open-nomad/nomad/state/state_store.go

6836 lines
191 KiB
Go

package state
import (
"context"
"errors"
"fmt"
"reflect"
"sort"
"strings"
"time"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/nomad/stream"
"github.com/hashicorp/nomad/nomad/structs"
)
// Txn is a transaction against a state store.
// This can be a read or write transaction.
type Txn = *txn
// SortOption represents how results can be sorted.
type SortOption bool
const (
// SortDefault indicates that the result should be returned using the
// default go-memdb ResultIterator order.
SortDefault SortOption = false
// SortReverse indicates that the result should be returned using the
// reversed go-memdb ResultIterator order.
SortReverse SortOption = true
)
const (
// NodeEligibilityEventPlanRejectThreshold is the message used when the node
// is set to ineligible due to multiple plan failures.
// This is a preventive measure to signal scheduler workers to not consider
// the node for future placements.
// Plan rejections for a node are expected due to the optimistic and
// concurrent nature of the scheduling process, but repeated failures for
// the same node may indicate an underlying issue not detected by Nomad.
// The plan applier keeps track of plan rejection history and will mark
// nodes as ineligible if they cross a given threshold.
NodeEligibilityEventPlanRejectThreshold = "Node marked as ineligible for scheduling due to multiple plan rejections, refer to https://www.nomadproject.io/s/port-plan-failure for more information"
// NodeRegisterEventRegistered is the message used when the node becomes
// registered.
NodeRegisterEventRegistered = "Node registered"
// NodeRegisterEventReregistered is the message used when the node becomes
// re-registered.
NodeRegisterEventReregistered = "Node re-registered"
)
// terminate appends the go-memdb terminator character to s.
//
// We can then use the result for exact matches during prefix
// scans over compound indexes that start with s.
func terminate(s string) string {
return s + "\x00"
}
// IndexEntry is used with the "index" table
// for managing the latest Raft index affecting a table.
type IndexEntry struct {
Key string
Value uint64
}
// StateStoreConfig is used to configure a new state store
type StateStoreConfig struct {
// Logger is used to output the state store's logs
Logger hclog.Logger
// Region is the region of the server embedding the state store.
Region string
// EnablePublisher is used to enable or disable the event publisher
EnablePublisher bool
// EventBufferSize configures the amount of events to hold in memory
EventBufferSize int64
}
// The StateStore is responsible for maintaining all the Nomad
// state. It is manipulated by the FSM which maintains consistency
// through the use of Raft. The goals of the StateStore are to provide
// high concurrency for read operations without blocking writes, and
// to provide write availability in the face of reads. EVERY object
// returned as a result of a read against the state store should be
// considered a constant and NEVER modified in place.
type StateStore struct {
logger hclog.Logger
db *changeTrackerDB
// config is the passed in configuration
config *StateStoreConfig
// abandonCh is used to signal watchers that this state store has been
// abandoned (usually during a restore). This is only ever closed.
abandonCh chan struct{}
// TODO: refactor abandonCh to use a context so that both can use the same
// cancel mechanism.
stopEventBroker func()
}
type streamACLDelegate struct {
s *StateStore
}
func (a *streamACLDelegate) TokenProvider() stream.ACLTokenProvider {
resolver, _ := a.s.Snapshot()
return resolver
}
// NewStateStore is used to create a new state store
func NewStateStore(config *StateStoreConfig) (*StateStore, error) {
// Create the MemDB
db, err := memdb.NewMemDB(stateStoreSchema())
if err != nil {
return nil, fmt.Errorf("state store setup failed: %v", err)
}
// Create the state store
ctx, cancel := context.WithCancel(context.TODO())
s := &StateStore{
logger: config.Logger.Named("state_store"),
config: config,
abandonCh: make(chan struct{}),
stopEventBroker: cancel,
}
if config.EnablePublisher {
// Create new event publisher using provided config
broker, err := stream.NewEventBroker(ctx, &streamACLDelegate{s}, stream.EventBrokerCfg{
EventBufferSize: config.EventBufferSize,
Logger: config.Logger,
})
if err != nil {
return nil, fmt.Errorf("creating state store event broker %w", err)
}
s.db = NewChangeTrackerDB(db, broker, eventsFromChanges)
} else {
s.db = NewChangeTrackerDB(db, nil, noOpProcessChanges)
}
// Initialize the state store with the default namespace.
if err := s.namespaceInit(); err != nil {
return nil, fmt.Errorf("enterprise state store initialization failed: %v", err)
}
return s, nil
}
// NewWatchSet returns a new memdb.WatchSet that adds the state stores abandonCh
// as a watcher. This is important in that it will notify when this specific
// state store is no longer valid, usually due to a new snapshot being loaded
func (s *StateStore) NewWatchSet() memdb.WatchSet {
ws := memdb.NewWatchSet()
ws.Add(s.AbandonCh())
return ws
}
func (s *StateStore) EventBroker() (*stream.EventBroker, error) {
if s.db.publisher == nil {
return nil, fmt.Errorf("EventBroker not configured")
}
return s.db.publisher, nil
}
// namespaceInit ensures the default namespace exists.
func (s *StateStore) namespaceInit() error {
// Create the default namespace. This is safe to do every time we create the
// state store. There are two main cases, a brand new cluster in which case
// each server will have the same default namespace object, or a new cluster
// in which case if the default namespace has been modified, it will be
// overridden by the restore code path.
defaultNs := &structs.Namespace{
Name: structs.DefaultNamespace,
Description: structs.DefaultNamespaceDescription,
}
if err := s.UpsertNamespaces(1, []*structs.Namespace{defaultNs}); err != nil {
return fmt.Errorf("inserting default namespace failed: %v", err)
}
return nil
}
// Config returns the state store configuration.
func (s *StateStore) Config() *StateStoreConfig {
return s.config
}
// Snapshot is used to create a point in time snapshot. Because
// we use MemDB, we just need to snapshot the state of the underlying
// database.
func (s *StateStore) Snapshot() (*StateSnapshot, error) {
memDBSnap := s.db.memdb.Snapshot()
store := StateStore{
logger: s.logger,
config: s.config,
}
// Create a new change tracker DB that does not publish or track changes
store.db = NewChangeTrackerDB(memDBSnap, nil, noOpProcessChanges)
snap := &StateSnapshot{
StateStore: store,
}
return snap, nil
}
// SnapshotMinIndex is used to create a state snapshot where the index is
// guaranteed to be greater than or equal to the index parameter.
//
// Some server operations (such as scheduling) exchange objects via RPC
// concurrent with Raft log application, so they must ensure the state store
// snapshot they are operating on is at or after the index the objects
// retrieved via RPC were applied to the Raft log at.
//
// Callers should maintain their own timer metric as the time this method
// blocks indicates Raft log application latency relative to scheduling.
func (s *StateStore) SnapshotMinIndex(ctx context.Context, index uint64) (*StateSnapshot, error) {
// Ported from work.go:waitForIndex prior to 0.9
const backoffBase = 20 * time.Millisecond
const backoffLimit = 1 * time.Second
var retries uint
var retryTimer *time.Timer
// XXX: Potential optimization is to set up a watch on the state
// store's index table and only unblock via a trigger rather than
// polling.
for {
// Get the states current index
snapshotIndex, err := s.LatestIndex()
if err != nil {
return nil, fmt.Errorf("failed to determine state store's index: %v", err)
}
// We only need the FSM state to be as recent as the given index
if snapshotIndex >= index {
return s.Snapshot()
}
// Exponential back off
retries++
if retryTimer == nil {
// First retry, start at baseline
retryTimer = time.NewTimer(backoffBase)
} else {
// Subsequent retry, reset timer
deadline := 1 << (2 * retries) * backoffBase
if deadline > backoffLimit {
deadline = backoffLimit
}
retryTimer.Reset(deadline)
}
select {
case <-ctx.Done():
return nil, ctx.Err()
case <-retryTimer.C:
}
}
}
// Restore is used to optimize the efficiency of rebuilding
// state by minimizing the number of transactions and checking
// overhead.
func (s *StateStore) Restore() (*StateRestore, error) {
txn := s.db.WriteTxnRestore()
r := &StateRestore{
txn: txn,
}
return r, nil
}
// AbandonCh returns a channel you can wait on to know if the state store was
// abandoned.
func (s *StateStore) AbandonCh() <-chan struct{} {
return s.abandonCh
}
// Abandon is used to signal that the given state store has been abandoned.
// Calling this more than one time will panic.
func (s *StateStore) Abandon() {
s.StopEventBroker()
close(s.abandonCh)
}
// StopEventBroker calls the cancel func for the state stores event
// publisher. It should be called during server shutdown.
func (s *StateStore) StopEventBroker() {
s.stopEventBroker()
}
// QueryFn is the definition of a function that can be used to implement a basic
// blocking query against the state store.
type QueryFn func(memdb.WatchSet, *StateStore) (resp interface{}, index uint64, err error)
// BlockingQuery takes a query function and runs the function until the minimum
// query index is met or until the passed context is cancelled.
func (s *StateStore) BlockingQuery(query QueryFn, minIndex uint64, ctx context.Context) (
resp interface{}, index uint64, err error) {
RUN_QUERY:
// We capture the state store and its abandon channel but pass a snapshot to
// the blocking query function. We operate on the snapshot to allow separate
// calls to the state store not all wrapped within the same transaction.
abandonCh := s.AbandonCh()
snap, _ := s.Snapshot()
stateSnap := &snap.StateStore
// We can skip all watch tracking if this isn't a blocking query.
var ws memdb.WatchSet
if minIndex > 0 {
ws = memdb.NewWatchSet()
// This channel will be closed if a snapshot is restored and the
// whole state store is abandoned.
ws.Add(abandonCh)
}
resp, index, err = query(ws, stateSnap)
if err != nil {
return nil, index, err
}
// We haven't reached the min-index yet.
if minIndex > 0 && index <= minIndex {
if err := ws.WatchCtx(ctx); err != nil {
return nil, index, err
}
goto RUN_QUERY
}
return resp, index, nil
}
// UpsertPlanResults is used to upsert the results of a plan.
func (s *StateStore) UpsertPlanResults(msgType structs.MessageType, index uint64, results *structs.ApplyPlanResultsRequest) error {
snapshot, err := s.Snapshot()
if err != nil {
return err
}
allocsStopped, err := snapshot.DenormalizeAllocationDiffSlice(results.AllocsStopped)
if err != nil {
return err
}
allocsPreempted, err := snapshot.DenormalizeAllocationDiffSlice(results.AllocsPreempted)
if err != nil {
return err
}
// COMPAT 0.11: Remove this denormalization when NodePreemptions is removed
results.NodePreemptions, err = snapshot.DenormalizeAllocationSlice(results.NodePreemptions)
if err != nil {
return err
}
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Mark nodes as ineligible.
for _, nodeID := range results.IneligibleNodes {
s.logger.Warn("marking node as ineligible due to multiple plan rejections, refer to https://www.nomadproject.io/s/port-plan-failure for more information", "node_id", nodeID)
nodeEvent := structs.NewNodeEvent().
SetSubsystem(structs.NodeEventSubsystemScheduler).
SetMessage(NodeEligibilityEventPlanRejectThreshold)
err := s.updateNodeEligibilityImpl(index, nodeID,
structs.NodeSchedulingIneligible, results.UpdatedAt, nodeEvent, txn)
if err != nil {
return err
}
}
// Upsert the newly created or updated deployment
if results.Deployment != nil {
if err := s.upsertDeploymentImpl(index, results.Deployment, txn); err != nil {
return err
}
}
// Update the status of deployments effected by the plan.
if len(results.DeploymentUpdates) != 0 {
s.upsertDeploymentUpdates(index, results.DeploymentUpdates, txn)
}
if results.EvalID != "" {
// Update the modify index of the eval id
if err := s.updateEvalModifyIndex(txn, index, results.EvalID); err != nil {
return err
}
}
numAllocs := 0
if len(results.Alloc) > 0 || len(results.NodePreemptions) > 0 {
// COMPAT 0.11: This branch will be removed, when Alloc is removed
// Attach the job to all the allocations. It is pulled out in the payload to
// avoid the redundancy of encoding, but should be denormalized prior to
// being inserted into MemDB.
addComputedAllocAttrs(results.Alloc, results.Job)
numAllocs = len(results.Alloc) + len(results.NodePreemptions)
} else {
// Attach the job to all the allocations. It is pulled out in the payload to
// avoid the redundancy of encoding, but should be denormalized prior to
// being inserted into MemDB.
addComputedAllocAttrs(results.AllocsUpdated, results.Job)
numAllocs = len(allocsStopped) + len(results.AllocsUpdated) + len(allocsPreempted)
}
allocsToUpsert := make([]*structs.Allocation, 0, numAllocs)
// COMPAT 0.11: Both these appends should be removed when Alloc and NodePreemptions are removed
allocsToUpsert = append(allocsToUpsert, results.Alloc...)
allocsToUpsert = append(allocsToUpsert, results.NodePreemptions...)
allocsToUpsert = append(allocsToUpsert, allocsStopped...)
allocsToUpsert = append(allocsToUpsert, results.AllocsUpdated...)
allocsToUpsert = append(allocsToUpsert, allocsPreempted...)
// handle upgrade path
for _, alloc := range allocsToUpsert {
alloc.Canonicalize()
}
if err := s.upsertAllocsImpl(index, allocsToUpsert, txn); err != nil {
return err
}
// Upsert followup evals for allocs that were preempted
for _, eval := range results.PreemptionEvals {
if err := s.nestedUpsertEval(txn, index, eval); err != nil {
return err
}
}
return txn.Commit()
}
// addComputedAllocAttrs adds the computed/derived attributes to the allocation.
// This method is used when an allocation is being denormalized.
func addComputedAllocAttrs(allocs []*structs.Allocation, job *structs.Job) {
structs.DenormalizeAllocationJobs(job, allocs)
// COMPAT(0.11): Remove in 0.11
// Calculate the total resources of allocations. It is pulled out in the
// payload to avoid encoding something that can be computed, but should be
// denormalized prior to being inserted into MemDB.
for _, alloc := range allocs {
if alloc.Resources != nil {
continue
}
alloc.Resources = new(structs.Resources)
for _, task := range alloc.TaskResources {
alloc.Resources.Add(task)
}
// Add the shared resources
alloc.Resources.Add(alloc.SharedResources)
}
}
// upsertDeploymentUpdates updates the deployments given the passed status
// updates.
func (s *StateStore) upsertDeploymentUpdates(index uint64, updates []*structs.DeploymentStatusUpdate, txn *txn) error {
for _, u := range updates {
if err := s.updateDeploymentStatusImpl(index, u, txn); err != nil {
return err
}
}
return nil
}
// UpsertJobSummary upserts a job summary into the state store.
func (s *StateStore) UpsertJobSummary(index uint64, jobSummary *structs.JobSummary) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// Check if the job summary already exists
existing, err := txn.First("job_summary", "id", jobSummary.Namespace, jobSummary.JobID)
if err != nil {
return fmt.Errorf("job summary lookup failed: %v", err)
}
// Setup the indexes correctly
if existing != nil {
jobSummary.CreateIndex = existing.(*structs.JobSummary).CreateIndex
jobSummary.ModifyIndex = index
} else {
jobSummary.CreateIndex = index
jobSummary.ModifyIndex = index
}
// Update the index
if err := txn.Insert("job_summary", jobSummary); err != nil {
return err
}
// Update the indexes table for job summary
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeleteJobSummary deletes the job summary with the given ID. This is for
// testing purposes only.
func (s *StateStore) DeleteJobSummary(index uint64, namespace, id string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// Delete the job summary
if _, err := txn.DeleteAll("job_summary", "id", namespace, id); err != nil {
return fmt.Errorf("deleting job summary failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// UpsertDeployment is used to insert a new deployment. If cancelPrior is set to
// true, all prior deployments for the same job will be cancelled.
func (s *StateStore) UpsertDeployment(index uint64, deployment *structs.Deployment) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
if err := s.upsertDeploymentImpl(index, deployment, txn); err != nil {
return err
}
return txn.Commit()
}
func (s *StateStore) upsertDeploymentImpl(index uint64, deployment *structs.Deployment, txn *txn) error {
// Check if the deployment already exists
existing, err := txn.First("deployment", "id", deployment.ID)
if err != nil {
return fmt.Errorf("deployment lookup failed: %v", err)
}
// Setup the indexes correctly
if existing != nil {
deployment.CreateIndex = existing.(*structs.Deployment).CreateIndex
deployment.ModifyIndex = index
} else {
deployment.CreateIndex = index
deployment.ModifyIndex = index
}
// Insert the deployment
if err := txn.Insert("deployment", deployment); err != nil {
return err
}
// Update the indexes table for deployment
if err := txn.Insert("index", &IndexEntry{"deployment", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
// If the deployment is being marked as complete, set the job to stable.
if deployment.Status == structs.DeploymentStatusSuccessful {
if err := s.updateJobStabilityImpl(index, deployment.Namespace, deployment.JobID, deployment.JobVersion, true, txn); err != nil {
return fmt.Errorf("failed to update job stability: %v", err)
}
}
return nil
}
func (s *StateStore) Deployments(ws memdb.WatchSet, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var it memdb.ResultIterator
var err error
switch sort {
case SortReverse:
it, err = txn.GetReverse("deployment", "create")
default:
it, err = txn.Get("deployment", "create")
}
if err != nil {
return nil, err
}
ws.Add(it.WatchCh())
return it, nil
}
func (s *StateStore) DeploymentsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire deployments table
iter, err := txn.Get("deployment", "namespace", namespace)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
func (s *StateStore) DeploymentsByNamespaceOrdered(ws memdb.WatchSet, namespace string, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var (
it memdb.ResultIterator
err error
exact = terminate(namespace)
)
switch sort {
case SortReverse:
it, err = txn.GetReverse("deployment", "namespace_create_prefix", exact)
default:
it, err = txn.Get("deployment", "namespace_create_prefix", exact)
}
if err != nil {
return nil, err
}
ws.Add(it.WatchCh())
return it, nil
}
func (s *StateStore) DeploymentsByIDPrefix(ws memdb.WatchSet, namespace, deploymentID string, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var iter memdb.ResultIterator
var err error
// Walk the entire deployments table
switch sort {
case SortReverse:
iter, err = txn.GetReverse("deployment", "id_prefix", deploymentID)
default:
iter, err = txn.Get("deployment", "id_prefix", deploymentID)
}
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
// Wrap the iterator in a filter
wrap := memdb.NewFilterIterator(iter, deploymentNamespaceFilter(namespace))
return wrap, nil
}
// deploymentNamespaceFilter returns a filter function that filters all
// deployment not in the given namespace.
func deploymentNamespaceFilter(namespace string) func(interface{}) bool {
return func(raw interface{}) bool {
d, ok := raw.(*structs.Deployment)
if !ok {
return true
}
return d.Namespace != namespace
}
}
func (s *StateStore) DeploymentByID(ws memdb.WatchSet, deploymentID string) (*structs.Deployment, error) {
txn := s.db.ReadTxn()
return s.deploymentByIDImpl(ws, deploymentID, txn)
}
func (s *StateStore) deploymentByIDImpl(ws memdb.WatchSet, deploymentID string, txn *txn) (*structs.Deployment, error) {
watchCh, existing, err := txn.FirstWatch("deployment", "id", deploymentID)
if err != nil {
return nil, fmt.Errorf("deployment lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.Deployment), nil
}
return nil, nil
}
func (s *StateStore) DeploymentsByJobID(ws memdb.WatchSet, namespace, jobID string, all bool) ([]*structs.Deployment, error) {
txn := s.db.ReadTxn()
var job *structs.Job
// Read job from state store
_, existing, err := txn.FirstWatch("jobs", "id", namespace, jobID)
if err != nil {
return nil, fmt.Errorf("job lookup failed: %v", err)
}
if existing != nil {
job = existing.(*structs.Job)
}
// Get an iterator over the deployments
iter, err := txn.Get("deployment", "job", namespace, jobID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.Deployment
for {
raw := iter.Next()
if raw == nil {
break
}
d := raw.(*structs.Deployment)
// If the allocation belongs to a job with the same ID but a different
// create index and we are not getting all the allocations whose Jobs
// matches the same Job ID then we skip it
if !all && job != nil && d.JobCreateIndex != job.CreateIndex {
continue
}
out = append(out, d)
}
return out, nil
}
// LatestDeploymentByJobID returns the latest deployment for the given job. The
// latest is determined strictly by CreateIndex.
func (s *StateStore) LatestDeploymentByJobID(ws memdb.WatchSet, namespace, jobID string) (*structs.Deployment, error) {
txn := s.db.ReadTxn()
// Get an iterator over the deployments
iter, err := txn.Get("deployment", "job", namespace, jobID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out *structs.Deployment
for {
raw := iter.Next()
if raw == nil {
break
}
d := raw.(*structs.Deployment)
if out == nil || out.CreateIndex < d.CreateIndex {
out = d
}
}
return out, nil
}
// DeleteDeployment is used to delete a set of deployments by ID
func (s *StateStore) DeleteDeployment(index uint64, deploymentIDs []string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
if len(deploymentIDs) == 0 {
return nil
}
for _, deploymentID := range deploymentIDs {
// Lookup the deployment
existing, err := txn.First("deployment", "id", deploymentID)
if err != nil {
return fmt.Errorf("deployment lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("deployment not found")
}
// Delete the deployment
if err := txn.Delete("deployment", existing); err != nil {
return fmt.Errorf("deployment delete failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"deployment", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// UpsertScalingEvent is used to insert a new scaling event.
