec := range dataSections {
btfMap, err := spec.Datasec(sec.Name)
if err != nil {
return err
}
data, err := sec.Data()
if err != nil {
return xerrors.Errorf("data section %s: can't get contents: %w", sec.Name, err)
}
if uint64(len(data)) > math.MaxUint32 {
return xerrors.Errorf("data section %s: contents exceed maximum size", sec.Name)
}
mapSpec := &MapSpec{
Name: SanitizeName(sec.Name, -1),
Type: Array,
KeySize: 4,
ValueSize: uint32(len(data)),
MaxEntries: 1,
Contents: []MapKV{{uint32(0), data}},
BTF: btfMap,
}
switch sec.Name {
case ".rodata":
mapSpec.Flags = unix.BPF_F_RDONLY_PROG
mapSpec.Freeze = true
case ".bss":
// The kernel already zero-initializes the map
mapSpec.Contents = nil
}
maps[sec.Name] = mapSpec
}
return nil
}
func getProgType(sectionName string) (ProgramType, AttachType, string) {
types := map[string]struct {
progType ProgramType
attachType AttachType
}{
// From https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/libbpf.c
"socket": {SocketFilter, AttachNone},
"seccomp": {SocketFilter, AttachNone},
"kprobe/": {Kprobe, AttachNone},
"uprobe/": {Kprobe, AttachNone},
"kretprobe/": {Kprobe, AttachNone},
"uretprobe/": {Kprobe, AttachNone},
"tracepoint/": {TracePoint, AttachNone},
"raw_tracepoint/": {RawTracepoint, AttachNone},
"xdp": {XDP, AttachNone},
"perf_event": {PerfEvent, AttachNone},
"lwt_in": {LWTIn, AttachNone},
"lwt_out": {LWTOut, AttachNone},
"lwt_xmit": {LWTXmit, AttachNone},
"lwt_seg6local": {LWTSeg6Local, AttachNone},
"sockops": {SockOps, AttachCGroupSockOps},
"sk_skb/stream_parser": {SkSKB, AttachSkSKBStreamParser},
"sk_skb/stream_verdict": {SkSKB, AttachSkSKBStreamParser},
"sk_msg": {SkMsg, AttachSkSKBStreamVerdict},
"lirc_mode2": {LircMode2, AttachLircMode2},
"flow_dissector": {FlowDissector, AttachFlowDissector},
"iter/": {Tracing, AttachTraceIter},
"cgroup_skb/ingress": {CGroupSKB, AttachCGroupInetIngress},
"cgroup_skb/egress": {CGroupSKB, AttachCGroupInetEgress},
"cgroup/dev": {CGroupDevice, AttachCGroupDevice},
"cgroup/skb": {CGroupSKB, AttachNone},
"cgroup/sock": {CGroupSock, AttachCGroupInetSockCreate},
"cgroup/post_bind4": {CGroupSock, AttachCGroupInet4PostBind},
"cgroup/post_bind6": {CGroupSock, AttachCGroupInet6PostBind},
"cgroup/bind4": {CGroupSockAddr, AttachCGroupInet4Bind},
"cgroup/bind6": {CGroupSockAddr, AttachCGroupInet6Bind},
"cgroup/connect4": {CGroupSockAddr, AttachCGroupInet4Connect},
"cgroup/connect6": {CGroupSockAddr, AttachCGroupInet6Connect},
"cgroup/sendmsg4": {CGroupSockAddr, AttachCGroupUDP4Sendmsg},
"cgroup/sendmsg6": {CGroupSockAddr, AttachCGroupUDP6Sendmsg},
"cgroup/recvmsg4": {CGroupSockAddr, AttachCGroupUDP4Recvmsg},
"cgroup/recvmsg6": {CGroupSockAddr, AttachCGroupUDP6Recvmsg},
"cgroup/sysctl": {CGroupSysctl, AttachCGroupSysctl},
"cgroup/getsockopt": {CGroupSockopt, AttachCGroupGetsockopt},
"cgroup/setsockopt": {CGroupSockopt, AttachCGroupSetsockopt},
"classifier": {SchedCLS, AttachNone},
"action": {SchedACT, AttachNone},
}
for prefix, t := range types {
if !strings.HasPrefix(sectionName, prefix) {
continue
}
if !strings.HasSuffix(prefix, "/") {
return t.progType, t.attachType, ""
}
return t.progType, t.attachType, sectionName[len(prefix):]
}
return UnspecifiedProgram, AttachNone, ""
}
func (ec *elfCode) loadRelocations(sections map[elf.SectionIndex]*elf.Section) (map[elf.SectionIndex]map[uint64]elf.Symbol, error) {
result := make(map[elf.SectionIndex]map[uint64]elf.Symbol)
for idx, sec := range sections {
rels := make(map[uint64]elf.Symbol)
if sec.Entsize < 16 {
return nil, xerrors.Errorf("section %s: relocations are less than 16 bytes", sec.Name)
}
r := sec.Open()
for off := uint64(0); off < sec.Size; off += sec.Entsize {
ent := io.LimitReader(r, int64(sec.Entsize))
var rel elf.Rel64
if binary.Read(ent, ec.ByteOrder, &rel) != nil {
return nil, xerrors.Errorf("can't parse relocation at offset %v", off)
}
symNo := int(elf.R_SYM64(rel.Info) - 1)
if symNo >= len(ec.symbols) {
return nil, xerrors.Errorf("relocation at offset %d: symbol %v doesnt exist", off, symNo)
}
rels[rel.Off] = ec.symbols[symNo]
}
result[idx] = rels
}
return result, nil
}
func symbolsPerSection(symbols []elf.Symbol) map[elf.SectionIndex]map[uint64]elf.Symbol {
result := make(map[elf.SectionIndex]map[uint64]elf.Symbol)
for _, sym := range symbols {
switch elf.ST_TYPE(sym.Info) {
case elf.STT_NOTYPE:
// Older versions of LLVM doesn't tag
// symbols correctly.
break
case elf.STT_OBJECT:
break
case elf.STT_FUNC:
break
default:
continue
}
if sym.Section == elf.SHN_UNDEF || sym.Section >= elf.SHN_LORESERVE {
continue
}
if sym.Name == "" {
continue
}
idx := sym.Section
if _, ok := result[idx]; !ok {
result[idx] = make(map[uint64]elf.Symbol)
}
result[idx][sym.Value] = sym
}
return result
}