// Only the most recent JobTrackedScalingEvents will be kept.
func (s *StateStore) UpsertScalingEvent(index uint64, req *structs.ScalingEventRequest) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// Get the existing events
existing, err := txn.First("scaling_event", "id", req.Namespace, req.JobID)
if err != nil {
return fmt.Errorf("scaling event lookup failed: %v", err)
}
var jobEvents *structs.JobScalingEvents
if existing != nil {
jobEvents = existing.(*structs.JobScalingEvents)
} else {
jobEvents = &structs.JobScalingEvents{
Namespace: req.Namespace,
JobID: req.JobID,
ScalingEvents: make(map[string][]*structs.ScalingEvent),
}
}
jobEvents.ModifyIndex = index
req.ScalingEvent.CreateIndex = index
events := jobEvents.ScalingEvents[req.TaskGroup]
// Prepend this latest event
events = append(
[]*structs.ScalingEvent{req.ScalingEvent},
events...,
)
// Truncate older events
if len(events) > structs.JobTrackedScalingEvents {
events = events[0:structs.JobTrackedScalingEvents]
}
jobEvents.ScalingEvents[req.TaskGroup] = events
// Insert the new event
if err := txn.Insert("scaling_event", jobEvents); err != nil {
return fmt.Errorf("scaling event insert failed: %v", err)
}
// Update the indexes table for scaling_event
if err := txn.Insert("index", &IndexEntry{"scaling_event", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// ScalingEvents returns an iterator over all the job scaling events
func (s *StateStore) ScalingEvents(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire scaling_event table
iter, err := txn.Get("scaling_event", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
func (s *StateStore) ScalingEventsByJob(ws memdb.WatchSet, namespace, jobID string) (map[string][]*structs.ScalingEvent, uint64, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("scaling_event", "id", namespace, jobID)
if err != nil {
return nil, 0, fmt.Errorf("job scaling events lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
events := existing.(*structs.JobScalingEvents)
return events.ScalingEvents, events.ModifyIndex, nil
}
return nil, 0, nil
}
// UpsertNode is used to register a node or update a node definition
// This is assumed to be triggered by the client, so we retain the value
// of drain/eligibility which is set by the scheduler.
func (s *StateStore) UpsertNode(msgType structs.MessageType, index uint64, node *structs.Node) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
err := upsertNodeTxn(txn, index, node)
if err != nil {
return nil
}
return txn.Commit()
}
func upsertNodeTxn(txn *txn, index uint64, node *structs.Node) error {
// Check if the node already exists
existing, err := txn.First("nodes", "id", node.ID)
if err != nil {
return fmt.Errorf("node lookup failed: %v", err)
}
// Setup the indexes correctly
if existing != nil {
exist := existing.(*structs.Node)
node.CreateIndex = exist.CreateIndex
node.ModifyIndex = index
// Retain node events that have already been set on the node
node.Events = exist.Events
// If we are transitioning from down, record the re-registration
if exist.Status == structs.NodeStatusDown && node.Status != structs.NodeStatusDown {
appendNodeEvents(index, node, []*structs.NodeEvent{
structs.NewNodeEvent().SetSubsystem(structs.NodeEventSubsystemCluster).
SetMessage(NodeRegisterEventReregistered).
SetTimestamp(time.Unix(node.StatusUpdatedAt, 0))})
}
node.SchedulingEligibility = exist.SchedulingEligibility // Retain the eligibility
node.DrainStrategy = exist.DrainStrategy // Retain the drain strategy
node.LastDrain = exist.LastDrain // Retain the drain metadata
} else {
// Because this is the first time the node is being registered, we should
// also create a node registration event
nodeEvent := structs.NewNodeEvent().SetSubsystem(structs.NodeEventSubsystemCluster).
SetMessage(NodeRegisterEventRegistered).
SetTimestamp(time.Unix(node.StatusUpdatedAt, 0))
node.Events = []*structs.NodeEvent{nodeEvent}
node.CreateIndex = index
node.ModifyIndex = index
}
// Insert the node
if err := txn.Insert("nodes", node); err != nil {
return fmt.Errorf("node insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
if err := upsertCSIPluginsForNode(txn, node, index); err != nil {
return fmt.Errorf("csi plugin update failed: %v", err)
}
return nil
}
// DeleteNode deregisters a batch of nodes
func (s *StateStore) DeleteNode(msgType structs.MessageType, index uint64, nodes []string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
err := deleteNodeTxn(txn, index, nodes)
if err != nil {
return nil
}
return txn.Commit()
}
func deleteNodeTxn(txn *txn, index uint64, nodes []string) error {
if len(nodes) == 0 {
return fmt.Errorf("node ids missing")
}
for _, nodeID := range nodes {
existing, err := txn.First("nodes", "id", nodeID)
if err != nil {
return fmt.Errorf("node lookup failed: %s: %v", nodeID, err)
}
if existing == nil {
return fmt.Errorf("node not found: %s", nodeID)
}
// Delete the node
if err := txn.Delete("nodes", existing); err != nil {
return fmt.Errorf("node delete failed: %s: %v", nodeID, err)
}
node := existing.(*structs.Node)
if err := deleteNodeCSIPlugins(txn, node, index); err != nil {
return fmt.Errorf("csi plugin delete failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// UpdateNodeStatus is used to update the status of a node
func (s *StateStore) UpdateNodeStatus(msgType structs.MessageType, index uint64, nodeID, status string, updatedAt int64, event *structs.NodeEvent) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
if err := s.updateNodeStatusTxn(txn, nodeID, status, updatedAt, event); err != nil {
return err
}
return txn.Commit()
}
func (s *StateStore) updateNodeStatusTxn(txn *txn, nodeID, status string, updatedAt int64, event *structs.NodeEvent) error {
// Lookup the node
existing, err := txn.First("nodes", "id", nodeID)
if err != nil {
return fmt.Errorf("node lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("node not found")
}
// Copy the existing node
existingNode := existing.(*structs.Node)
copyNode := existingNode.Copy()
copyNode.StatusUpdatedAt = updatedAt
// Add the event if given
if event != nil {
appendNodeEvents(txn.Index, copyNode, []*structs.NodeEvent{event})
}
// Update the status in the copy
copyNode.Status = status
copyNode.ModifyIndex = txn.Index
// Insert the node
if err := txn.Insert("nodes", copyNode); err != nil {
return fmt.Errorf("node update failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"nodes", txn.Index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// BatchUpdateNodeDrain is used to update the drain of a node set of nodes.
// This is currently only called when node drain is completed by the drainer.
func (s *StateStore) BatchUpdateNodeDrain(msgType structs.MessageType, index uint64, updatedAt int64,
updates map[string]*structs.DrainUpdate, events map[string]*structs.NodeEvent) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
for node, update := range updates {
if err := s.updateNodeDrainImpl(txn, index, node, update.DrainStrategy, update.MarkEligible, updatedAt,
events[node], nil, "", true); err != nil {
return err
}
}
return txn.Commit()
}
// UpdateNodeDrain is used to update the drain of a node
func (s *StateStore) UpdateNodeDrain(msgType structs.MessageType, index uint64, nodeID string,
drain *structs.DrainStrategy, markEligible bool, updatedAt int64,
event *structs.NodeEvent, drainMeta map[string]string, accessorId string) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
if err := s.updateNodeDrainImpl(txn, index, nodeID, drain, markEligible, updatedAt, event,
drainMeta, accessorId, false); err != nil {
return err
}
return txn.Commit()
}
func (s *StateStore) updateNodeDrainImpl(txn *txn, index uint64, nodeID string,
drain *structs.DrainStrategy, markEligible bool, updatedAt int64,
event *structs.NodeEvent, drainMeta map[string]string, accessorId string,
drainCompleted bool) error {
// Lookup the node
existing, err := txn.First("nodes", "id", nodeID)
if err != nil {
return fmt.Errorf("node lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("node not found")
}
// Copy the existing node
existingNode := existing.(*structs.Node)
updatedNode := existingNode.Copy()
updatedNode.StatusUpdatedAt = updatedAt
// Add the event if given
if event != nil {
appendNodeEvents(index, updatedNode, []*structs.NodeEvent{event})
}
// Update the drain in the copy
updatedNode.DrainStrategy = drain
if drain != nil {
updatedNode.SchedulingEligibility = structs.NodeSchedulingIneligible
} else if markEligible {
updatedNode.SchedulingEligibility = structs.NodeSchedulingEligible
}
// Update LastDrain
updateTime := time.Unix(updatedAt, 0)
// if drain strategy isn't set before or after, this wasn't a drain operation
// in that case, we don't care about .LastDrain
drainNoop := existingNode.DrainStrategy == nil && updatedNode.DrainStrategy == nil
// otherwise, when done with this method, updatedNode.LastDrain should be set
// if starting a new drain operation, create a new LastDrain. otherwise, update the existing one.
startedDraining := existingNode.DrainStrategy == nil && updatedNode.DrainStrategy != nil
if !drainNoop {
if startedDraining {
updatedNode.LastDrain = &structs.DrainMetadata{
StartedAt: updateTime,
Meta: drainMeta,
}
} else if updatedNode.LastDrain == nil {
// if already draining and LastDrain doesn't exist, we need to create a new one
// this could happen if we upgraded to 1.1.x during a drain
updatedNode.LastDrain = &structs.DrainMetadata{
// we don't have sub-second accuracy on these fields, so truncate this
StartedAt: time.Unix(existingNode.DrainStrategy.StartedAt.Unix(), 0),
Meta: drainMeta,
}
}
updatedNode.LastDrain.UpdatedAt = updateTime
// won't have new metadata on drain complete; keep the existing operator-provided metadata
// also, keep existing if they didn't provide it
if len(drainMeta) != 0 {
updatedNode.LastDrain.Meta = drainMeta
}
// we won't have an accessor ID on drain complete, so don't overwrite the existing one
if accessorId != "" {
updatedNode.LastDrain.AccessorID = accessorId
}
if updatedNode.DrainStrategy != nil {
updatedNode.LastDrain.Status = structs.DrainStatusDraining
} else if drainCompleted {
updatedNode.LastDrain.Status = structs.DrainStatusComplete
} else {
updatedNode.LastDrain.Status = structs.DrainStatusCanceled
}
}
updatedNode.ModifyIndex = index
// Insert the node
if err := txn.Insert("nodes", updatedNode); err != nil {
return fmt.Errorf("node update failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// UpdateNodeEligibility is used to update the scheduling eligibility of a node
func (s *StateStore) UpdateNodeEligibility(msgType structs.MessageType, index uint64, nodeID string, eligibility string, updatedAt int64, event *structs.NodeEvent) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
if err := s.updateNodeEligibilityImpl(index, nodeID, eligibility, updatedAt, event, txn); err != nil {
return err
}
return txn.Commit()
}
func (s *StateStore) updateNodeEligibilityImpl(index uint64, nodeID string, eligibility string, updatedAt int64, event *structs.NodeEvent, txn *txn) error {
// Lookup the node
existing, err := txn.First("nodes", "id", nodeID)
if err != nil {
return fmt.Errorf("node lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("node not found")
}
// Copy the existing node
existingNode := existing.(*structs.Node)
copyNode := existingNode.Copy()
copyNode.StatusUpdatedAt = updatedAt
// Add the event if given
if event != nil {
appendNodeEvents(index, copyNode, []*structs.NodeEvent{event})
}
// Check if this is a valid action
if copyNode.DrainStrategy != nil && eligibility == structs.NodeSchedulingEligible {
return fmt.Errorf("can not set node's scheduling eligibility to eligible while it is draining")
}
// Update the eligibility in the copy
copyNode.SchedulingEligibility = eligibility
copyNode.ModifyIndex = index
// Insert the node
if err := txn.Insert("nodes", copyNode); err != nil {
return fmt.Errorf("node update failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// UpsertNodeEvents adds the node events to the nodes, rotating events as
// necessary.
func (s *StateStore) UpsertNodeEvents(msgType structs.MessageType, index uint64, nodeEvents map[string][]*structs.NodeEvent) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
for nodeID, events := range nodeEvents {
if err := s.upsertNodeEvents(index, nodeID, events, txn); err != nil {
return err
}
}
return txn.Commit()
}
// upsertNodeEvent upserts a node event for a respective node. It also maintains
// that a fixed number of node events are ever stored simultaneously, deleting
// older events once this bound has been reached.
func (s *StateStore) upsertNodeEvents(index uint64, nodeID string, events []*structs.NodeEvent, txn *txn) error {
// Lookup the node
existing, err := txn.First("nodes", "id", nodeID)
if err != nil {
return fmt.Errorf("node lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("node not found")
}
// Copy the existing node
existingNode := existing.(*structs.Node)
copyNode := existingNode.Copy()
appendNodeEvents(index, copyNode, events)
// Insert the node
if err := txn.Insert("nodes", copyNode); err != nil {
return fmt.Errorf("node update failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// appendNodeEvents is a helper that takes a node and new events and appends
// them, pruning older events as needed.
func appendNodeEvents(index uint64, node *structs.Node, events []*structs.NodeEvent) {
// Add the events, updating the indexes
for _, e := range events {
e.CreateIndex = index
node.Events = append(node.Events, e)
}
// Keep node events pruned to not exceed the max allowed
if l := len(node.Events); l > structs.MaxRetainedNodeEvents {
delta := l - structs.MaxRetainedNodeEvents
node.Events = node.Events[delta:]
}
}
// upsertCSIPluginsForNode indexes csi plugins for volume retrieval, with health. It's called
// on upsertNodeEvents, so that event driven health changes are updated
func upsertCSIPluginsForNode(txn *txn, node *structs.Node, index uint64) error {
upsertFn := func(info *structs.CSIInfo) error {
raw, err := txn.First("csi_plugins", "id", info.PluginID)
if err != nil {
return fmt.Errorf("csi_plugin lookup error: %s %v", info.PluginID, err)
}
var plug *structs.CSIPlugin
if raw != nil {
plug = raw.(*structs.CSIPlugin).Copy()
} else {
if !info.Healthy {
// we don't want to create new plugins for unhealthy
// allocs, otherwise we'd recreate the plugin when we
// get the update for the alloc becoming terminal
return nil
}
plug = structs.NewCSIPlugin(info.PluginID, index)
}
// the plugin may have been created by the job being updated, in which case
// this data will not be configured, it's only available to the fingerprint
// system
plug.Provider = info.Provider
plug.Version = info.ProviderVersion
err = plug.AddPlugin(node.ID, info)
if err != nil {
return err
}
plug.ModifyIndex = index
err = txn.Insert("csi_plugins", plug)
if err != nil {
return fmt.Errorf("csi_plugins insert error: %v", err)
}
return nil
}
inUseController := map[string]struct{}{}
inUseNode := map[string]struct{}{}
for _, info := range node.CSIControllerPlugins {
err := upsertFn(info)
if err != nil {
return err
}
inUseController[info.PluginID] = struct{}{}
}
for _, info := range node.CSINodePlugins {
err := upsertFn(info)
if err != nil {
return err
}
inUseNode[info.PluginID] = struct{}{}
}
// remove the client node from any plugin that's not
// running on it.
iter, err := txn.Get("csi_plugins", "id")
if err != nil {
return fmt.Errorf("csi_plugins lookup failed: %v", err)
}
for {
raw := iter.Next()
if raw == nil {
break
}
plug, ok := raw.(*structs.CSIPlugin)
if !ok {
continue
}
plug = plug.Copy()
var hadDelete bool
if _, ok := inUseController[plug.ID]; !ok {
if _, asController := plug.Controllers[node.ID]; asController {
err := plug.DeleteNodeForType(node.ID, structs.CSIPluginTypeController)
if err != nil {
return err
}
hadDelete = true
}
}
if _, ok := inUseNode[plug.ID]; !ok {
if _, asNode := plug.Nodes[node.ID]; asNode {
err := plug.DeleteNodeForType(node.ID, structs.CSIPluginTypeNode)
if err != nil {
return err
}
hadDelete = true
}
}
// we check this flag both for performance and to make sure we
// don't delete a plugin when registering a node plugin but
// no controller
if hadDelete {
err = updateOrGCPlugin(index, txn, plug)
if err != nil {
return err
}
}
}
if err := txn.Insert("index", &IndexEntry{"csi_plugins", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// deleteNodeCSIPlugins cleans up CSIInfo node health status, called in DeleteNode
func deleteNodeCSIPlugins(txn *txn, node *structs.Node, index uint64) error {
if len(node.CSIControllerPlugins) == 0 && len(node.CSINodePlugins) == 0 {
return nil
}
names := map[string]struct{}{}
for _, info := range node.CSIControllerPlugins {
names[info.PluginID] = struct{}{}
}
for _, info := range node.CSINodePlugins {
names[info.PluginID] = struct{}{}
}
for id := range names {
raw, err := txn.First("csi_plugins", "id", id)
if err != nil {
return fmt.Errorf("csi_plugins lookup error %s: %v", id, err)
}
if raw == nil {
// plugin may have been deregistered but we didn't
// update the fingerprint yet
continue
}
plug := raw.(*structs.CSIPlugin).Copy()
err = plug.DeleteNode(node.ID)
if err != nil {
return err
}
err = updateOrGCPlugin(index, txn, plug)
if err != nil {
return err
}
}
if err := txn.Insert("index", &IndexEntry{"csi_plugins", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// updateOrGCPlugin updates a plugin but will delete it if the plugin is empty
func updateOrGCPlugin(index uint64, txn Txn, plug *structs.CSIPlugin) error {
plug.ModifyIndex = index
if plug.IsEmpty() {
err := txn.Delete("csi_plugins", plug)
if err != nil {
return fmt.Errorf("csi_plugins delete error: %v", err)
}
} else {
err := txn.Insert("csi_plugins", plug)
if err != nil {
return fmt.Errorf("csi_plugins update error %s: %v", plug.ID, err)
}
}
return nil
}
// deleteJobFromPlugins removes the allocations of this job from any plugins the job is
// running, possibly deleting the plugin if it's no longer in use. It's called in DeleteJobTxn
func (s *StateStore) deleteJobFromPlugins(index uint64, txn Txn, job *structs.Job) error {
ws := memdb.NewWatchSet()
summary, err := s.JobSummaryByID(ws, job.Namespace, job.ID)
if err != nil {
return fmt.Errorf("error getting job summary: %v", err)
}
allocs, err := s.AllocsByJob(ws, job.Namespace, job.ID, false)
if err != nil {
return fmt.Errorf("error getting allocations: %v", err)
}
type pair struct {
pluginID string
alloc *structs.Allocation
}
plugAllocs := []*pair{}
found := map[string]struct{}{}
// Find plugins for allocs that belong to this job
for _, a := range allocs {
tg := a.Job.LookupTaskGroup(a.TaskGroup)
found[tg.Name] = struct{}{}
for _, t := range tg.Tasks {
if t.CSIPluginConfig == nil {
continue
}
plugAllocs = append(plugAllocs, &pair{
pluginID: t.CSIPluginConfig.ID,
alloc: a,
})
}
}
// Find any plugins that do not yet have allocs for this job
for _, tg := range job.TaskGroups {
if _, ok := found[tg.Name]; ok {
continue
}
for _, t := range tg.Tasks {
if t.CSIPluginConfig == nil {
continue
}
plugAllocs = append(plugAllocs, &pair{
pluginID: t.CSIPluginConfig.ID,
})
}
}
plugins := map[string]*structs.CSIPlugin{}
for _, x := range plugAllocs {
plug, ok := plugins[x.pluginID]
if !ok {
plug, err = s.CSIPluginByIDTxn(txn, nil, x.pluginID)
if err != nil {
return fmt.Errorf("error getting plugin: %s, %v", x.pluginID, err)
}
if plug == nil {
// plugin was never successfully registered or has been
// GC'd out from under us
continue
}
// only copy once, so we update the same plugin on each alloc
plugins[x.pluginID] = plug.Copy()
plug = plugins[x.pluginID]
}
if x.alloc == nil {
continue
}
err := plug.DeleteAlloc(x.alloc.ID, x.alloc.NodeID)
if err != nil {
return err
}
}
for _, plug := range plugins {
plug.DeleteJob(job, summary)
err = updateOrGCPlugin(index, txn, plug)
if err != nil {
return err
}
}
if len(plugins) > 0 {
if err = txn.Insert("index", &IndexEntry{"csi_plugins", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
return nil
}
// NodeByID is used to lookup a node by ID
func (s *StateStore) NodeByID(ws memdb.WatchSet, nodeID string) (*structs.Node, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("nodes", "id", nodeID)
if err != nil {
return nil, fmt.Errorf("node lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.Node), nil
}
return nil, nil
}
// NodesByIDPrefix is used to lookup nodes by prefix
func (s *StateStore) NodesByIDPrefix(ws memdb.WatchSet, nodeID string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("nodes", "id_prefix", nodeID)
if err != nil {
return nil, fmt.Errorf("node lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// NodeBySecretID is used to lookup a node by SecretID
func (s *StateStore) NodeBySecretID(ws memdb.WatchSet, secretID string) (*structs.Node, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("nodes", "secret_id", secretID)
if err != nil {
return nil, fmt.Errorf("node lookup by SecretID failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.Node), nil
}
return nil, nil
}
// Nodes returns an iterator over all the nodes
func (s *StateStore) Nodes(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire nodes table
iter, err := txn.Get("nodes", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// UpsertJob is used to register a job or update a job definition
func (s *StateStore) UpsertJob(msgType structs.MessageType, index uint64, job *structs.Job) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
if err := s.upsertJobImpl(index, job, false, txn); err != nil {
return err
}
return txn.Commit()
}
// UpsertJobTxn is used to register a job or update a job definition, like UpsertJob,
// but in a transaction. Useful for when making multiple modifications atomically
func (s *StateStore) UpsertJobTxn(index uint64, job *structs.Job, txn Txn) error {
return s.upsertJobImpl(index, job, false, txn)
}
// upsertJobImpl is the implementation for registering a job or updating a job definition
func (s *StateStore) upsertJobImpl(index uint64, job *structs.Job, keepVersion bool, txn *txn) error {
// Assert the namespace exists
if exists, err := s.namespaceExists(txn, job.Namespace); err != nil {
return err
} else if !exists {
return fmt.Errorf("job %q is in nonexistent namespace %q", job.ID, job.Namespace)
}
// Check if the job already exists
existing, err := txn.First("jobs", "id", job.Namespace, job.ID)
var existingJob *structs.Job
if err != nil {
return fmt.Errorf("job lookup failed: %v", err)
}
// Setup the indexes correctly
if existing != nil {
job.CreateIndex = existing.(*structs.Job).CreateIndex
job.ModifyIndex = index
existingJob = existing.(*structs.Job)
// Bump the version unless asked to keep it. This should only be done
// when changing an internal field such as Stable. A spec change should
// always come with a version bump
if !keepVersion {
job.JobModifyIndex = index
if job.Version <= existingJob.Version {
job.Version = existingJob.Version + 1
}
}
// Compute the job status
var err error
job.Status, err = s.getJobStatus(txn, job, false)
if err != nil {
return fmt.Errorf("setting job status for %q failed: %v", job.ID, err)
}
} else {
job.CreateIndex = index
job.ModifyIndex = index
job.JobModifyIndex = index
if err := s.setJobStatus(index, txn, job, false, ""); err != nil {
return fmt.Errorf("setting job status for %q failed: %v", job.ID, err)
}
// Have to get the job again since it could have been updated
updated, err := txn.First("jobs", "id", job.Namespace, job.ID)
if err != nil {
return fmt.Errorf("job lookup failed: %v", err)
}
if updated != nil {
job = updated.(*structs.Job)
}
}
if err := s.updateSummaryWithJob(index, job, txn); err != nil {
return fmt.Errorf("unable to create job summary: %v", err)
}
if err := s.upsertJobVersion(index, job, txn); err != nil {
return fmt.Errorf("unable to upsert job into job_version table: %v", err)
}
if err := s.updateJobScalingPolicies(index, job, txn); err != nil {
return fmt.Errorf("unable to update job scaling policies: %v", err)
}
if err := s.updateJobRecommendations(index, txn, existingJob, job); err != nil {
return fmt.Errorf("unable to update job recommendations: %v", err)
}
if err := s.updateJobCSIPlugins(index, job, existingJob, txn); err != nil {
return fmt.Errorf("unable to update job csi plugins: %v", err)
}
// Insert the job
if err := txn.Insert("jobs", job); err != nil {
return fmt.Errorf("job insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"jobs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// DeleteJob is used to deregister a job
func (s *StateStore) DeleteJob(index uint64, namespace, jobID string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
err := s.DeleteJobTxn(index, namespace, jobID, txn)
if err == nil {
return txn.Commit()
}
return err
}
// DeleteJobTxn is used to deregister a job, like DeleteJob,
// but in a transaction. Useful for when making multiple modifications atomically
func (s *StateStore) DeleteJobTxn(index uint64, namespace, jobID string, txn Txn) error {
// Lookup the node
existing, err := txn.First("jobs", "id", namespace, jobID)
if err != nil {
return fmt.Errorf("job lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("job not found")
}
// Check if we should update a parent job summary
job := existing.(*structs.Job)
if job.ParentID != "" {
summaryRaw, err := txn.First("job_summary", "id", namespace, job.ParentID)
if err != nil {
return fmt.Errorf("unable to retrieve summary for parent job: %v", err)
}
// Only continue if the summary exists. It could not exist if the parent
// job was removed
if summaryRaw != nil {
existing := summaryRaw.(*structs.JobSummary)
pSummary := existing.Copy()
if pSummary.Children != nil {
modified := false
switch job.Status {
case structs.JobStatusPending:
pSummary.Children.Pending--
pSummary.Children.Dead++
modified = true
case structs.JobStatusRunning:
pSummary.Children.Running--
pSummary.Children.Dead++
modified = true
case structs.JobStatusDead:
default:
return fmt.Errorf("unknown old job status %q", job.Status)
}
if modified {
// Update the modify index
pSummary.ModifyIndex = index
// Insert the summary
if err := txn.Insert("job_summary", pSummary); err != nil {
return fmt.Errorf("job summary insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
}
}
}
// Delete the job
if err := txn.Delete("jobs", existing); err != nil {
return fmt.Errorf("job delete failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"jobs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
// Delete the job versions
if err := s.deleteJobVersions(index, job, txn); err != nil {
return err
}
// Cleanup plugins registered by this job, before we delete the summary
err = s.deleteJobFromPlugins(index, txn, job)
if err != nil {
return fmt.Errorf("deleting job from plugin: %v", err)
}
// Delete the job summary
if _, err = txn.DeleteAll("job_summary", "id", namespace, jobID); err != nil {
return fmt.Errorf("deleting job summary failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
// Delete any remaining job scaling policies
if err := s.deleteJobScalingPolicies(index, job, txn); err != nil {
return fmt.Errorf("deleting job scaling policies failed: %v", err)
}
// Delete any job recommendations
if err := s.deleteRecommendationsByJob(index, txn, job); err != nil {
return fmt.Errorf("deleting job recommendatons failed: %v", err)
}
// Delete the scaling events
if _, err = txn.DeleteAll("scaling_event", "id", namespace, jobID); err != nil {
return fmt.Errorf("deleting job scaling events failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"scaling_event", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// deleteJobScalingPolicies deletes any scaling policies associated with the job
func (s *StateStore) deleteJobScalingPolicies(index uint64, job *structs.Job, txn *txn) error {
iter, err := s.ScalingPoliciesByJobTxn(nil, job.Namespace, job.ID, txn)
if err != nil {
return fmt.Errorf("getting job scaling policies for deletion failed: %v", err)
}
// Put them into a slice so there are no safety concerns while actually
// performing the deletes
policies := []interface{}{}
for {
raw := iter.Next()
if raw == nil {
break
}
policies = append(policies, raw)
}
// Do the deletes
for _, p := range policies {
if err := txn.Delete("scaling_policy", p); err != nil {
return fmt.Errorf("deleting scaling policy failed: %v", err)
}
}
if len(policies) > 0 {
if err := txn.Insert("index", &IndexEntry{"scaling_policy", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
return nil
}
// deleteJobVersions deletes all versions of the given job.
func (s *StateStore) deleteJobVersions(index uint64, job *structs.Job, txn *txn) error {
iter, err := txn.Get("job_version", "id_prefix", job.Namespace, job.ID)
if err != nil {
return err
}
// Put them into a slice so there are no safety concerns while actually
// performing the deletes
jobs := []*structs.Job{}
for {
raw := iter.Next()
if raw == nil {
break
}
// Ensure the ID is an exact match
j := raw.(*structs.Job)
if j.ID != job.ID {
continue
}
jobs = append(jobs, j)
}
// Do the deletes
for _, j := range jobs {
if err := txn.Delete("job_version", j); err != nil {
return fmt.Errorf("deleting job versions failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"job_version", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// upsertJobVersion inserts a job into its historic version table and limits the
// number of job versions that are tracked.
func (s *StateStore) upsertJobVersion(index uint64, job *structs.Job, txn *txn) error {
// Insert the job
if err := txn.Insert("job_version", job); err != nil {
return fmt.Errorf("failed to insert job into job_version table: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"job_version", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
// Get all the historic jobs for this ID
all, err := s.jobVersionByID(txn, nil, job.Namespace, job.ID)
if err != nil {
return fmt.Errorf("failed to look up job versions for %q: %v", job.ID, err)
}
// If we are below the limit there is no GCing to be done
if len(all) <= structs.JobTrackedVersions {
return nil
}
// We have to delete a historic job to make room.
// Find index of the highest versioned stable job
stableIdx := -1
for i, j := range all {
if j.Stable {
stableIdx = i
break
}
}
// If the stable job is the oldest version, do a swap to bring it into the
// keep set.
max := structs.JobTrackedVersions
if stableIdx == max {
all[max-1], all[max] = all[max], all[max-1]
}
// Delete the job outside of the set that are being kept.
d := all[max]
if err := txn.Delete("job_version", d); err != nil {
return fmt.Errorf("failed to delete job %v (%d) from job_version", d.ID, d.Version)
}
return nil
}
// JobByID is used to lookup a job by its ID. JobByID returns the current/latest job
// version.
func (s *StateStore) JobByID(ws memdb.WatchSet, namespace, id string) (*structs.Job, error) {
txn := s.db.ReadTxn()
return s.JobByIDTxn(ws, namespace, id, txn)
}
// JobByIDTxn is used to lookup a job by its ID, like JobByID. JobByID returns the job version
// accessible through in the transaction
func (s *StateStore) JobByIDTxn(ws memdb.WatchSet, namespace, id string, txn Txn) (*structs.Job, error) {
watchCh, existing, err := txn.FirstWatch("jobs", "id", namespace, id)
if err != nil {
return nil, fmt.Errorf("job lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.Job), nil
}
return nil, nil
}
// JobsByIDPrefix is used to lookup a job by prefix. If querying all namespaces
// the prefix will not be filtered by an index.
func (s *StateStore) JobsByIDPrefix(ws memdb.WatchSet, namespace, id string) (memdb.ResultIterator, error) {
if namespace == structs.AllNamespacesSentinel {
return s.jobsByIDPrefixAllNamespaces(ws, id)
}
txn := s.db.ReadTxn()
iter, err := txn.Get("jobs", "id_prefix", namespace, id)
if err != nil {
return nil, fmt.Errorf("job lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
func (s *StateStore) jobsByIDPrefixAllNamespaces(ws memdb.WatchSet, prefix string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire jobs table
iter, err := txn.Get("jobs", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
// Filter the iterator by ID prefix
f := func(raw interface{}) bool {
job, ok := raw.(*structs.Job)
if !ok {
return true
}
return !strings.HasPrefix(job.ID, prefix)
}
wrap := memdb.NewFilterIterator(iter, f)
return wrap, nil
}
// JobVersionsByID returns all the tracked versions of a job.
func (s *StateStore) JobVersionsByID(ws memdb.WatchSet, namespace, id string) ([]*structs.Job, error) {
txn := s.db.ReadTxn()
return s.jobVersionByID(txn, ws, namespace, id)
}
// jobVersionByID is the underlying implementation for retrieving all tracked
// versions of a job and is called under an existing transaction. A watch set
// can optionally be passed in to add the job histories to the watch set.
func (s *StateStore) jobVersionByID(txn *txn, ws memdb.WatchSet, namespace, id string) ([]*structs.Job, error) {
// Get all the historic jobs for this ID
iter, err := txn.Get("job_version", "id_prefix", namespace, id)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var all []*structs.Job
for {
raw := iter.Next()
if raw == nil {
break
}
// Ensure the ID is an exact match
j := raw.(*structs.Job)
if j.ID != id {
continue
}
all = append(all, j)
}
// Sort in reverse order so that the highest version is first
sort.Slice(all, func(i, j int) bool {
return all[i].Version > all[j].Version
})
return all, nil
}
// JobByIDAndVersion returns the job identified by its ID and Version. The
// passed watchset may be nil.
func (s *StateStore) JobByIDAndVersion(ws memdb.WatchSet, namespace, id string, version uint64) (*structs.Job, error) {
txn := s.db.ReadTxn()
return s.jobByIDAndVersionImpl(ws, namespace, id, version, txn)
}
// jobByIDAndVersionImpl returns the job identified by its ID and Version. The
// passed watchset may be nil.
func (s *StateStore) jobByIDAndVersionImpl(ws memdb.WatchSet, namespace, id string,
version uint64, txn *txn) (*structs.Job, error) {
watchCh, existing, err := txn.FirstWatch("job_version", "id", namespace, id, version)
if err != nil {
return nil, err
}
ws.Add(watchCh)
if existing != nil {
job := existing.(*structs.Job)
return job, nil
}
return nil, nil
}
func (s *StateStore) JobVersions(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire deployments table
iter, err := txn.Get("job_version", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// Jobs returns an iterator over all the jobs
func (s *StateStore) Jobs(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire jobs table
iter, err := txn.Get("jobs", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// JobsByNamespace returns an iterator over all the jobs for the given namespace
func (s *StateStore) JobsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
return s.jobsByNamespaceImpl(ws, namespace, txn)
}
// jobsByNamespaceImpl returns an iterator over all the jobs for the given namespace
func (s *StateStore) jobsByNamespaceImpl(ws memdb.WatchSet, namespace string, txn *txn) (memdb.ResultIterator, error) {
// Walk the entire jobs table
iter, err := txn.Get("jobs", "id_prefix", namespace, "")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// JobsByPeriodic returns an iterator over all the periodic or non-periodic jobs.
func (s *StateStore) JobsByPeriodic(ws memdb.WatchSet, periodic bool) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("jobs", "periodic", periodic)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// JobsByScheduler returns an iterator over all the jobs with the specific
// scheduler type.
func (s *StateStore) JobsByScheduler(ws memdb.WatchSet, schedulerType string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Return an iterator for jobs with the specific type.
iter, err := txn.Get("jobs", "type", schedulerType)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// JobsByGC returns an iterator over all jobs eligible or ineligible for garbage
// collection.
func (s *StateStore) JobsByGC(ws memdb.WatchSet, gc bool) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("jobs", "gc", gc)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// JobSummaryByID returns a job summary object which matches a specific id.
func (s *StateStore) JobSummaryByID(ws memdb.WatchSet, namespace, jobID string) (*structs.JobSummary, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("job_summary", "id", namespace, jobID)
if err != nil {
return nil, err
}
ws.Add(watchCh)
if existing != nil {
summary := existing.(*structs.JobSummary)
return summary, nil
}
return nil, nil
}
// JobSummaries walks the entire job summary table and returns all the job
// summary objects
func (s *StateStore) JobSummaries(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("job_summary", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// JobSummaryByPrefix is used to look up Job Summary by id prefix
func (s *StateStore) JobSummaryByPrefix(ws memdb.WatchSet, namespace, id string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("job_summary", "id_prefix", namespace, id)
if err != nil {
return nil, fmt.Errorf("job_summary lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// UpsertCSIVolume inserts a volume in the state store.
func (s *StateStore) UpsertCSIVolume(index uint64, volumes []*structs.CSIVolume) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
for _, v := range volumes {
if exists, err := s.namespaceExists(txn, v.Namespace); err != nil {
return err
} else if !exists {
return fmt.Errorf("volume %s is in nonexistent namespace %s", v.ID, v.Namespace)
}
obj, err := txn.First("csi_volumes", "id", v.Namespace, v.ID)
if err != nil {
return fmt.Errorf("volume existence check error: %v", err)
}
if obj != nil {
// Allow some properties of a volume to be updated in place, but
// prevent accidentally overwriting important properties, or
// overwriting a volume in use
old := obj.(*structs.CSIVolume)
if old.ExternalID != v.ExternalID ||
old.PluginID != v.PluginID ||
old.Provider != v.Provider {
return fmt.Errorf("volume identity cannot be updated: %s", v.ID)
}
s.CSIVolumeDenormalize(nil, old.Copy())
if old.InUse() {
return fmt.Errorf("volume cannot be updated while in use")
}
v.CreateIndex = old.CreateIndex
v.ModifyIndex = index
} else {
v.CreateIndex = index
v.ModifyIndex = index
}
// Allocations are copy on write, so we want to keep the Allocation ID
// but we need to clear the pointer so that we don't store it when we
// write the volume to the state store. We'll get it from the db in
// denormalize.
for allocID := range v.ReadAllocs {
v.ReadAllocs[allocID] = nil
}
for allocID := range v.WriteAllocs {
v.WriteAllocs[allocID] = nil
}
err = txn.Insert("csi_volumes", v)
if err != nil {
return fmt.Errorf("volume insert: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"csi_volumes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// CSIVolumes returns the unfiltered list of all volumes. Caller should
// snapshot if it wants to also denormalize the plugins.
func (s *StateStore) CSIVolumes(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
defer txn.Abort()
iter, err := txn.Get("csi_volumes", "id")
if err != nil {
return nil, fmt.Errorf("csi_volumes lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// CSIVolumeByID is used to lookup a single volume. Returns a copy of the
// volume because its plugins and allocations are denormalized to provide
// accurate Health.
func (s *StateStore) CSIVolumeByID(ws memdb.WatchSet, namespace, id string) (*structs.CSIVolume, error) {
txn := s.db.ReadTxn()
watchCh, obj, err := txn.FirstWatch("csi_volumes", "id", namespace, id)
if err != nil {
return nil, fmt.Errorf("volume lookup failed for %s: %v", id, err)
}
ws.Add(watchCh)
if obj == nil {
return nil, nil
}
vol := obj.(*structs.CSIVolume)
// we return the volume with the plugins denormalized by default,
// because the scheduler needs them for feasibility checking
return s.csiVolumeDenormalizePluginsTxn(txn, vol.Copy())
}
// CSIVolumesByPluginID looks up csi_volumes by pluginID. Caller should
// snapshot if it wants to also denormalize the plugins.
func (s *StateStore) CSIVolumesByPluginID(ws memdb.WatchSet, namespace, prefix, pluginID string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("csi_volumes", "plugin_id", pluginID)
if err != nil {
return nil, fmt.Errorf("volume lookup failed: %v", err)
}
// Filter the iterator by namespace
f := func(raw interface{}) bool {
v, ok := raw.(*structs.CSIVolume)
if !ok {
return false
}
return v.Namespace != namespace && strings.HasPrefix(v.ID, prefix)
}
wrap := memdb.NewFilterIterator(iter, f)
return wrap, nil
}
// CSIVolumesByIDPrefix supports search. Caller should snapshot if it wants to
// also denormalize the plugins. If using a prefix with the wildcard namespace,
// the results will not use the index prefix.
func (s *StateStore) CSIVolumesByIDPrefix(ws memdb.WatchSet, namespace, volumeID string) (memdb.ResultIterator, error) {
if namespace == structs.AllNamespacesSentinel {
return s.csiVolumeByIDPrefixAllNamespaces(ws, volumeID)
}
txn := s.db.ReadTxn()
iter, err := txn.Get("csi_volumes", "id_prefix", namespace, volumeID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
func (s *StateStore) csiVolumeByIDPrefixAllNamespaces(ws memdb.WatchSet, prefix string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire csi_volumes table
iter, err := txn.Get("csi_volumes", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
// Filter the iterator by ID prefix
f := func(raw interface{}) bool {
v, ok := raw.(*structs.CSIVolume)
if !ok {
return false
}
return !strings.HasPrefix(v.ID, prefix)
}
wrap := memdb.NewFilterIterator(iter, f)
return wrap, nil
}
// CSIVolumesByNodeID looks up CSIVolumes in use on a node. Caller should
// snapshot if it wants to also denormalize the plugins.
func (s *StateStore) CSIVolumesByNodeID(ws memdb.WatchSet, prefix, nodeID string) (memdb.ResultIterator, error) {
allocs, err := s.AllocsByNode(ws, nodeID)
if err != nil {
return nil, fmt.Errorf("alloc lookup failed: %v", err)
}
// Find volume ids for CSI volumes in running allocs, or allocs that we desire to run
ids := map[string]string{} // Map volumeID to Namespace
for _, a := range allocs {
tg := a.Job.LookupTaskGroup(a.TaskGroup)
if !(a.DesiredStatus == structs.AllocDesiredStatusRun ||
a.ClientStatus == structs.AllocClientStatusRunning) ||
len(tg.Volumes) == 0 {
continue
}
for _, v := range tg.Volumes {
if v.Type != structs.VolumeTypeCSI {
continue
}
ids[v.Source] = a.Namespace
}
}
// Lookup the raw CSIVolumes to match the other list interfaces
iter := NewSliceIterator()
txn := s.db.ReadTxn()
for id, namespace := range ids {
if strings.HasPrefix(id, prefix) {
watchCh, raw, err := txn.FirstWatch("csi_volumes", "id", namespace, id)
if err != nil {
return nil, fmt.Errorf("volume lookup failed: %s %v", id, err)
}
ws.Add(watchCh)
iter.Add(raw)
}
}
return iter, nil
}
// CSIVolumesByNamespace looks up the entire csi_volumes table
func (s *StateStore) CSIVolumesByNamespace(ws memdb.WatchSet, namespace, prefix string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
return s.csiVolumesByNamespaceImpl(txn, ws, namespace, prefix)
}
func (s *StateStore) csiVolumesByNamespaceImpl(txn *txn, ws memdb.WatchSet, namespace, prefix string) (memdb.ResultIterator, error) {
iter, err := txn.Get("csi_volumes", "id_prefix", namespace, prefix)
if err != nil {
return nil, fmt.Errorf("volume lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// CSIVolumeClaim updates the volume's claim count and allocation list
func (s *StateStore) CSIVolumeClaim(index uint64, namespace, id string, claim *structs.CSIVolumeClaim) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
row, err := txn.First("csi_volumes", "id", namespace, id)
if err != nil {
return fmt.Errorf("volume lookup failed: %s: %v", id, err)
}
if row == nil {
return fmt.Errorf("volume not found: %s", id)
}
orig, ok := row.(*structs.CSIVolume)
if !ok {
return fmt.Errorf("volume row conversion error")
}
var alloc *structs.Allocation
if claim.State == structs.CSIVolumeClaimStateTaken {
alloc, err = s.allocByIDImpl(txn, nil, claim.AllocationID)
if err != nil {
s.logger.Error("AllocByID failed", "error", err)
return fmt.Errorf(structs.ErrUnknownAllocationPrefix)
}
if alloc == nil {
s.logger.Error("AllocByID failed to find alloc", "alloc_id", claim.AllocationID)
if err != nil {
return fmt.Errorf(structs.ErrUnknownAllocationPrefix)
}
}
}
volume, err := s.csiVolumeDenormalizePluginsTxn(txn, orig.Copy())
if err != nil {
return err
}
volume, err = s.csiVolumeDenormalizeTxn(txn, nil, volume)
if err != nil {
return err
}
// in the case of a job deregistration, there will be no allocation ID
// for the claim but we still want to write an updated index to the volume
// so that volume reaping is triggered
if claim.AllocationID != "" {
err = volume.Claim(claim, alloc)
if err != nil {
return err
}
}
volume.ModifyIndex = index
// Allocations are copy on write, so we want to keep the Allocation ID
// but we need to clear the pointer so that we don't store it when we
// write the volume to the state store. We'll get it from the db in
// denormalize.
for allocID := range volume.ReadAllocs {
volume.ReadAllocs[allocID] = nil
}
for allocID := range volume.WriteAllocs {
volume.WriteAllocs[allocID] = nil
}
if err = txn.Insert("csi_volumes", volume); err != nil {
return fmt.Errorf("volume update failed: %s: %v", id, err)
}
if err = txn.Insert("index", &IndexEntry{"csi_volumes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// CSIVolumeDeregister removes the volume from the server
func (s *StateStore) CSIVolumeDeregister(index uint64, namespace string, ids []string, force bool) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
for _, id := range ids {
existing, err := txn.First("csi_volumes", "id", namespace, id)
if err != nil {
return fmt.Errorf("volume lookup failed: %s: %v", id, err)
}
if existing == nil {
return fmt.Errorf("volume not found: %s", id)
}
vol, ok := existing.(*structs.CSIVolume)
if !ok {
return fmt.Errorf("volume row conversion error: %s", id)
}
// The common case for a volume deregister is when the volume is
// unused, but we can also let an operator intervene in the case where
// allocations have been stopped but claims can't be freed because
// ex. the plugins have all been removed.
if vol.InUse() {
if !force || !s.volSafeToForce(txn, vol) {
return fmt.Errorf("volume in use: %s", id)
}
}
if err = txn.Delete("csi_volumes", existing); err != nil {
return fmt.Errorf("volume delete failed: %s: %v", id, err)
}
}
if err := txn.Insert("index", &IndexEntry{"csi_volumes", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// volSafeToForce checks if the any of the remaining allocations
// are in a non-terminal state.
func (s *StateStore) volSafeToForce(txn Txn, v *structs.CSIVolume) bool {
vol, err := s.csiVolumeDenormalizeTxn(txn, nil, v)
if err != nil {
return false
}
for _, alloc := range vol.ReadAllocs {
if alloc != nil && !alloc.TerminalStatus() {
return false
}
}
for _, alloc := range vol.WriteAllocs {
if alloc != nil && !alloc.TerminalStatus() {
return false
}
}
return true
}
// CSIVolumeDenormalizePlugins returns a CSIVolume with current health and
// plugins, but without allocations.
// Use this for current volume metadata, handling lists of volumes.
// Use CSIVolumeDenormalize for volumes containing both health and current
// allocations.
func (s *StateStore) CSIVolumeDenormalizePlugins(ws memdb.WatchSet, vol *structs.CSIVolume) (*structs.CSIVolume, error) {
if vol == nil {
return nil, nil
}
txn := s.db.ReadTxn()
defer txn.Abort()
return s.csiVolumeDenormalizePluginsTxn(txn, vol)
}
// csiVolumeDenormalizePluginsTxn implements
// CSIVolumeDenormalizePlugins, inside a transaction.
func (s *StateStore) csiVolumeDenormalizePluginsTxn(txn Txn, vol *structs.CSIVolume) (*structs.CSIVolume, error) {
if vol == nil {
return nil, nil
}
plug, err := s.CSIPluginByIDTxn(txn, nil, vol.PluginID)
if err != nil {
return nil, fmt.Errorf("plugin lookup error: %s %v", vol.PluginID, err)
}
if plug == nil {
vol.ControllersHealthy = 0
vol.NodesHealthy = 0
vol.Schedulable = false
return vol, nil
}
vol.Provider = plug.Provider
vol.ProviderVersion = plug.Version
vol.ControllerRequired = plug.ControllerRequired
vol.ControllersHealthy = plug.ControllersHealthy
vol.NodesHealthy = plug.NodesHealthy
// This value may be stale, but stale is ok
vol.ControllersExpected = plug.ControllersExpected
vol.NodesExpected = plug.NodesExpected
vol.Schedulable = vol.NodesHealthy > 0
if vol.ControllerRequired {
vol.Schedulable = vol.ControllersHealthy > 0 && vol.Schedulable
}
return vol, nil
}
// CSIVolumeDenormalize returns a CSIVolume with its current
// Allocations and Claims, including creating new PastClaims for
// terminal or garbage collected allocations. This ensures we have a
// consistent state. Note that it mutates the original volume and so
// should always be called on a Copy after reading from the state
// store.
func (s *StateStore) CSIVolumeDenormalize(ws memdb.WatchSet, vol *structs.CSIVolume) (*structs.CSIVolume, error) {
txn := s.db.ReadTxn()
return s.csiVolumeDenormalizeTxn(txn, ws, vol)
}
// csiVolumeDenormalizeTxn implements CSIVolumeDenormalize inside a transaction
func (s *StateStore) csiVolumeDenormalizeTxn(txn Txn, ws memdb.WatchSet, vol *structs.CSIVolume) (*structs.CSIVolume, error) {
if vol == nil {
return nil, nil
}
// note: denormalize mutates the maps we pass in!
denormalize := func(
currentAllocs map[string]*structs.Allocation,
currentClaims, pastClaims map[string]*structs.CSIVolumeClaim,
fallbackMode structs.CSIVolumeClaimMode) error {
for id := range currentAllocs {
a, err := s.allocByIDImpl(txn, ws, id)
if err != nil {
return err
}
pastClaim := pastClaims[id]
currentClaim := currentClaims[id]
if currentClaim == nil {
// COMPAT(1.4.0): the CSIVolumeClaim fields were added
// after 0.11.1, so claims made before that may be
// missing this value. No clusters should see this
// anymore, so warn nosily in the logs so that
// operators ask us about it. Remove this block and
// the now-unused fallbackMode parameter, and return
// an error if currentClaim is nil in 1.4.0
s.logger.Warn("volume was missing claim for allocation",
"volume_id", vol.ID, "alloc", id)
currentClaim = &structs.CSIVolumeClaim{
AllocationID: a.ID,
NodeID: a.NodeID,
Mode: fallbackMode,
State: structs.CSIVolumeClaimStateTaken,
}
currentClaims[id] = currentClaim
}
currentAllocs[id] = a
if (a == nil || a.TerminalStatus()) && pastClaim == nil {
// the alloc is garbage collected but nothing has written a PastClaim,
// so create one now
pastClaim = &structs.CSIVolumeClaim{
AllocationID: id,
NodeID: currentClaim.NodeID,
Mode: currentClaim.Mode,
State: structs.CSIVolumeClaimStateUnpublishing,
AccessMode: currentClaim.AccessMode,
AttachmentMode: currentClaim.AttachmentMode,
}
pastClaims[id] = pastClaim
}
}
return nil
}
err := denormalize(vol.ReadAllocs, vol.ReadClaims, vol.PastClaims,
structs.CSIVolumeClaimRead)
if err != nil {
return nil, err
}
err = denormalize(vol.WriteAllocs, vol.WriteClaims, vol.PastClaims,
structs.CSIVolumeClaimWrite)
if err != nil {
return nil, err
}
// COMPAT: the AccessMode and AttachmentMode fields were added to claims
// in 1.1.0, so claims made before that may be missing this value. In this
// case, the volume will already have AccessMode/AttachmentMode until it
// no longer has any claims, so set from those values
for _, claim := range vol.ReadClaims {
if claim.AccessMode == "" || claim.AttachmentMode == "" {
claim.AccessMode = vol.AccessMode
claim.AttachmentMode = vol.AttachmentMode
}
}
for _, claim := range vol.WriteClaims {
if claim.AccessMode == "" || claim.AttachmentMode == "" {
claim.AccessMode = vol.AccessMode
claim.AttachmentMode = vol.AttachmentMode
}
}
return vol, nil
}
// CSIPlugins returns the unfiltered list of all plugin health status
func (s *StateStore) CSIPlugins(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
defer txn.Abort()
iter, err := txn.Get("csi_plugins", "id")
if err != nil {
return nil, fmt.Errorf("csi_plugins lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// CSIPluginsByIDPrefix supports search
func (s *StateStore) CSIPluginsByIDPrefix(ws memdb.WatchSet, pluginID string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("csi_plugins", "id_prefix", pluginID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// CSIPluginByID returns a named CSIPlugin. This method creates a new
// transaction so you should not call it from within another transaction.
func (s *StateStore) CSIPluginByID(ws memdb.WatchSet, id string) (*structs.CSIPlugin, error) {
txn := s.db.ReadTxn()
plugin, err := s.CSIPluginByIDTxn(txn, ws, id)
if err != nil {
return nil, err
}
return plugin, nil
}
// CSIPluginByIDTxn returns a named CSIPlugin
func (s *StateStore) CSIPluginByIDTxn(txn Txn, ws memdb.WatchSet, id string) (*structs.CSIPlugin, error) {
watchCh, obj, err := txn.FirstWatch("csi_plugins", "id", id)
if err != nil {
return nil, fmt.Errorf("csi_plugin lookup failed: %s %v", id, err)
}
ws.Add(watchCh)
if obj != nil {
return obj.(*structs.CSIPlugin), nil
}
return nil, nil
}
// CSIPluginDenormalize returns a CSIPlugin with allocation details. Always called on a copy of the plugin.
func (s *StateStore) CSIPluginDenormalize(ws memdb.WatchSet, plug *structs.CSIPlugin) (*structs.CSIPlugin, error) {
txn := s.db.ReadTxn()
return s.CSIPluginDenormalizeTxn(txn, ws, plug)
}
func (s *StateStore) CSIPluginDenormalizeTxn(txn Txn, ws memdb.WatchSet, plug *structs.CSIPlugin) (*structs.CSIPlugin, error) {
if plug == nil {
return nil, nil
}
// Get the unique list of allocation ids
ids := map[string]struct{}{}
for _, info := range plug.Controllers {
ids[info.AllocID] = struct{}{}
}
for _, info := range plug.Nodes {
ids[info.AllocID] = struct{}{}
}
for id := range ids {
alloc, err := s.allocByIDImpl(txn, ws, id)
if err != nil {
return nil, err
}
if alloc == nil {
continue
}
plug.Allocations = append(plug.Allocations, alloc.Stub(nil))
}
sort.Slice(plug.Allocations, func(i, j int) bool {
return plug.Allocations[i].ModifyIndex > plug.Allocations[j].ModifyIndex
})
return plug, nil
}
// UpsertCSIPlugin writes the plugin to the state store. Note: there
// is currently no raft message for this, as it's intended to support
// testing use cases.
func (s *StateStore) UpsertCSIPlugin(index uint64, plug *structs.CSIPlugin) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
existing, err := txn.First("csi_plugins", "id", plug.ID)
if err != nil {
return fmt.Errorf("csi_plugin lookup error: %s %v", plug.ID, err)
}
plug.ModifyIndex = index
if existing != nil {
plug.CreateIndex = existing.(*structs.CSIPlugin).CreateIndex
}
err = txn.Insert("csi_plugins", plug)
if err != nil {
return fmt.Errorf("csi_plugins insert error: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"csi_plugins", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeleteCSIPlugin deletes the plugin if it's not in use.
func (s *StateStore) DeleteCSIPlugin(index uint64, id string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
plug, err := s.CSIPluginByIDTxn(txn, nil, id)
if err != nil {
return err
}
if plug == nil {
return nil
}
plug, err = s.CSIPluginDenormalizeTxn(txn, nil, plug.Copy())
if err != nil {
return err
}
if !plug.IsEmpty() {
return fmt.Errorf("plugin in use")
}
err = txn.Delete("csi_plugins", plug)
if err != nil {
return fmt.Errorf("csi_plugins delete error: %v", err)
}
return txn.Commit()
}
// UpsertPeriodicLaunch is used to register a launch or update it.
func (s *StateStore) UpsertPeriodicLaunch(index uint64, launch *structs.PeriodicLaunch) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// Check if the job already exists
existing, err := txn.First("periodic_launch", "id", launch.Namespace, launch.ID)
if err != nil {
return fmt.Errorf("periodic launch lookup failed: %v", err)
}
// Setup the indexes correctly
if existing != nil {
launch.CreateIndex = existing.(*structs.PeriodicLaunch).CreateIndex
launch.ModifyIndex = index
} else {
launch.CreateIndex = index
launch.ModifyIndex = index
}
// Insert the job
if err := txn.Insert("periodic_launch", launch); err != nil {
return fmt.Errorf("launch insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"periodic_launch", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeletePeriodicLaunch is used to delete the periodic launch
func (s *StateStore) DeletePeriodicLaunch(index uint64, namespace, jobID string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
err := s.DeletePeriodicLaunchTxn(index, namespace, jobID, txn)
if err == nil {
return txn.Commit()
}
return err
}
// DeletePeriodicLaunchTxn is used to delete the periodic launch, like DeletePeriodicLaunch
// but in a transaction. Useful for when making multiple modifications atomically
func (s *StateStore) DeletePeriodicLaunchTxn(index uint64, namespace, jobID string, txn Txn) error {
// Lookup the launch
existing, err := txn.First("periodic_launch", "id", namespace, jobID)
if err != nil {
return fmt.Errorf("launch lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("launch not found")
}
// Delete the launch
if err := txn.Delete("periodic_launch", existing); err != nil {
return fmt.Errorf("launch delete failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"periodic_launch", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// PeriodicLaunchByID is used to lookup a periodic launch by the periodic job
// ID.
func (s *StateStore) PeriodicLaunchByID(ws memdb.WatchSet, namespace, id string) (*structs.PeriodicLaunch, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("periodic_launch", "id", namespace, id)
if err != nil {
return nil, fmt.Errorf("periodic launch lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.PeriodicLaunch), nil
}
return nil, nil
}
// PeriodicLaunches returns an iterator over all the periodic launches
func (s *StateStore) PeriodicLaunches(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire table
iter, err := txn.Get("periodic_launch", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// UpsertEvals is used to upsert a set of evaluations
func (s *StateStore) UpsertEvals(msgType structs.MessageType, index uint64, evals []*structs.Evaluation) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
err := s.UpsertEvalsTxn(index, evals, txn)
if err == nil {
return txn.Commit()
}
return err
}
// UpsertEvalsTxn is used to upsert a set of evaluations, like UpsertEvals but
// in a transaction. Useful for when making multiple modifications atomically.
func (s *StateStore) UpsertEvalsTxn(index uint64, evals []*structs.Evaluation, txn Txn) error {
// Do a nested upsert
jobs := make(map[structs.NamespacedID]string, len(evals))
for _, eval := range evals {
if err := s.nestedUpsertEval(txn, index, eval); err != nil {
return err
}
tuple := structs.NamespacedID{
ID: eval.JobID,
Namespace: eval.Namespace,
}
jobs[tuple] = ""
}
// Set the job's status
if err := s.setJobStatuses(index, txn, jobs, false); err != nil {
return fmt.Errorf("setting job status failed: %v", err)
}
return nil
}
// nestedUpsertEvaluation is used to nest an evaluation upsert within a transaction
func (s *StateStore) nestedUpsertEval(txn *txn, index uint64, eval *structs.Evaluation) error {
// Lookup the evaluation
existing, err := txn.First("evals", "id", eval.ID)
if err != nil {
return fmt.Errorf("eval lookup failed: %v", err)
}
// Update the indexes
if existing != nil {
eval.CreateIndex = existing.(*structs.Evaluation).CreateIndex
eval.ModifyIndex = index
} else {
eval.CreateIndex = index
eval.ModifyIndex = index
}
// Update the job summary
summaryRaw, err := txn.First("job_summary", "id", eval.Namespace, eval.JobID)
if err != nil {
return fmt.Errorf("job summary lookup failed: %v", err)
}
if summaryRaw != nil {
js := summaryRaw.(*structs.JobSummary).Copy()
hasSummaryChanged := false
for tg, num := range eval.QueuedAllocations {
if summary, ok := js.Summary[tg]; ok {
if summary.Queued != num {
summary.Queued = num
js.Summary[tg] = summary
hasSummaryChanged = true
}
} else {
s.logger.Error("unable to update queued for job and task group", "job_id", eval.JobID, "task_group", tg, "namespace", eval.Namespace)
}
}
// Insert the job summary
if hasSummaryChanged {
js.ModifyIndex = index
if err := txn.Insert("job_summary", js); err != nil {
return fmt.Errorf("job summary insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
}
// Check if the job has any blocked evaluations and cancel them
if eval.Status == structs.EvalStatusComplete && len(eval.FailedTGAllocs) == 0 {
// Get the blocked evaluation for a job if it exists
iter, err := txn.Get("evals", "job", eval.Namespace, eval.JobID, structs.EvalStatusBlocked)
if err != nil {
return fmt.Errorf("failed to get blocked evals for job %q in namespace %q: %v", eval.JobID, eval.Namespace, err)
}
var blocked []*structs.Evaluation
for {
raw := iter.Next()
if raw == nil {
break
}
blocked = append(blocked, raw.(*structs.Evaluation))
}
// Go through and update the evals
for _, eval := range blocked {
newEval := eval.Copy()
newEval.Status = structs.EvalStatusCancelled
newEval.StatusDescription = fmt.Sprintf("evaluation %q successful", newEval.ID)
newEval.ModifyIndex = index
if err := txn.Insert("evals", newEval); err != nil {
return fmt.Errorf("eval insert failed: %v", err)
}
}
}
// Insert the eval
if err := txn.Insert("evals", eval); err != nil {
return fmt.Errorf("eval insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"evals", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// updateEvalModifyIndex is used to update the modify index of an evaluation that has been
// through a scheduler pass. This is done as part of plan apply. It ensures that when a subsequent
// scheduler workers process a re-queued evaluation it sees any partial updates from the plan apply.
func (s *StateStore) updateEvalModifyIndex(txn *txn, index uint64, evalID string) error {
// Lookup the evaluation
existing, err := txn.First("evals", "id", evalID)
if err != nil {
return fmt.Errorf("eval lookup failed: %v", err)
}
if existing == nil {
s.logger.Error("unable to find eval", "eval_id", evalID)
return fmt.Errorf("unable to find eval id %q", evalID)
}
eval := existing.(*structs.Evaluation).Copy()
// Update the indexes
eval.ModifyIndex = index
// Insert the eval
if err := txn.Insert("evals", eval); err != nil {
return fmt.Errorf("eval insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"evals", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// DeleteEval is used to delete an evaluation
func (s *StateStore) DeleteEval(index uint64, evals, allocs []string, userInitiated bool) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// If this deletion has been initiated by an operator, ensure the eval
// broker is paused.
if userInitiated {
_, schedConfig, err := s.schedulerConfigTxn(txn)
if err != nil {
return err
}
if schedConfig == nil || !schedConfig.PauseEvalBroker {
return errors.New("eval broker is enabled; eval broker must be paused to delete evals")
}
}
jobs := make(map[structs.NamespacedID]string, len(evals))
// evalsTableUpdated and allocsTableUpdated allow us to track whether each
// table has been modified. This allows us to skip updating the index table
// entries if we do not need to.
var evalsTableUpdated, allocsTableUpdated bool
for _, eval := range evals {
existing, err := txn.First("evals", "id", eval)
if err != nil {
return fmt.Errorf("eval lookup failed: %v", err)
}
if existing == nil {
continue
}
if err := txn.Delete("evals", existing); err != nil {
return fmt.Errorf("eval delete failed: %v", err)
}
// Mark that we have made a successful modification to the evals
// table.
evalsTableUpdated = true
eval := existing.(*structs.Evaluation)
tuple := structs.NamespacedID{
ID: eval.JobID,
Namespace: eval.Namespace,
}
jobs[tuple] = ""
}
for _, alloc := range allocs {
raw, err := txn.First("allocs", "id", alloc)
if err != nil {
return fmt.Errorf("alloc lookup failed: %v", err)
}
if raw == nil {
continue
}
if err := txn.Delete("allocs", raw); err != nil {
return fmt.Errorf("alloc delete failed: %v", err)
}
// Mark that we have made a successful modification to the allocs
// table.
allocsTableUpdated = true
}
// Update the indexes
if evalsTableUpdated {
if err := txn.Insert("index", &IndexEntry{"evals", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
if allocsTableUpdated {
if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
// Set the job's status
if err := s.setJobStatuses(index, txn, jobs, true); err != nil {
return fmt.Errorf("setting job status failed: %v", err)
}
return txn.Commit()
}
// EvalByID is used to lookup an eval by its ID
func (s *StateStore) EvalByID(ws memdb.WatchSet, id string) (*structs.Evaluation, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("evals", "id", id)
if err != nil {
return nil, fmt.Errorf("eval lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.Evaluation), nil
}
return nil, nil
}
// EvalsRelatedToID is used to retrieve the evals that are related (next,
// previous, or blocked) to the provided eval ID.
func (s *StateStore) EvalsRelatedToID(ws memdb.WatchSet, id string) ([]*structs.EvaluationStub, error) {
txn := s.db.ReadTxn()
raw, err := txn.First("evals", "id", id)
if err != nil {
return nil, fmt.Errorf("eval lookup failed: %v", err)
}
if raw == nil {
return nil, nil
}
eval := raw.(*structs.Evaluation)
relatedEvals := []*structs.EvaluationStub{}
todo := eval.RelatedIDs()
done := map[string]bool{
eval.ID: true, // don't place the requested eval in the related list.
}
for len(todo) > 0 {
// Pop the first value from the todo list.
current := todo[0]
todo = todo[1:]
if current == "" {
continue
}
// Skip value if we already have it in the results.
if done[current] {
continue
}
eval, err := s.EvalByID(ws, current)
if err != nil {
return nil, err
}
if eval == nil {
continue
}
todo = append(todo, eval.RelatedIDs()...)
relatedEvals = append(relatedEvals, eval.Stub())
done[eval.ID] = true
}
return relatedEvals, nil
}
// EvalsByIDPrefix is used to lookup evaluations by prefix in a particular
// namespace
func (s *StateStore) EvalsByIDPrefix(ws memdb.WatchSet, namespace, id string, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var iter memdb.ResultIterator
var err error
// Get an iterator over all evals by the id prefix
switch sort {
case SortReverse:
iter, err = txn.GetReverse("evals", "id_prefix", id)
default:
iter, err = txn.Get("evals", "id_prefix", id)
}
if err != nil {
return nil, fmt.Errorf("eval lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
// Wrap the iterator in a filter
wrap := memdb.NewFilterIterator(iter, evalNamespaceFilter(namespace))
return wrap, nil
}
// evalNamespaceFilter returns a filter function that filters all evaluations
// not in the given namespace.
func evalNamespaceFilter(namespace string) func(interface{}) bool {
return func(raw interface{}) bool {
eval, ok := raw.(*structs.Evaluation)
if !ok {
return true
}
return namespace != structs.AllNamespacesSentinel &&
eval.Namespace != namespace
}
}
// EvalsByJob returns all the evaluations by job id
func (s *StateStore) EvalsByJob(ws memdb.WatchSet, namespace, jobID string) ([]*structs.Evaluation, error) {
txn := s.db.ReadTxn()
// Get an iterator over the node allocations
iter, err := txn.Get("evals", "job_prefix", namespace, jobID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.Evaluation
for {
raw := iter.Next()
if raw == nil {
break
}
e := raw.(*structs.Evaluation)
// Filter non-exact matches
if e.JobID != jobID {
continue
}
out = append(out, e)
}
return out, nil
}
// Evals returns an iterator over all the evaluations in ascending or descending
// order of CreationIndex as determined by the reverse parameter.
func (s *StateStore) Evals(ws memdb.WatchSet, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var it memdb.ResultIterator
var err error
switch sort {
case SortReverse:
it, err = txn.GetReverse("evals", "create")
default:
it, err = txn.Get("evals", "create")
}
if err != nil {
return nil, err
}
ws.Add(it.WatchCh())
return it, nil
}
// EvalsByNamespace returns an iterator over all evaluations in no particular
// order.
//
// todo(shoenig): can this be removed?
func (s *StateStore) EvalsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
it, err := txn.Get("evals", "namespace", namespace)
if err != nil {
return nil, err
}
ws.Add(it.WatchCh())
return it, nil
}
func (s *StateStore) EvalsByNamespaceOrdered(ws memdb.WatchSet, namespace string, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var (
it memdb.ResultIterator
err error
exact = terminate(namespace)
)
switch sort {
case SortReverse:
it, err = txn.GetReverse("evals", "namespace_create_prefix", exact)
default:
it, err = txn.Get("evals", "namespace_create_prefix", exact)
}
if err != nil {
return nil, err
}
ws.Add(it.WatchCh())
return it, nil
}
// UpdateAllocsFromClient is used to update an allocation based on input
// from a client. While the schedulers are the authority on the allocation for
// most things, some updates are authoritative from the client. Specifically,
// the desired state comes from the schedulers, while the actual state comes
// from clients.
func (s *StateStore) UpdateAllocsFromClient(msgType structs.MessageType, index uint64, allocs []*structs.Allocation) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Handle each of the updated allocations
for _, alloc := range allocs {
if err := s.nestedUpdateAllocFromClient(txn, index, alloc); err != nil {
return err
}
}
// Update the indexes
if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// nestedUpdateAllocFromClient is used to nest an update of an allocation with client status
func (s *StateStore) nestedUpdateAllocFromClient(txn *txn, index uint64, alloc *structs.Allocation) error {
// Look for existing alloc
existing, err := txn.First("allocs", "id", alloc.ID)
if err != nil {
return fmt.Errorf("alloc lookup failed: %v", err)
}
// Nothing to do if this does not exist
if existing == nil {
return nil
}
exist := existing.(*structs.Allocation)
// Copy everything from the existing allocation
copyAlloc := exist.Copy()
// Pull in anything the client is the authority on
copyAlloc.ClientStatus = alloc.ClientStatus
copyAlloc.ClientDescription = alloc.ClientDescription
copyAlloc.TaskStates = alloc.TaskStates
copyAlloc.NetworkStatus = alloc.NetworkStatus
// The client can only set its deployment health and timestamp, so just take
// those
if copyAlloc.DeploymentStatus != nil && alloc.DeploymentStatus != nil {
oldHasHealthy := copyAlloc.DeploymentStatus.HasHealth()
newHasHealthy := alloc.DeploymentStatus.HasHealth()
// We got new health information from the client
if newHasHealthy && (!oldHasHealthy || *copyAlloc.DeploymentStatus.Healthy != *alloc.DeploymentStatus.Healthy) {
// Updated deployment health and timestamp
copyAlloc.DeploymentStatus.Healthy = helper.BoolToPtr(*alloc.DeploymentStatus.Healthy)
copyAlloc.DeploymentStatus.Timestamp = alloc.DeploymentStatus.Timestamp
copyAlloc.DeploymentStatus.ModifyIndex = index
}
} else if alloc.DeploymentStatus != nil {
// First time getting a deployment status so copy everything and just
// set the index
copyAlloc.DeploymentStatus = alloc.DeploymentStatus.Copy()
copyAlloc.DeploymentStatus.ModifyIndex = index
}
// Update the modify index
copyAlloc.ModifyIndex = index
// Update the modify time
copyAlloc.ModifyTime = alloc.ModifyTime
if err := s.updateDeploymentWithAlloc(index, copyAlloc, exist, txn); err != nil {
return fmt.Errorf("error updating deployment: %v", err)
}
if err := s.updateSummaryWithAlloc(index, copyAlloc, exist, txn); err != nil {
return fmt.Errorf("error updating job summary: %v", err)
}
if err := s.updateEntWithAlloc(index, copyAlloc, exist, txn); err != nil {
return err
}
if err := s.updatePluginForTerminalAlloc(index, copyAlloc, txn); err != nil {
return err
}
// Update the allocation
if err := txn.Insert("allocs", copyAlloc); err != nil {
return fmt.Errorf("alloc insert failed: %v", err)
}
// Set the job's status
forceStatus := ""
if !copyAlloc.TerminalStatus() {
forceStatus = structs.JobStatusRunning
}
tuple := structs.NamespacedID{
ID: exist.JobID,
Namespace: exist.Namespace,
}
jobs := map[structs.NamespacedID]string{tuple: forceStatus}
if err := s.setJobStatuses(index, txn, jobs, false); err != nil {
return fmt.Errorf("setting job status failed: %v", err)
}
return nil
}
// UpsertAllocs is used to evict a set of allocations and allocate new ones at
// the same time.
func (s *StateStore) UpsertAllocs(msgType structs.MessageType, index uint64, allocs []*structs.Allocation) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
if err := s.upsertAllocsImpl(index, allocs, txn); err != nil {
return err
}
return txn.Commit()
}
// upsertAllocs is the actual implementation of UpsertAllocs so that it may be
// used with an existing transaction.
func (s *StateStore) upsertAllocsImpl(index uint64, allocs []*structs.Allocation, txn *txn) error {
// Handle the allocations
jobs := make(map[structs.NamespacedID]string, 1)
for _, alloc := range allocs {
existing, err := txn.First("allocs", "id", alloc.ID)
if err != nil {
return fmt.Errorf("alloc lookup failed: %v", err)
}
exist, _ := existing.(*structs.Allocation)
if exist == nil {
alloc.CreateIndex = index
alloc.ModifyIndex = index
alloc.AllocModifyIndex = index
if alloc.DeploymentStatus != nil {
alloc.DeploymentStatus.ModifyIndex = index
}
// Issue https://github.com/hashicorp/nomad/issues/2583 uncovered
// the a race between a forced garbage collection and the scheduler
// marking an allocation as terminal. The issue is that the
// allocation from the scheduler has its job normalized and the FSM
// will only denormalize if the allocation is not terminal. However
// if the allocation is garbage collected, that will result in a
// allocation being upserted for the first time without a job
// attached. By returning an error here, it will cause the FSM to
// error, causing the plan_apply to error and thus causing the
// evaluation to be failed. This will force an index refresh that
// should solve this issue.
if alloc.Job == nil {
return fmt.Errorf("attempting to upsert allocation %q without a job", alloc.ID)
}
} else {
alloc.CreateIndex = exist.CreateIndex
alloc.ModifyIndex = index
alloc.AllocModifyIndex = index
// Keep the clients task states
alloc.TaskStates = exist.TaskStates
// If the scheduler is marking this allocation as lost or unknown we do not
// want to reuse the status of the existing allocation.
if alloc.ClientStatus != structs.AllocClientStatusLost &&
alloc.ClientStatus != structs.AllocClientStatusUnknown {
alloc.ClientStatus = exist.ClientStatus
alloc.ClientDescription = exist.ClientDescription
}
// The job has been denormalized so re-attach the original job
if alloc.Job == nil {
alloc.Job = exist.Job
}
}
// OPTIMIZATION:
// These should be given a map of new to old allocation and the updates
// should be one on all changes. The current implementation causes O(n)
// lookups/copies/insertions rather than O(1)
if err := s.updateDeploymentWithAlloc(index, alloc, exist, txn); err != nil {
return fmt.Errorf("error updating deployment: %v", err)
}
if err := s.updateSummaryWithAlloc(index, alloc, exist, txn); err != nil {
return fmt.Errorf("error updating job summary: %v", err)
}
if err := s.updateEntWithAlloc(index, alloc, exist, txn); err != nil {
return err
}
if err := s.updatePluginForTerminalAlloc(index, alloc, txn); err != nil {
return err
}
if err := txn.Insert("allocs", alloc); err != nil {
return fmt.Errorf("alloc insert failed: %v", err)
}
if alloc.PreviousAllocation != "" {
prevAlloc, err := txn.First("allocs", "id", alloc.PreviousAllocation)
if err != nil {
return fmt.Errorf("alloc lookup failed: %v", err)
}
existingPrevAlloc, _ := prevAlloc.(*structs.Allocation)
if existingPrevAlloc != nil {
prevAllocCopy := existingPrevAlloc.Copy()
prevAllocCopy.NextAllocation = alloc.ID
prevAllocCopy.ModifyIndex = index
if err := txn.Insert("allocs", prevAllocCopy); err != nil {
return fmt.Errorf("alloc insert failed: %v", err)
}
}
}
// If the allocation is running, force the job to running status.
forceStatus := ""
if !alloc.TerminalStatus() {
forceStatus = structs.JobStatusRunning
}
tuple := structs.NamespacedID{
ID: alloc.JobID,
Namespace: alloc.Namespace,
}
jobs[tuple] = forceStatus
}
// Update the indexes
if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
// Set the job's status
if err := s.setJobStatuses(index, txn, jobs, false); err != nil {
return fmt.Errorf("setting job status failed: %v", err)
}
return nil
}
// UpdateAllocsDesiredTransitions is used to update a set of allocations
// desired transitions.
func (s *StateStore) UpdateAllocsDesiredTransitions(msgType structs.MessageType, index uint64, allocs map[string]*structs.DesiredTransition,
evals []*structs.Evaluation) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Handle each of the updated allocations
for id, transition := range allocs {
if err := s.UpdateAllocDesiredTransitionTxn(txn, index, id, transition); err != nil {
return err
}
}
for _, eval := range evals {
if err := s.nestedUpsertEval(txn, index, eval); err != nil {
return err
}
}
// Update the indexes
if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// UpdateAllocDesiredTransitionTxn is used to nest an update of an
// allocations desired transition
func (s *StateStore) UpdateAllocDesiredTransitionTxn(
txn *txn, index uint64, allocID string,
transition *structs.DesiredTransition) error {
// Look for existing alloc
existing, err := txn.First("allocs", "id", allocID)
if err != nil {
return fmt.Errorf("alloc lookup failed: %v", err)
}
// Nothing to do if this does not exist
if existing == nil {
return nil
}
exist := existing.(*structs.Allocation)
// Copy everything from the existing allocation
copyAlloc := exist.Copy()
// Merge the desired transitions
copyAlloc.DesiredTransition.Merge(transition)
// Update the modify indexes
copyAlloc.ModifyIndex = index
copyAlloc.AllocModifyIndex = index
// Update the allocation
if err := txn.Insert("allocs", copyAlloc); err != nil {
return fmt.Errorf("alloc insert failed: %v", err)
}
return nil
}
// AllocByID is used to lookup an allocation by its ID
func (s *StateStore) AllocByID(ws memdb.WatchSet, id string) (*structs.Allocation, error) {
txn := s.db.ReadTxn()
return s.allocByIDImpl(txn, ws, id)
}
// allocByIDImpl retrives an allocation and is called under and existing
// transaction. An optional watch set can be passed to add allocations to the
// watch set
func (s *StateStore) allocByIDImpl(txn Txn, ws memdb.WatchSet, id string) (*structs.Allocation, error) {
watchCh, raw, err := txn.FirstWatch("allocs", "id", id)
if err != nil {
return nil, fmt.Errorf("alloc lookup failed: %v", err)
}
ws.Add(watchCh)
if raw == nil {
return nil, nil
}
alloc := raw.(*structs.Allocation)
return alloc, nil
}
// AllocsByIDPrefix is used to lookup allocs by prefix
func (s *StateStore) AllocsByIDPrefix(ws memdb.WatchSet, namespace, id string, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var iter memdb.ResultIterator
var err error
switch sort {
case SortReverse:
iter, err = txn.GetReverse("allocs", "id_prefix", id)
default:
iter, err = txn.Get("allocs", "id_prefix", id)
}
if err != nil {
return nil, fmt.Errorf("alloc lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
// Wrap the iterator in a filter
wrap := memdb.NewFilterIterator(iter, allocNamespaceFilter(namespace))
return wrap, nil
}
// allocNamespaceFilter returns a filter function that filters all allocations
// not in the given namespace.
func allocNamespaceFilter(namespace string) func(interface{}) bool {
return func(raw interface{}) bool {
alloc, ok := raw.(*structs.Allocation)
if !ok {
return true
}
if namespace == structs.AllNamespacesSentinel {
return false
}
return alloc.Namespace != namespace
}
}
// AllocsByIDPrefixAllNSs is used to lookup allocs by prefix.
func (s *StateStore) AllocsByIDPrefixAllNSs(ws memdb.WatchSet, prefix string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("allocs", "id_prefix", prefix)
if err != nil {
return nil, fmt.Errorf("alloc lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// AllocsByNode returns all the allocations by node
func (s *StateStore) AllocsByNode(ws memdb.WatchSet, node string) ([]*structs.Allocation, error) {
txn := s.db.ReadTxn()
return allocsByNodeTxn(txn, ws, node)
}
func allocsByNodeTxn(txn ReadTxn, ws memdb.WatchSet, node string) ([]*structs.Allocation, error) {
// Get an iterator over the node allocations, using only the
// node prefix which ignores the terminal status
iter, err := txn.Get("allocs", "node_prefix", node)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.Allocation
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.Allocation))
}
return out, nil
}
// AllocsByNodeTerminal returns all the allocations by node and terminal
// status.
func (s *StateStore) AllocsByNodeTerminal(ws memdb.WatchSet, node string, terminal bool) ([]*structs.Allocation, error) {
txn := s.db.ReadTxn()
// Get an iterator over the node allocations
iter, err := txn.Get("allocs", "node", node, terminal)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.Allocation
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.Allocation))
}
return out, nil
}
// AllocsByJob returns allocations by job id
func (s *StateStore) AllocsByJob(ws memdb.WatchSet, namespace, jobID string, anyCreateIndex bool) ([]*structs.Allocation, error) {
txn := s.db.ReadTxn()
// Get the job
var job *structs.Job
rawJob, err := txn.First("jobs", "id", namespace, jobID)
if err != nil {
return nil, err
}
if rawJob != nil {
job = rawJob.(*structs.Job)
}
// Get an iterator over the node allocations
iter, err := txn.Get("allocs", "job", namespace, jobID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.Allocation
for {
raw := iter.Next()
if raw == nil {
break
}
alloc := raw.(*structs.Allocation)
// If the allocation belongs to a job with the same ID but a different
// create index and we are not getting all the allocations whose Jobs
// matches the same Job ID then we skip it
if !anyCreateIndex && job != nil && alloc.Job.CreateIndex != job.CreateIndex {
continue
}
out = append(out, raw.(*structs.Allocation))
}
return out, nil
}
// AllocsByEval returns all the allocations by eval id
func (s *StateStore) AllocsByEval(ws memdb.WatchSet, evalID string) ([]*structs.Allocation, error) {
txn := s.db.ReadTxn()
// Get an iterator over the eval allocations
iter, err := txn.Get("allocs", "eval", evalID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.Allocation
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.Allocation))
}
return out, nil
}
// AllocsByDeployment returns all the allocations by deployment id
func (s *StateStore) AllocsByDeployment(ws memdb.WatchSet, deploymentID string) ([]*structs.Allocation, error) {
txn := s.db.ReadTxn()
// Get an iterator over the deployments allocations
iter, err := txn.Get("allocs", "deployment", deploymentID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.Allocation
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.Allocation))
}
return out, nil
}
// Allocs returns an iterator over all the evaluations.
func (s *StateStore) Allocs(ws memdb.WatchSet, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var it memdb.ResultIterator
var err error
switch sort {
case SortReverse:
it, err = txn.GetReverse("allocs", "create")
default:
it, err = txn.Get("allocs", "create")
}
if err != nil {
return nil, err
}
ws.Add(it.WatchCh())
return it, nil
}
func (s *StateStore) AllocsByNamespaceOrdered(ws memdb.WatchSet, namespace string, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var (
it memdb.ResultIterator
err error
exact = terminate(namespace)
)
switch sort {
case SortReverse:
it, err = txn.GetReverse("allocs", "namespace_create_prefix", exact)
default:
it, err = txn.Get("allocs", "namespace_create_prefix", exact)
}
if err != nil {
return nil, err
}
ws.Add(it.WatchCh())
return it, nil
}
// AllocsByNamespace returns an iterator over all the allocations in the
// namespace
func (s *StateStore) AllocsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
return s.allocsByNamespaceImpl(ws, txn, namespace)
}
// allocsByNamespaceImpl returns an iterator over all the allocations in the
// namespace
func (s *StateStore) allocsByNamespaceImpl(ws memdb.WatchSet, txn *txn, namespace string) (memdb.ResultIterator, error) {
// Walk the entire table
iter, err := txn.Get("allocs", "namespace", namespace)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// UpsertVaultAccessor is used to register a set of Vault Accessors.
func (s *StateStore) UpsertVaultAccessor(index uint64, accessors []*structs.VaultAccessor) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
for _, accessor := range accessors {
// Set the create index
accessor.CreateIndex = index
// Insert the accessor
if err := txn.Insert("vault_accessors", accessor); err != nil {
return fmt.Errorf("accessor insert failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"vault_accessors", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeleteVaultAccessors is used to delete a set of Vault Accessors
func (s *StateStore) DeleteVaultAccessors(index uint64, accessors []*structs.VaultAccessor) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// Lookup the accessor
for _, accessor := range accessors {
// Delete the accessor
if err := txn.Delete("vault_accessors", accessor); err != nil {
return fmt.Errorf("accessor delete failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"vault_accessors", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// VaultAccessor returns the given Vault accessor
func (s *StateStore) VaultAccessor(ws memdb.WatchSet, accessor string) (*structs.VaultAccessor, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("vault_accessors", "id", accessor)
if err != nil {
return nil, fmt.Errorf("accessor lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.VaultAccessor), nil
}
return nil, nil
}
// VaultAccessors returns an iterator of Vault accessors.
func (s *StateStore) VaultAccessors(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("vault_accessors", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// VaultAccessorsByAlloc returns all the Vault accessors by alloc id
func (s *StateStore) VaultAccessorsByAlloc(ws memdb.WatchSet, allocID string) ([]*structs.VaultAccessor, error) {
txn := s.db.ReadTxn()
// Get an iterator over the accessors
iter, err := txn.Get("vault_accessors", "alloc_id", allocID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.VaultAccessor
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.VaultAccessor))
}
return out, nil
}
// VaultAccessorsByNode returns all the Vault accessors by node id
func (s *StateStore) VaultAccessorsByNode(ws memdb.WatchSet, nodeID string) ([]*structs.VaultAccessor, error) {
txn := s.db.ReadTxn()
// Get an iterator over the accessors
iter, err := txn.Get("vault_accessors", "node_id", nodeID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var out []*structs.VaultAccessor
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.VaultAccessor))
}
return out, nil
}
func indexEntry(table string, index uint64) *IndexEntry {
return &IndexEntry{
Key: table,
Value: index,
}
}
const siTokenAccessorTable = "si_token_accessors"
// UpsertSITokenAccessors is used to register a set of Service Identity token accessors.
func (s *StateStore) UpsertSITokenAccessors(index uint64, accessors []*structs.SITokenAccessor) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
for _, accessor := range accessors {
// set the create index
accessor.CreateIndex = index
// insert the accessor
if err := txn.Insert(siTokenAccessorTable, accessor); err != nil {
return fmt.Errorf("accessor insert failed: %w", err)
}
}
// update the index for this table
if err := txn.Insert("index", indexEntry(siTokenAccessorTable, index)); err != nil {
return fmt.Errorf("index update failed: %w", err)
}
return txn.Commit()
}
// DeleteSITokenAccessors is used to delete a set of Service Identity token accessors.
func (s *StateStore) DeleteSITokenAccessors(index uint64, accessors []*structs.SITokenAccessor) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// Lookup each accessor
for _, accessor := range accessors {
// Delete the accessor
if err := txn.Delete(siTokenAccessorTable, accessor); err != nil {
return fmt.Errorf("accessor delete failed: %w", err)
}
}
// update the index for this table
if err := txn.Insert("index", indexEntry(siTokenAccessorTable, index)); err != nil {
return fmt.Errorf("index update failed: %w", err)
}
return txn.Commit()
}
// SITokenAccessor returns the given Service Identity token accessor.
func (s *StateStore) SITokenAccessor(ws memdb.WatchSet, accessorID string) (*structs.SITokenAccessor, error) {
txn := s.db.ReadTxn()
defer txn.Abort()
watchCh, existing, err := txn.FirstWatch(siTokenAccessorTable, "id", accessorID)
if err != nil {
return nil, fmt.Errorf("accessor lookup failed: %w", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.SITokenAccessor), nil
}
return nil, nil
}
// SITokenAccessors returns an iterator of Service Identity token accessors.
func (s *StateStore) SITokenAccessors(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
defer txn.Abort()
iter, err := txn.Get(siTokenAccessorTable, "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// SITokenAccessorsByAlloc returns all the Service Identity token accessors by alloc ID.
func (s *StateStore) SITokenAccessorsByAlloc(ws memdb.WatchSet, allocID string) ([]*structs.SITokenAccessor, error) {
txn := s.db.ReadTxn()
defer txn.Abort()
// Get an iterator over the accessors
iter, err := txn.Get(siTokenAccessorTable, "alloc_id", allocID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var result []*structs.SITokenAccessor
for raw := iter.Next(); raw != nil; raw = iter.Next() {
result = append(result, raw.(*structs.SITokenAccessor))
}
return result, nil
}
// SITokenAccessorsByNode returns all the Service Identity token accessors by node ID.
func (s *StateStore) SITokenAccessorsByNode(ws memdb.WatchSet, nodeID string) ([]*structs.SITokenAccessor, error) {
txn := s.db.ReadTxn()
defer txn.Abort()
// Get an iterator over the accessors
iter, err := txn.Get(siTokenAccessorTable, "node_id", nodeID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
var result []*structs.SITokenAccessor
for raw := iter.Next(); raw != nil; raw = iter.Next() {
result = append(result, raw.(*structs.SITokenAccessor))
}
return result, nil
}
// UpdateDeploymentStatus is used to make deployment status updates and
// potentially make a evaluation
func (s *StateStore) UpdateDeploymentStatus(msgType structs.MessageType, index uint64, req *structs.DeploymentStatusUpdateRequest) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
if err := s.updateDeploymentStatusImpl(index, req.DeploymentUpdate, txn); err != nil {
return err
}
// Upsert the job if necessary
if req.Job != nil {
if err := s.upsertJobImpl(index, req.Job, false, txn); err != nil {
return err
}
}
// Upsert the optional eval
if req.Eval != nil {
if err := s.nestedUpsertEval(txn, index, req.Eval); err != nil {
return err
}
}
return txn.Commit()
}
// updateDeploymentStatusImpl is used to make deployment status updates
func (s *StateStore) updateDeploymentStatusImpl(index uint64, u *structs.DeploymentStatusUpdate, txn *txn) error {
// Retrieve deployment
ws := memdb.NewWatchSet()
deployment, err := s.deploymentByIDImpl(ws, u.DeploymentID, txn)
if err != nil {
return err
} else if deployment == nil {
return fmt.Errorf("Deployment ID %q couldn't be updated as it does not exist", u.DeploymentID)
} else if !deployment.Active() {
return fmt.Errorf("Deployment %q has terminal status %q:", deployment.ID, deployment.Status)
}
// Apply the new status
copy := deployment.Copy()
copy.Status = u.Status
copy.StatusDescription = u.StatusDescription
copy.ModifyIndex = index
// Insert the deployment
if err := txn.Insert("deployment", copy); err != nil {
return err
}
// Update the index
if err := txn.Insert("index", &IndexEntry{"deployment", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
// If the deployment is being marked as complete, set the job to stable.
if copy.Status == structs.DeploymentStatusSuccessful {
if err := s.updateJobStabilityImpl(index, copy.Namespace, copy.JobID, copy.JobVersion, true, txn); err != nil {
return fmt.Errorf("failed to update job stability: %v", err)
}
}
return nil
}
// UpdateJobStability updates the stability of the given job and version to the
// desired status.
func (s *StateStore) UpdateJobStability(index uint64, namespace, jobID string, jobVersion uint64, stable bool) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
if err := s.updateJobStabilityImpl(index, namespace, jobID, jobVersion, stable, txn); err != nil {
return err
}
return txn.Commit()
}
// updateJobStabilityImpl updates the stability of the given job and version
func (s *StateStore) updateJobStabilityImpl(index uint64, namespace, jobID string, jobVersion uint64, stable bool, txn *txn) error {
// Get the job that is referenced
job, err := s.jobByIDAndVersionImpl(nil, namespace, jobID, jobVersion, txn)
if err != nil {
return err
}
// Has already been cleared, nothing to do
if job == nil {
return nil
}
// If the job already has the desired stability, nothing to do
if job.Stable == stable {
return nil
}
copy := job.Copy()
copy.Stable = stable
return s.upsertJobImpl(index, copy, true, txn)
}
// UpdateDeploymentPromotion is used to promote canaries in a deployment and
// potentially make a evaluation
func (s *StateStore) UpdateDeploymentPromotion(msgType structs.MessageType, index uint64, req *structs.ApplyDeploymentPromoteRequest) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Retrieve deployment and ensure it is not terminal and is active
ws := memdb.NewWatchSet()
deployment, err := s.deploymentByIDImpl(ws, req.DeploymentID, txn)
if err != nil {
return err
} else if deployment == nil {
return fmt.Errorf("Deployment ID %q couldn't be updated as it does not exist", req.DeploymentID)
} else if !deployment.Active() {
return fmt.Errorf("Deployment %q has terminal status %q:", deployment.ID, deployment.Status)
}
// Retrieve effected allocations
iter, err := txn.Get("allocs", "deployment", req.DeploymentID)
if err != nil {
return err
}
// groupIndex is a map of groups being promoted
groupIndex := make(map[string]struct{}, len(req.Groups))
for _, g := range req.Groups {
groupIndex[g] = struct{}{}
}
// canaryIndex is the set of placed canaries in the deployment
canaryIndex := make(map[string]struct{}, len(deployment.TaskGroups))
for _, dstate := range deployment.TaskGroups {
for _, c := range dstate.PlacedCanaries {
canaryIndex[c] = struct{}{}
}
}
// healthyCounts is a mapping of group to the number of healthy canaries
healthyCounts := make(map[string]int, len(deployment.TaskGroups))
// promotable is the set of allocations that we can move from canary to
// non-canary
var promotable []*structs.Allocation
for {
raw := iter.Next()
if raw == nil {
break
}
alloc := raw.(*structs.Allocation)
// Check that the alloc is a canary
if _, ok := canaryIndex[alloc.ID]; !ok {
continue
}
// Check that the canary is part of a group being promoted
if _, ok := groupIndex[alloc.TaskGroup]; !req.All && !ok {
continue
}
// Ensure the canaries are healthy
if alloc.TerminalStatus() || !alloc.DeploymentStatus.IsHealthy() {
continue
}
healthyCounts[alloc.TaskGroup]++
promotable = append(promotable, alloc)
}
// Determine if we have enough healthy allocations
var unhealthyErr multierror.Error
for tg, dstate := range deployment.TaskGroups {
if _, ok := groupIndex[tg]; !req.All && !ok {
continue
}
need := dstate.DesiredCanaries
if need == 0 {
continue
}
if have := healthyCounts[tg]; have < need {
multierror.Append(&unhealthyErr, fmt.Errorf("Task group %q has %d/%d healthy allocations", tg, have, need))
}
}
if err := unhealthyErr.ErrorOrNil(); err != nil {
return err
}
// Update deployment
copy := deployment.Copy()
copy.ModifyIndex = index
for tg, status := range copy.TaskGroups {
_, ok := groupIndex[tg]
if !req.All && !ok {
continue
}
// reset the progress deadline
if status.ProgressDeadline > 0 && !status.RequireProgressBy.IsZero() {
status.RequireProgressBy = time.Now().Add(status.ProgressDeadline)
}
status.Promoted = true
}
// If the deployment no longer needs promotion, update its status
if !copy.RequiresPromotion() && copy.Status == structs.DeploymentStatusRunning {
copy.StatusDescription = structs.DeploymentStatusDescriptionRunning
}
// Insert the deployment
if err := s.upsertDeploymentImpl(index, copy, txn); err != nil {
return err
}
// Upsert the optional eval
if req.Eval != nil {
if err := s.nestedUpsertEval(txn, index, req.Eval); err != nil {
return err
}
}
// For each promotable allocation remove the canary field
for _, alloc := range promotable {
promoted := alloc.Copy()
promoted.DeploymentStatus.Canary = false
promoted.DeploymentStatus.ModifyIndex = index
promoted.ModifyIndex = index
promoted.AllocModifyIndex = index
if err := txn.Insert("allocs", promoted); err != nil {
return fmt.Errorf("alloc insert failed: %v", err)
}
}
// Update the alloc index
if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// UpdateDeploymentAllocHealth is used to update the health of allocations as
// part of the deployment and potentially make a evaluation
func (s *StateStore) UpdateDeploymentAllocHealth(msgType structs.MessageType, index uint64, req *structs.ApplyDeploymentAllocHealthRequest) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Retrieve deployment and ensure it is not terminal and is active
ws := memdb.NewWatchSet()
deployment, err := s.deploymentByIDImpl(ws, req.DeploymentID, txn)
if err != nil {
return err
} else if deployment == nil {
return fmt.Errorf("Deployment ID %q couldn't be updated as it does not exist", req.DeploymentID)
} else if !deployment.Active() {
return fmt.Errorf("Deployment %q has terminal status %q:", deployment.ID, deployment.Status)
}
// Update the health status of each allocation
if total := len(req.HealthyAllocationIDs) + len(req.UnhealthyAllocationIDs); total != 0 {
setAllocHealth := func(id string, healthy bool, ts time.Time) error {
existing, err := txn.First("allocs", "id", id)
if err != nil {
return fmt.Errorf("alloc %q lookup failed: %v", id, err)
}
if existing == nil {
return fmt.Errorf("unknown alloc %q", id)
}
old := existing.(*structs.Allocation)
if old.DeploymentID != req.DeploymentID {
return fmt.Errorf("alloc %q is not part of deployment %q", id, req.DeploymentID)
}
// Set the health
copy := old.Copy()
if copy.DeploymentStatus == nil {
copy.DeploymentStatus = &structs.AllocDeploymentStatus{}
}
copy.DeploymentStatus.Healthy = helper.BoolToPtr(healthy)
copy.DeploymentStatus.Timestamp = ts
copy.DeploymentStatus.ModifyIndex = index
copy.ModifyIndex = index
if err := s.updateDeploymentWithAlloc(index, copy, old, txn); err != nil {
return fmt.Errorf("error updating deployment: %v", err)
}
if err := txn.Insert("allocs", copy); err != nil {
return fmt.Errorf("alloc insert failed: %v", err)
}
return nil
}
for _, id := range req.HealthyAllocationIDs {
if err := setAllocHealth(id, true, req.Timestamp); err != nil {
return err
}
}
for _, id := range req.UnhealthyAllocationIDs {
if err := setAllocHealth(id, false, req.Timestamp); err != nil {
return err
}
}
// Update the indexes
if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
// Update the deployment status as needed.
if req.DeploymentUpdate != nil {
if err := s.updateDeploymentStatusImpl(index, req.DeploymentUpdate, txn); err != nil {
return err
}
}
// Upsert the job if necessary
if req.Job != nil {
if err := s.upsertJobImpl(index, req.Job, false, txn); err != nil {
return err
}
}
// Upsert the optional eval
if req.Eval != nil {
if err := s.nestedUpsertEval(txn, index, req.Eval); err != nil {
return err
}
}
return txn.Commit()
}
// LatestIndex returns the greatest index value for all indexes.
func (s *StateStore) LatestIndex() (uint64, error) {
indexes, err := s.Indexes()
if err != nil {
return 0, err
}
var max uint64 = 0
for {
raw := indexes.Next()
if raw == nil {
break
}
// Prepare the request struct
idx := raw.(*IndexEntry)
// Determine the max
if idx.Value > max {
max = idx.Value
}
}
return max, nil
}
// Index finds the matching index value
func (s *StateStore) Index(name string) (uint64, error) {
txn := s.db.ReadTxn()
// Lookup the first matching index
out, err := txn.First("index", "id", name)
if err != nil {
return 0, err
}
if out == nil {
return 0, nil
}
return out.(*IndexEntry).Value, nil
}
// Indexes returns an iterator over all the indexes
func (s *StateStore) Indexes() (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire nodes table
iter, err := txn.Get("index", "id")
if err != nil {
return nil, err
}
return iter, nil
}
// ReconcileJobSummaries re-creates summaries for all jobs present in the state
// store
func (s *StateStore) ReconcileJobSummaries(index uint64) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// Get all the jobs
iter, err := txn.Get("jobs", "id")
if err != nil {
return err
}
// COMPAT: Remove after 0.11
// Iterate over jobs to build a list of parent jobs and their children
parentMap := make(map[string][]*structs.Job)
for {
rawJob := iter.Next()
if rawJob == nil {
break
}
job := rawJob.(*structs.Job)
if job.ParentID != "" {
children := parentMap[job.ParentID]
children = append(children, job)
parentMap[job.ParentID] = children
}
}
// Get all the jobs again
iter, err = txn.Get("jobs", "id")
if err != nil {
return err
}
for {
rawJob := iter.Next()
if rawJob == nil {
break
}
job := rawJob.(*structs.Job)
if job.IsParameterized() || job.IsPeriodic() {
// COMPAT: Remove after 0.11
// The following block of code fixes incorrect child summaries due to a bug
// See https://github.com/hashicorp/nomad/issues/3886 for details
rawSummary, err := txn.First("job_summary", "id", job.Namespace, job.ID)
if err != nil {
return err
}
if rawSummary == nil {
continue
}
oldSummary := rawSummary.(*structs.JobSummary)
// Create an empty summary
summary := &structs.JobSummary{
JobID: job.ID,
Namespace: job.Namespace,
Summary: make(map[string]structs.TaskGroupSummary),
Children: &structs.JobChildrenSummary{},
}
// Iterate over children of this job if any to fix summary counts
children := parentMap[job.ID]
for _, childJob := range children {
switch childJob.Status {
case structs.JobStatusPending:
summary.Children.Pending++
case structs.JobStatusDead:
summary.Children.Dead++
case structs.JobStatusRunning:
summary.Children.Running++
}
}
// Insert the job summary if its different
if !reflect.DeepEqual(summary, oldSummary) {
// Set the create index of the summary same as the job's create index
// and the modify index to the current index
summary.CreateIndex = job.CreateIndex
summary.ModifyIndex = index
if err := txn.Insert("job_summary", summary); err != nil {
return fmt.Errorf("error inserting job summary: %v", err)
}
}
// Done with handling a parent job, continue to next
continue
}
// Create a job summary for the job
summary := &structs.JobSummary{
JobID: job.ID,
Namespace: job.Namespace,
Summary: make(map[string]structs.TaskGroupSummary),
}
for _, tg := range job.TaskGroups {
summary.Summary[tg.Name] = structs.TaskGroupSummary{}
}
// Find all the allocations for the jobs
iterAllocs, err := txn.Get("allocs", "job", job.Namespace, job.ID)
if err != nil {
return err
}
// Calculate the summary for the job
for {
rawAlloc := iterAllocs.Next()
if rawAlloc == nil {
break
}
alloc := rawAlloc.(*structs.Allocation)
// Ignore the allocation if it doesn't belong to the currently
// registered job. The allocation is checked because of issue #2304
if alloc.Job == nil || alloc.Job.CreateIndex != job.CreateIndex {
continue
}
tg := summary.Summary[alloc.TaskGroup]
switch alloc.ClientStatus {
case structs.AllocClientStatusFailed:
tg.Failed += 1
case structs.AllocClientStatusLost:
tg.Lost += 1
case structs.AllocClientStatusUnknown:
tg.Unknown += 1
case structs.AllocClientStatusComplete:
tg.Complete += 1
case structs.AllocClientStatusRunning:
tg.Running += 1
case structs.AllocClientStatusPending:
tg.Starting += 1
default:
s.logger.Error("invalid client status set on allocation", "client_status", alloc.ClientStatus, "alloc_id", alloc.ID)
}
summary.Summary[alloc.TaskGroup] = tg
}
// Set the create index of the summary same as the job's create index
// and the modify index to the current index
summary.CreateIndex = job.CreateIndex
summary.ModifyIndex = index
// Insert the job summary
if err := txn.Insert("job_summary", summary); err != nil {
return fmt.Errorf("error inserting job summary: %v", err)
}
}
// Update the indexes table for job summary
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// setJobStatuses is a helper for calling setJobStatus on multiple jobs by ID.
// It takes a map of job IDs to an optional forceStatus string. It returns an
// error if the job doesn't exist or setJobStatus fails.
func (s *StateStore) setJobStatuses(index uint64, txn *txn,
jobs map[structs.NamespacedID]string, evalDelete bool) error {
for tuple, forceStatus := range jobs {
existing, err := txn.First("jobs", "id", tuple.Namespace, tuple.ID)
if err != nil {
return fmt.Errorf("job lookup failed: %v", err)
}
if existing == nil {
continue
}
if err := s.setJobStatus(index, txn, existing.(*structs.Job), evalDelete, forceStatus); err != nil {
return err
}
}
return nil
}
// setJobStatus sets the status of the job by looking up associated evaluations
// and allocations. evalDelete should be set to true if setJobStatus is being
// called because an evaluation is being deleted (potentially because of garbage
// collection). If forceStatus is non-empty, the job's status will be set to the
// passed status.
func (s *StateStore) setJobStatus(index uint64, txn *txn,
job *structs.Job, evalDelete bool, forceStatus string) error {
// Capture the current status so we can check if there is a change
oldStatus := job.Status
newStatus := forceStatus
// If forceStatus is not set, compute the jobs status.
if forceStatus == "" {
var err error
newStatus, err = s.getJobStatus(txn, job, evalDelete)
if err != nil {
return err
}
}
// Fast-path if the job has not changed.
if oldStatus == newStatus {
return nil
}
// Copy and update the existing job
updated := job.Copy()
updated.Status = newStatus
updated.ModifyIndex = index
// Insert the job
if err := txn.Insert("jobs", updated); err != nil {
return fmt.Errorf("job insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"jobs", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
// Update the children summary
if err := s.setJobSummary(txn, updated, index, oldStatus, newStatus); err != nil {
return fmt.Errorf("job summary update failed %w", err)
}
return nil
}
func (s *StateStore) setJobSummary(txn *txn, updated *structs.Job, index uint64, oldStatus, newStatus string) error {
if updated.ParentID == "" {
return nil
}
// Try to update the summary of the parent job summary
summaryRaw, err := txn.First("job_summary", "id", updated.Namespace, updated.ParentID)
if err != nil {
return fmt.Errorf("unable to retrieve summary for parent job: %v", err)
}
// Only continue if the summary exists. It could not exist if the parent
// job was removed
if summaryRaw != nil {
existing := summaryRaw.(*structs.JobSummary)
pSummary := existing.Copy()
if pSummary.Children == nil {
pSummary.Children = new(structs.JobChildrenSummary)
}
// Determine the transition and update the correct fields
children := pSummary.Children
// Decrement old status
if oldStatus != "" {
switch oldStatus {
case structs.JobStatusPending:
children.Pending--
case structs.JobStatusRunning:
children.Running--
case structs.JobStatusDead:
children.Dead--
default:
return fmt.Errorf("unknown old job status %q", oldStatus)
}
}
// Increment new status
switch newStatus {
case structs.JobStatusPending:
children.Pending++
case structs.JobStatusRunning:
children.Running++
case structs.JobStatusDead:
children.Dead++
default:
return fmt.Errorf("unknown new job status %q", newStatus)
}
// Update the index
pSummary.ModifyIndex = index
// Insert the summary
if err := txn.Insert("job_summary", pSummary); err != nil {
return fmt.Errorf("job summary insert failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
return nil
}
func (s *StateStore) getJobStatus(txn *txn, job *structs.Job, evalDelete bool) (string, error) {
// System, Periodic and Parameterized jobs are running until explicitly
// stopped.
if job.Type == structs.JobTypeSystem ||
job.IsParameterized() ||
job.IsPeriodic() {
if job.Stop {
return structs.JobStatusDead, nil
}
return structs.JobStatusRunning, nil
}
allocs, err := txn.Get("allocs", "job", job.Namespace, job.ID)
if err != nil {
return "", err
}
// If there is a non-terminal allocation, the job is running.
hasAlloc := false
for alloc := allocs.Next(); alloc != nil; alloc = allocs.Next() {
hasAlloc = true
if !alloc.(*structs.Allocation).TerminalStatus() {
return structs.JobStatusRunning, nil
}
}
evals, err := txn.Get("evals", "job_prefix", job.Namespace, job.ID)
if err != nil {
return "", err
}
hasEval := false
for raw := evals.Next(); raw != nil; raw = evals.Next() {
e := raw.(*structs.Evaluation)
// Filter non-exact matches
if e.JobID != job.ID {
continue
}
hasEval = true
if !e.TerminalStatus() {
return structs.JobStatusPending, nil
}
}
// The job is dead if all the allocations and evals are terminal or if there
// are no evals because of garbage collection.
if evalDelete || hasEval || hasAlloc {
return structs.JobStatusDead, nil
}
return structs.JobStatusPending, nil
}
// updateSummaryWithJob creates or updates job summaries when new jobs are
// upserted or existing ones are updated
func (s *StateStore) updateSummaryWithJob(index uint64, job *structs.Job,
txn *txn) error {
// Update the job summary
summaryRaw, err := txn.First("job_summary", "id", job.Namespace, job.ID)
if err != nil {
return fmt.Errorf("job summary lookup failed: %v", err)
}
// Get the summary or create if necessary
var summary *structs.JobSummary
hasSummaryChanged := false
if summaryRaw != nil {
summary = summaryRaw.(*structs.JobSummary).Copy()
} else {
summary = &structs.JobSummary{
JobID: job.ID,
Namespace: job.Namespace,
Summary: make(map[string]structs.TaskGroupSummary),
Children: new(structs.JobChildrenSummary),
CreateIndex: index,
}
hasSummaryChanged = true
}
for _, tg := range job.TaskGroups {
if _, ok := summary.Summary[tg.Name]; !ok {
newSummary := structs.TaskGroupSummary{
Complete: 0,
Failed: 0,
Running: 0,
Starting: 0,
}
summary.Summary[tg.Name] = newSummary
hasSummaryChanged = true
}
}
// The job summary has changed, so update the modify index.
if hasSummaryChanged {
summary.ModifyIndex = index
// Update the indexes table for job summary
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
if err := txn.Insert("job_summary", summary); err != nil {
return err
}
}
return nil
}
// updateJobScalingPolicies upserts any scaling policies contained in the job and removes
// any previous scaling policies that were removed from the job
func (s *StateStore) updateJobScalingPolicies(index uint64, job *structs.Job, txn *txn) error {
ws := memdb.NewWatchSet()
scalingPolicies := job.GetScalingPolicies()
newTargets := map[string]bool{}
for _, p := range scalingPolicies {
newTargets[p.JobKey()] = true
}
// find existing policies that need to be deleted
deletedPolicies := []string{}
iter, err := s.ScalingPoliciesByJobTxn(ws, job.Namespace, job.ID, txn)
if err != nil {
return fmt.Errorf("ScalingPoliciesByJob lookup failed: %v", err)
}
for raw := iter.Next(); raw != nil; raw = iter.Next() {
oldPolicy := raw.(*structs.ScalingPolicy)
if !newTargets[oldPolicy.JobKey()] {
deletedPolicies = append(deletedPolicies, oldPolicy.ID)
}
}
err = s.DeleteScalingPoliciesTxn(index, deletedPolicies, txn)
if err != nil {
return fmt.Errorf("DeleteScalingPolicies of removed policies failed: %v", err)
}
err = s.UpsertScalingPoliciesTxn(index, scalingPolicies, txn)
if err != nil {
return fmt.Errorf("UpsertScalingPolicies of policies failed: %v", err)
}
return nil
}
// updateJobCSIPlugins runs on job update, and indexes the job in the plugin
func (s *StateStore) updateJobCSIPlugins(index uint64, job, prev *structs.Job, txn *txn) error {
plugIns := make(map[string]*structs.CSIPlugin)
upsertFn := func(job *structs.Job, delete bool) error {
for _, tg := range job.TaskGroups {
for _, t := range tg.Tasks {
if t.CSIPluginConfig == nil {
continue
}
plugIn, ok := plugIns[t.CSIPluginConfig.ID]
if !ok {
p, err := s.CSIPluginByIDTxn(txn, nil, t.CSIPluginConfig.ID)
if err != nil {
return err
}
if p == nil {
plugIn = structs.NewCSIPlugin(t.CSIPluginConfig.ID, index)
} else {
plugIn = p.Copy()
plugIn.ModifyIndex = index
}
plugIns[plugIn.ID] = plugIn
}
if delete {
plugIn.DeleteJob(job, nil)
} else {
plugIn.AddJob(job, nil)
}
}
}
return nil
}
if prev != nil {
err := upsertFn(prev, true)
if err != nil {
return err
}
}
err := upsertFn(job, false)
if err != nil {
return err
}
for _, plugIn := range plugIns {
err = txn.Insert("csi_plugins", plugIn)
if err != nil {
return fmt.Errorf("csi_plugins insert error: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"csi_plugins", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// updateDeploymentWithAlloc is used to update the deployment state associated
// with the given allocation. The passed alloc may be updated if the deployment
// status has changed to capture the modify index at which it has changed.
func (s *StateStore) updateDeploymentWithAlloc(index uint64, alloc, existing *structs.Allocation, txn *txn) error {
// Nothing to do if the allocation is not associated with a deployment
if alloc.DeploymentID == "" {
return nil
}
// Get the deployment
ws := memdb.NewWatchSet()
deployment, err := s.deploymentByIDImpl(ws, alloc.DeploymentID, txn)
if err != nil {
return err
}
if deployment == nil {
return nil
}
// Retrieve the deployment state object
_, ok := deployment.TaskGroups[alloc.TaskGroup]
if !ok {
// If the task group isn't part of the deployment, the task group wasn't
// part of a rolling update so nothing to do
return nil
}
// Do not modify in-place. Instead keep track of what must be done
placed := 0
healthy := 0
unhealthy := 0
// If there was no existing allocation, this is a placement and we increment
// the placement
existingHealthSet := existing != nil && existing.DeploymentStatus.HasHealth()
allocHealthSet := alloc.DeploymentStatus.HasHealth()
if existing == nil || existing.DeploymentID != alloc.DeploymentID {
placed++
} else if !existingHealthSet && allocHealthSet {
if *alloc.DeploymentStatus.Healthy {
healthy++
} else {
unhealthy++
}
} else if existingHealthSet && allocHealthSet {
// See if it has gone from healthy to unhealthy
if *existing.DeploymentStatus.Healthy && !*alloc.DeploymentStatus.Healthy {
healthy--
unhealthy++
}
}
// Nothing to do
if placed == 0 && healthy == 0 && unhealthy == 0 {
return nil
}
// Update the allocation's deployment status modify index
if alloc.DeploymentStatus != nil && healthy+unhealthy != 0 {
alloc.DeploymentStatus.ModifyIndex = index
}
// Create a copy of the deployment object
deploymentCopy := deployment.Copy()
deploymentCopy.ModifyIndex = index
dstate := deploymentCopy.TaskGroups[alloc.TaskGroup]
dstate.PlacedAllocs += placed
dstate.HealthyAllocs += healthy
dstate.UnhealthyAllocs += unhealthy
// Ensure PlacedCanaries accurately reflects the alloc canary status
if alloc.DeploymentStatus != nil && alloc.DeploymentStatus.Canary {
found := false
for _, canary := range dstate.PlacedCanaries {
if alloc.ID == canary {
found = true
break
}
}
if !found {
dstate.PlacedCanaries = append(dstate.PlacedCanaries, alloc.ID)
}
}
// Update the progress deadline
if pd := dstate.ProgressDeadline; pd != 0 {
// If we are the first placed allocation for the deployment start the progress deadline.
if placed != 0 && dstate.RequireProgressBy.IsZero() {
// Use modify time instead of create time because we may in-place
// update the allocation to be part of a new deployment.
dstate.RequireProgressBy = time.Unix(0, alloc.ModifyTime).Add(pd)
} else if healthy != 0 {
if d := alloc.DeploymentStatus.Timestamp.Add(pd); d.After(dstate.RequireProgressBy) {
dstate.RequireProgressBy = d
}
}
}
// Upsert the deployment
if err := s.upsertDeploymentImpl(index, deploymentCopy, txn); err != nil {
return err
}
return nil
}
// updateSummaryWithAlloc updates the job summary when allocations are updated
// or inserted
func (s *StateStore) updateSummaryWithAlloc(index uint64, alloc *structs.Allocation,
existingAlloc *structs.Allocation, txn *txn) error {
// We don't have to update the summary if the job is missing
if alloc.Job == nil {
return nil
}
summaryRaw, err := txn.First("job_summary", "id", alloc.Namespace, alloc.JobID)
if err != nil {
return fmt.Errorf("unable to lookup job summary for job id %q in namespace %q: %v", alloc.JobID, alloc.Namespace, err)
}
if summaryRaw == nil {
// Check if the job is de-registered
rawJob, err := txn.First("jobs", "id", alloc.Namespace, alloc.JobID)
if err != nil {
return fmt.Errorf("unable to query job: %v", err)
}
// If the job is de-registered then we skip updating it's summary
if rawJob == nil {
return nil
}
return fmt.Errorf("job summary for job %q in namespace %q is not present", alloc.JobID, alloc.Namespace)
}
// Get a copy of the existing summary
jobSummary := summaryRaw.(*structs.JobSummary).Copy()
// Not updating the job summary because the allocation doesn't belong to the
// currently registered job
if jobSummary.CreateIndex != alloc.Job.CreateIndex {
return nil
}
tgSummary, ok := jobSummary.Summary[alloc.TaskGroup]
if !ok {
return fmt.Errorf("unable to find task group in the job summary: %v", alloc.TaskGroup)
}
summaryChanged := false
if existingAlloc == nil {
switch alloc.DesiredStatus {
case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict:
s.logger.Error("new allocation inserted into state store with bad desired status",
"alloc_id", alloc.ID, "desired_status", alloc.DesiredStatus)
}
switch alloc.ClientStatus {
case structs.AllocClientStatusPending:
tgSummary.Starting += 1
if tgSummary.Queued > 0 {
tgSummary.Queued -= 1
}
summaryChanged = true
case structs.AllocClientStatusRunning, structs.AllocClientStatusFailed,
structs.AllocClientStatusComplete:
s.logger.Error("new allocation inserted into state store with bad client status",
"alloc_id", alloc.ID, "client_status", alloc.ClientStatus)
}
} else if existingAlloc.ClientStatus != alloc.ClientStatus {
// Incrementing the client of the bin of the current state
switch alloc.ClientStatus {
case structs.AllocClientStatusRunning:
tgSummary.Running += 1
case structs.AllocClientStatusFailed:
tgSummary.Failed += 1
case structs.AllocClientStatusPending:
tgSummary.Starting += 1
case structs.AllocClientStatusComplete:
tgSummary.Complete += 1
case structs.AllocClientStatusLost:
tgSummary.Lost += 1
case structs.AllocClientStatusUnknown:
tgSummary.Unknown += 1
}
// Decrementing the count of the bin of the last state
switch existingAlloc.ClientStatus {
case structs.AllocClientStatusRunning:
if tgSummary.Running > 0 {
tgSummary.Running -= 1
}
case structs.AllocClientStatusPending:
if tgSummary.Starting > 0 {
tgSummary.Starting -= 1
}
case structs.AllocClientStatusLost:
if tgSummary.Lost > 0 {
tgSummary.Lost -= 1
}
case structs.AllocClientStatusUnknown:
if tgSummary.Unknown > 0 {
tgSummary.Unknown -= 1
}
case structs.AllocClientStatusFailed, structs.AllocClientStatusComplete:
default:
s.logger.Error("invalid old client status for allocation",
"alloc_id", existingAlloc.ID, "client_status", existingAlloc.ClientStatus)
}
summaryChanged = true
}
jobSummary.Summary[alloc.TaskGroup] = tgSummary
if summaryChanged {
jobSummary.ModifyIndex = index
s.updatePluginWithJobSummary(index, jobSummary, alloc, txn)
// Update the indexes table for job summary
if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
if err := txn.Insert("job_summary", jobSummary); err != nil {
return fmt.Errorf("updating job summary failed: %v", err)
}
}
return nil
}
// updatePluginForTerminalAlloc updates the CSI plugins for an alloc when the
// allocation is updated or inserted with a terminal server status.
func (s *StateStore) updatePluginForTerminalAlloc(index uint64, alloc *structs.Allocation,
txn *txn) error {
if !alloc.ServerTerminalStatus() {
return nil
}
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
for _, t := range tg.Tasks {
if t.CSIPluginConfig != nil {
pluginID := t.CSIPluginConfig.ID
plug, err := s.CSIPluginByIDTxn(txn, nil, pluginID)
if err != nil {
return err
}
if plug == nil {
// plugin may not have been created because it never
// became healthy, just move on
return nil
}
plug = plug.Copy()
err = plug.DeleteAlloc(alloc.ID, alloc.NodeID)
if err != nil {
return err
}
err = updateOrGCPlugin(index, txn, plug)
if err != nil {
return err
}
}
}
return nil
}
// updatePluginWithJobSummary updates the CSI plugins for a job when the
// job summary is updated by an alloc
func (s *StateStore) updatePluginWithJobSummary(index uint64, summary *structs.JobSummary, alloc *structs.Allocation,
txn *txn) error {
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
return nil
}
for _, t := range tg.Tasks {
if t.CSIPluginConfig != nil {
pluginID := t.CSIPluginConfig.ID
plug, err := s.CSIPluginByIDTxn(txn, nil, pluginID)
if err != nil {
return err
}
if plug == nil {
plug = structs.NewCSIPlugin(pluginID, index)
} else {
plug = plug.Copy()
}
plug.UpdateExpectedWithJob(alloc.Job, summary,
alloc.Job.Status == structs.JobStatusDead)
err = updateOrGCPlugin(index, txn, plug)
if err != nil {
return err
}
}
}
return nil
}
// UpsertACLPolicies is used to create or update a set of ACL policies
func (s *StateStore) UpsertACLPolicies(msgType structs.MessageType, index uint64, policies []*structs.ACLPolicy) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
for _, policy := range policies {
// Ensure the policy hash is non-nil. This should be done outside the state store
// for performance reasons, but we check here for defense in depth.
if len(policy.Hash) == 0 {
policy.SetHash()
}
// Check if the policy already exists
existing, err := txn.First("acl_policy", "id", policy.Name)
if err != nil {
return fmt.Errorf("policy lookup failed: %v", err)
}
// Update all the indexes
if existing != nil {
policy.CreateIndex = existing.(*structs.ACLPolicy).CreateIndex
policy.ModifyIndex = index
} else {
policy.CreateIndex = index
policy.ModifyIndex = index
}
// Update the policy
if err := txn.Insert("acl_policy", policy); err != nil {
return fmt.Errorf("upserting policy failed: %v", err)
}
}
// Update the indexes tabl
if err := txn.Insert("index", &IndexEntry{"acl_policy", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeleteACLPolicies deletes the policies with the given names
func (s *StateStore) DeleteACLPolicies(msgType structs.MessageType, index uint64, names []string) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Delete the policy
for _, name := range names {
if _, err := txn.DeleteAll("acl_policy", "id", name); err != nil {
return fmt.Errorf("deleting acl policy failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"acl_policy", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// ACLPolicyByName is used to lookup a policy by name
func (s *StateStore) ACLPolicyByName(ws memdb.WatchSet, name string) (*structs.ACLPolicy, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("acl_policy", "id", name)
if err != nil {
return nil, fmt.Errorf("acl policy lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.ACLPolicy), nil
}
return nil, nil
}
// ACLPolicyByNamePrefix is used to lookup policies by prefix
func (s *StateStore) ACLPolicyByNamePrefix(ws memdb.WatchSet, prefix string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("acl_policy", "id_prefix", prefix)
if err != nil {
return nil, fmt.Errorf("acl policy lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// ACLPolicies returns an iterator over all the acl policies
func (s *StateStore) ACLPolicies(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire table
iter, err := txn.Get("acl_policy", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// UpsertACLTokens is used to create or update a set of ACL tokens
func (s *StateStore) UpsertACLTokens(msgType structs.MessageType, index uint64, tokens []*structs.ACLToken) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
for _, token := range tokens {
// Ensure the policy hash is non-nil. This should be done outside the state store
// for performance reasons, but we check here for defense in depth.
if len(token.Hash) == 0 {
token.SetHash()
}
// Check if the token already exists
existing, err := txn.First("acl_token", "id", token.AccessorID)
if err != nil {
return fmt.Errorf("token lookup failed: %v", err)
}
// Update all the indexes
if existing != nil {
existTK := existing.(*structs.ACLToken)
token.CreateIndex = existTK.CreateIndex
token.ModifyIndex = index
// Do not allow SecretID or create time to change
token.SecretID = existTK.SecretID
token.CreateTime = existTK.CreateTime
} else {
token.CreateIndex = index
token.ModifyIndex = index
}
// Update the token
if err := txn.Insert("acl_token", token); err != nil {
return fmt.Errorf("upserting token failed: %v", err)
}
}
// Update the indexes table
if err := txn.Insert("index", &IndexEntry{"acl_token", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeleteACLTokens deletes the tokens with the given accessor ids
func (s *StateStore) DeleteACLTokens(msgType structs.MessageType, index uint64, ids []string) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Delete the tokens
for _, id := range ids {
if _, err := txn.DeleteAll("acl_token", "id", id); err != nil {
return fmt.Errorf("deleting acl token failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"acl_token", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// ACLTokenByAccessorID is used to lookup a token by accessor ID
func (s *StateStore) ACLTokenByAccessorID(ws memdb.WatchSet, id string) (*structs.ACLToken, error) {
if id == "" {
return nil, fmt.Errorf("acl token lookup failed: missing accessor id")
}
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("acl_token", "id", id)
if err != nil {
return nil, fmt.Errorf("acl token lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.ACLToken), nil
}
return nil, nil
}
// ACLTokenBySecretID is used to lookup a token by secret ID
func (s *StateStore) ACLTokenBySecretID(ws memdb.WatchSet, secretID string) (*structs.ACLToken, error) {
if secretID == "" {
return nil, fmt.Errorf("acl token lookup failed: missing secret id")
}
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("acl_token", "secret", secretID)
if err != nil {
return nil, fmt.Errorf("acl token lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.ACLToken), nil
}
return nil, nil
}
// ACLTokenByAccessorIDPrefix is used to lookup tokens by prefix
func (s *StateStore) ACLTokenByAccessorIDPrefix(ws memdb.WatchSet, prefix string, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var iter memdb.ResultIterator
var err error
switch sort {
case SortReverse:
iter, err = txn.GetReverse("acl_token", "id_prefix", prefix)
default:
iter, err = txn.Get("acl_token", "id_prefix", prefix)
}
if err != nil {
return nil, fmt.Errorf("acl token lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// ACLTokens returns an iterator over all the tokens
func (s *StateStore) ACLTokens(ws memdb.WatchSet, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var iter memdb.ResultIterator
var err error
switch sort {
case SortReverse:
iter, err = txn.GetReverse("acl_token", "create")
default:
iter, err = txn.Get("acl_token", "create")
}
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// ACLTokensByGlobal returns an iterator over all the tokens filtered by global value
func (s *StateStore) ACLTokensByGlobal(ws memdb.WatchSet, globalVal bool, sort SortOption) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
var iter memdb.ResultIterator
var err error
// Walk the entire table
switch sort {
case SortReverse:
iter, err = txn.GetReverse("acl_token", "global", globalVal)
default:
iter, err = txn.Get("acl_token", "global", globalVal)
}
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// CanBootstrapACLToken checks if bootstrapping is possible and returns the reset index
func (s *StateStore) CanBootstrapACLToken() (bool, uint64, error) {
txn := s.db.ReadTxn()
// Lookup the bootstrap sentinel
out, err := txn.First("index", "id", "acl_token_bootstrap")
if err != nil {
return false, 0, err
}
// No entry, we haven't bootstrapped yet
if out == nil {
return true, 0, nil
}
// Return the reset index if we've already bootstrapped
return false, out.(*IndexEntry).Value, nil
}
// BootstrapACLTokens is used to create an initial ACL token.
func (s *StateStore) BootstrapACLTokens(msgType structs.MessageType, index uint64, resetIndex uint64, token *structs.ACLToken) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// Check if we have already done a bootstrap
existing, err := txn.First("index", "id", "acl_token_bootstrap")
if err != nil {
return fmt.Errorf("bootstrap check failed: %v", err)
}
if existing != nil {
if resetIndex == 0 {
return fmt.Errorf("ACL bootstrap already done")
} else if resetIndex != existing.(*IndexEntry).Value {
return fmt.Errorf("Invalid reset index for ACL bootstrap")
}
}
// Update the Create/Modify time
token.CreateIndex = index
token.ModifyIndex = index
// Insert the token
if err := txn.Insert("acl_token", token); err != nil {
return fmt.Errorf("upserting token failed: %v", err)
}
// Update the indexes table, prevents future bootstrap until reset
if err := txn.Insert("index", &IndexEntry{"acl_token", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
if err := txn.Insert("index", &IndexEntry{"acl_token_bootstrap", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// UpsertOneTimeToken is used to create or update a set of ACL
// tokens. Validating that we're not upserting an already-expired token is
// made the responsibility of the caller to facilitate testing.
func (s *StateStore) UpsertOneTimeToken(msgType structs.MessageType, index uint64, token *structs.OneTimeToken) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
// we expect the RPC call to set the ExpiresAt
if token.ExpiresAt.IsZero() {
return fmt.Errorf("one-time token must have an ExpiresAt time")
}
// Update all the indexes
token.CreateIndex = index
token.ModifyIndex = index
// Create the token
if err := txn.Insert("one_time_token", token); err != nil {
return fmt.Errorf("upserting one-time token failed: %v", err)
}
// Update the indexes table
if err := txn.Insert("index", &IndexEntry{"one_time_token", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeleteOneTimeTokens deletes the tokens with the given ACLToken Accessor IDs
func (s *StateStore) DeleteOneTimeTokens(msgType structs.MessageType, index uint64, ids []string) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
var deleted int
for _, id := range ids {
d, err := txn.DeleteAll("one_time_token", "id", id)
if err != nil {
return fmt.Errorf("deleting one-time token failed: %v", err)
}
deleted += d
}
if deleted > 0 {
if err := txn.Insert("index", &IndexEntry{"one_time_token", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
return txn.Commit()
}
// ExpireOneTimeTokens deletes tokens that have expired
func (s *StateStore) ExpireOneTimeTokens(msgType structs.MessageType, index uint64, timestamp time.Time) error {
txn := s.db.WriteTxnMsgT(msgType, index)
defer txn.Abort()
iter, err := s.oneTimeTokensExpiredTxn(txn, nil, timestamp)
if err != nil {
return err
}
var deleted int
for {
raw := iter.Next()
if raw == nil {
break
}
ott, ok := raw.(*structs.OneTimeToken)
if !ok || ott == nil {
return fmt.Errorf("could not decode one-time token")
}
d, err := txn.DeleteAll("one_time_token", "secret", ott.OneTimeSecretID)
if err != nil {
return fmt.Errorf("deleting one-time token failed: %v", err)
}
deleted += d
}
if deleted > 0 {
if err := txn.Insert("index", &IndexEntry{"one_time_token", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
return txn.Commit()
}
// oneTimeTokensExpiredTxn returns an iterator over all expired one-time tokens
func (s *StateStore) oneTimeTokensExpiredTxn(txn *txn, ws memdb.WatchSet, timestamp time.Time) (memdb.ResultIterator, error) {
iter, err := txn.Get("one_time_token", "id")
if err != nil {
return nil, fmt.Errorf("one-time token lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
iter = memdb.NewFilterIterator(iter, expiredOneTimeTokenFilter(timestamp))
return iter, nil
}
// OneTimeTokenBySecret is used to lookup a token by secret
func (s *StateStore) OneTimeTokenBySecret(ws memdb.WatchSet, secret string) (*structs.OneTimeToken, error) {
if secret == "" {
return nil, fmt.Errorf("one-time token lookup failed: missing secret")
}
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("one_time_token", "secret", secret)
if err != nil {
return nil, fmt.Errorf("one-time token lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.OneTimeToken), nil
}
return nil, nil
}
// expiredOneTimeTokenFilter returns a filter function that returns only
// expired one-time tokens
func expiredOneTimeTokenFilter(now time.Time) func(interface{}) bool {
return func(raw interface{}) bool {
ott, ok := raw.(*structs.OneTimeToken)
if !ok {
return true
}
return ott.ExpiresAt.After(now)
}
}
// SchedulerConfig is used to get the current Scheduler configuration.
func (s *StateStore) SchedulerConfig() (uint64, *structs.SchedulerConfiguration, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return s.schedulerConfigTxn(tx)
}
func (s *StateStore) schedulerConfigTxn(txn *txn) (uint64, *structs.SchedulerConfiguration, error) {
// Get the scheduler config
c, err := txn.First("scheduler_config", "id")
if err != nil {
return 0, nil, fmt.Errorf("failed scheduler config lookup: %s", err)
}
config, ok := c.(*structs.SchedulerConfiguration)
if !ok {
return 0, nil, nil
}
return config.ModifyIndex, config, nil
}
// SchedulerSetConfig is used to set the current Scheduler configuration.
func (s *StateStore) SchedulerSetConfig(index uint64, config *structs.SchedulerConfiguration) error {
tx := s.db.WriteTxn(index)
defer tx.Abort()
s.schedulerSetConfigTxn(index, tx, config)
return tx.Commit()
}
func (s *StateStore) ClusterMetadata(ws memdb.WatchSet) (*structs.ClusterMetadata, error) {
txn := s.db.ReadTxn()
defer txn.Abort()
// Get the cluster metadata
watchCh, m, err := txn.FirstWatch("cluster_meta", "id")
if err != nil {
return nil, fmt.Errorf("failed cluster metadata lookup: %w", err)
}
ws.Add(watchCh)
if m != nil {
return m.(*structs.ClusterMetadata), nil
}
return nil, nil
}
func (s *StateStore) ClusterSetMetadata(index uint64, meta *structs.ClusterMetadata) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
if err := s.setClusterMetadata(txn, meta); err != nil {
return fmt.Errorf("set cluster metadata failed: %w", err)
}
return txn.Commit()
}
// WithWriteTransaction executes the passed function within a write transaction,
// and returns its result. If the invocation returns no error, the transaction
// is committed; otherwise, it's aborted.
func (s *StateStore) WithWriteTransaction(msgType structs.MessageType, index uint64, fn func(Txn) error) error {
tx := s.db.WriteTxnMsgT(msgType, index)
defer tx.Abort()
err := fn(tx)
if err == nil {
return tx.Commit()
}
return err
}
// SchedulerCASConfig is used to update the scheduler configuration with a
// given Raft index. If the CAS index specified is not equal to the last observed index
// for the config, then the call is a noop.
func (s *StateStore) SchedulerCASConfig(index, cidx uint64, config *structs.SchedulerConfiguration) (bool, error) {
tx := s.db.WriteTxn(index)
defer tx.Abort()
// Check for an existing config
existing, err := tx.First("scheduler_config", "id")
if err != nil {
return false, fmt.Errorf("failed scheduler config lookup: %s", err)
}
// If the existing index does not match the provided CAS
// index arg, then we shouldn't update anything and can safely
// return early here.
e, ok := existing.(*structs.SchedulerConfiguration)
if !ok || (e != nil && e.ModifyIndex != cidx) {
return false, nil
}
s.schedulerSetConfigTxn(index, tx, config)
if err := tx.Commit(); err != nil {
return false, err
}
return true, nil
}
func (s *StateStore) schedulerSetConfigTxn(idx uint64, tx *txn, config *structs.SchedulerConfiguration) error {
// Check for an existing config
existing, err := tx.First("scheduler_config", "id")
if err != nil {
return fmt.Errorf("failed scheduler config lookup: %s", err)
}
// Set the indexes.
if existing != nil {
config.CreateIndex = existing.(*structs.SchedulerConfiguration).CreateIndex
} else {
config.CreateIndex = idx
}
config.ModifyIndex = idx
if err := tx.Insert("scheduler_config", config); err != nil {
return fmt.Errorf("failed updating scheduler config: %s", err)
}
return nil
}
func (s *StateStore) setClusterMetadata(txn *txn, meta *structs.ClusterMetadata) error {
// Check for an existing config, if it exists, verify that the cluster ID matches
existing, err := txn.First("cluster_meta", "id")
if err != nil {
return fmt.Errorf("failed cluster meta lookup: %v", err)
}
if existing != nil {
existingClusterID := existing.(*structs.ClusterMetadata).ClusterID
if meta.ClusterID != existingClusterID && existingClusterID != "" {
// there is a bug in cluster ID detection
return fmt.Errorf("refusing to set new cluster id, previous: %s, new: %s", existingClusterID, meta.ClusterID)
}
}
// update is technically a noop, unless someday we add more / mutable fields
if err := txn.Insert("cluster_meta", meta); err != nil {
return fmt.Errorf("set cluster metadata failed: %v", err)
}
return nil
}
// UpsertScalingPolicies is used to insert a new scaling policy.
func (s *StateStore) UpsertScalingPolicies(index uint64, scalingPolicies []*structs.ScalingPolicy) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
if err := s.UpsertScalingPoliciesTxn(index, scalingPolicies, txn); err != nil {
return err
}
return txn.Commit()
}
// UpsertScalingPoliciesTxn is used to insert a new scaling policy.
func (s *StateStore) UpsertScalingPoliciesTxn(index uint64, scalingPolicies []*structs.ScalingPolicy,
txn *txn) error {
hadUpdates := false
for _, policy := range scalingPolicies {
// Check if the scaling policy already exists
// Policy uniqueness is based on target and type
it, err := txn.Get("scaling_policy", "target",
policy.Target[structs.ScalingTargetNamespace],
policy.Target[structs.ScalingTargetJob],
policy.Target[structs.ScalingTargetGroup],
policy.Target[structs.ScalingTargetTask],
)
if err != nil {
return fmt.Errorf("scaling policy lookup failed: %v", err)
}
// Check if type matches
var existing *structs.ScalingPolicy
for raw := it.Next(); raw != nil; raw = it.Next() {
p := raw.(*structs.ScalingPolicy)
if p.Type == policy.Type {
existing = p
break
}
}
// Setup the indexes correctly
if existing != nil {
if !existing.Diff(policy) {
continue
}
policy.ID = existing.ID
policy.CreateIndex = existing.CreateIndex
} else {
// policy.ID must have been set already in Job.Register before log apply
policy.CreateIndex = index
}
policy.ModifyIndex = index
// Insert the scaling policy
hadUpdates = true
if err := txn.Insert("scaling_policy", policy); err != nil {
return err
}
}
// Update the indexes table for scaling policy if we updated any policies
if hadUpdates {
if err := txn.Insert("index", &IndexEntry{"scaling_policy", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
}
return nil
}
// NamespaceByName is used to lookup a namespace by name
func (s *StateStore) NamespaceByName(ws memdb.WatchSet, name string) (*structs.Namespace, error) {
txn := s.db.ReadTxn()
return s.namespaceByNameImpl(ws, txn, name)
}
// namespaceByNameImpl is used to lookup a namespace by name
func (s *StateStore) namespaceByNameImpl(ws memdb.WatchSet, txn *txn, name string) (*structs.Namespace, error) {
watchCh, existing, err := txn.FirstWatch(TableNamespaces, "id", name)
if err != nil {
return nil, fmt.Errorf("namespace lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.Namespace), nil
}
return nil, nil
}
// namespaceExists returns whether a namespace exists
func (s *StateStore) namespaceExists(txn *txn, namespace string) (bool, error) {
if namespace == structs.DefaultNamespace {
return true, nil
}
existing, err := txn.First(TableNamespaces, "id", namespace)
if err != nil {
return false, fmt.Errorf("namespace lookup failed: %v", err)
}
return existing != nil, nil
}
// NamespacesByNamePrefix is used to lookup namespaces by prefix
func (s *StateStore) NamespacesByNamePrefix(ws memdb.WatchSet, namePrefix string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get(TableNamespaces, "id_prefix", namePrefix)
if err != nil {
return nil, fmt.Errorf("namespaces lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
return iter, nil
}
// Namespaces returns an iterator over all the namespaces
func (s *StateStore) Namespaces(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire namespace table
iter, err := txn.Get(TableNamespaces, "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
func (s *StateStore) NamespaceNames() ([]string, error) {
it, err := s.Namespaces(nil)
if err != nil {
return nil, err
}
nses := []string{}
for {
next := it.Next()
if next == nil {
break
}
ns := next.(*structs.Namespace)
nses = append(nses, ns.Name)
}
return nses, nil
}
// UpsertNamespaces is used to register or update a set of namespaces.
func (s *StateStore) UpsertNamespaces(index uint64, namespaces []*structs.Namespace) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
for _, ns := range namespaces {
if err := s.upsertNamespaceImpl(index, txn, ns); err != nil {
return err
}
}
if err := txn.Insert("index", &IndexEntry{TableNamespaces, index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// upsertNamespaceImpl is used to upsert a namespace
func (s *StateStore) upsertNamespaceImpl(index uint64, txn *txn, namespace *structs.Namespace) error {
// Ensure the namespace hash is non-nil. This should be done outside the state store
// for performance reasons, but we check here for defense in depth.
ns := namespace
if len(ns.Hash) == 0 {
ns.SetHash()
}
// Check if the namespace already exists
existing, err := txn.First(TableNamespaces, "id", ns.Name)
if err != nil {
return fmt.Errorf("namespace lookup failed: %v", err)
}
// Setup the indexes correctly and determine which quotas need to be
// reconciled
var oldQuota string
if existing != nil {
exist := existing.(*structs.Namespace)
ns.CreateIndex = exist.CreateIndex
ns.ModifyIndex = index
// Grab the old quota on the namespace
oldQuota = exist.Quota
} else {
ns.CreateIndex = index
ns.ModifyIndex = index
}
// Validate that the quota on the new namespace exists
if ns.Quota != "" {
exists, err := s.quotaSpecExists(txn, ns.Quota)
if err != nil {
return fmt.Errorf("looking up namespace quota %q failed: %v", ns.Quota, err)
} else if !exists {
return fmt.Errorf("namespace %q using non-existent quota %q", ns.Name, ns.Quota)
}
}
// Insert the namespace
if err := txn.Insert(TableNamespaces, ns); err != nil {
return fmt.Errorf("namespace insert failed: %v", err)
}
// Reconcile changed quotas
return s.quotaReconcile(index, txn, ns.Quota, oldQuota)
}
// DeleteNamespaces is used to remove a set of namespaces
func (s *StateStore) DeleteNamespaces(index uint64, names []string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
for _, name := range names {
// Lookup the namespace
existing, err := txn.First(TableNamespaces, "id", name)
if err != nil {
return fmt.Errorf("namespace lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("namespace not found")
}
ns := existing.(*structs.Namespace)
if ns.Name == structs.DefaultNamespace {
return fmt.Errorf("default namespace can not be deleted")
}
// Ensure that the namespace doesn't have any non-terminal jobs
iter, err := s.jobsByNamespaceImpl(nil, name, txn)
if err != nil {
return err
}
for {
raw := iter.Next()
if raw == nil {
break
}
job := raw.(*structs.Job)
if job.Status != structs.JobStatusDead {
return fmt.Errorf("namespace %q contains at least one non-terminal job %q. "+
"All jobs must be terminal in namespace before it can be deleted", name, job.ID)
}
}
vIter, err := s.csiVolumesByNamespaceImpl(txn, nil, name, "")
if err != nil {
return err
}
rawVol := vIter.Next()
if rawVol != nil {
vol := rawVol.(*structs.CSIVolume)
return fmt.Errorf("namespace %q contains at least one CSI volume %q. "+
"All CSI volumes in namespace must be deleted before it can be deleted", name, vol.ID)
}
// Delete the namespace
if err := txn.Delete(TableNamespaces, existing); err != nil {
return fmt.Errorf("namespace deletion failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{TableNamespaces, index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
func (s *StateStore) DeleteScalingPolicies(index uint64, ids []string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
err := s.DeleteScalingPoliciesTxn(index, ids, txn)
if err == nil {
return txn.Commit()
}
return err
}
// DeleteScalingPoliciesTxn is used to delete a set of scaling policies by ID.
func (s *StateStore) DeleteScalingPoliciesTxn(index uint64, ids []string, txn *txn) error {
if len(ids) == 0 {
return nil
}
for _, id := range ids {
// Lookup the scaling policy
existing, err := txn.First("scaling_policy", "id", id)
if err != nil {
return fmt.Errorf("scaling policy lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("scaling policy not found")
}
// Delete the scaling policy
if err := txn.Delete("scaling_policy", existing); err != nil {
return fmt.Errorf("scaling policy delete failed: %v", err)
}
}
if err := txn.Insert("index", &IndexEntry{"scaling_policy", index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return nil
}
// ScalingPolicies returns an iterator over all the scaling policies
func (s *StateStore) ScalingPolicies(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
// Walk the entire scaling_policy table
iter, err := txn.Get("scaling_policy", "id")
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// ScalingPoliciesByTypePrefix returns an iterator over scaling policies with a certain type prefix.
func (s *StateStore) ScalingPoliciesByTypePrefix(ws memdb.WatchSet, t string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("scaling_policy", "type_prefix", t)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
func (s *StateStore) ScalingPoliciesByNamespace(ws memdb.WatchSet, namespace, typ string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("scaling_policy", "target_prefix", namespace)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
// Wrap the iterator in a filter to exact match the namespace
iter = memdb.NewFilterIterator(iter, scalingPolicyNamespaceFilter(namespace))
// If policy type is specified as well, wrap again
if typ != "" {
iter = memdb.NewFilterIterator(iter, func(raw interface{}) bool {
p, ok := raw.(*structs.ScalingPolicy)
if !ok {
return true
}
return !strings.HasPrefix(p.Type, typ)
})
}
return iter, nil
}
func (s *StateStore) ScalingPoliciesByJob(ws memdb.WatchSet, namespace, jobID, policyType string) (memdb.ResultIterator,
error) {
txn := s.db.ReadTxn()
iter, err := s.ScalingPoliciesByJobTxn(ws, namespace, jobID, txn)
if err != nil {
return nil, err
}
if policyType == "" {
return iter, nil
}
filter := func(raw interface{}) bool {
p, ok := raw.(*structs.ScalingPolicy)
if !ok {
return true
}
return policyType != p.Type
}
return memdb.NewFilterIterator(iter, filter), nil
}
func (s *StateStore) ScalingPoliciesByJobTxn(ws memdb.WatchSet, namespace, jobID string,
txn *txn) (memdb.ResultIterator, error) {
iter, err := txn.Get("scaling_policy", "target_prefix", namespace, jobID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
filter := func(raw interface{}) bool {
d, ok := raw.(*structs.ScalingPolicy)
if !ok {
return true
}
return d.Target[structs.ScalingTargetJob] != jobID
}
// Wrap the iterator in a filter
wrap := memdb.NewFilterIterator(iter, filter)
return wrap, nil
}
func (s *StateStore) ScalingPolicyByID(ws memdb.WatchSet, id string) (*structs.ScalingPolicy, error) {
txn := s.db.ReadTxn()
watchCh, existing, err := txn.FirstWatch("scaling_policy", "id", id)
if err != nil {
return nil, fmt.Errorf("scaling_policy lookup failed: %v", err)
}
ws.Add(watchCh)
if existing != nil {
return existing.(*structs.ScalingPolicy), nil
}
return nil, nil
}
// ScalingPolicyByTargetAndType returns a fully-qualified policy against a target and policy type,
// or nil if it does not exist. This method does not honor the watchset on the policy type, just the target.
func (s *StateStore) ScalingPolicyByTargetAndType(ws memdb.WatchSet, target map[string]string, typ string) (*structs.ScalingPolicy,
error) {
txn := s.db.ReadTxn()
namespace := target[structs.ScalingTargetNamespace]
job := target[structs.ScalingTargetJob]
group := target[structs.ScalingTargetGroup]
task := target[structs.ScalingTargetTask]
it, err := txn.Get("scaling_policy", "target", namespace, job, group, task)
if err != nil {
return nil, fmt.Errorf("scaling_policy lookup failed: %v", err)
}
ws.Add(it.WatchCh())
// Check for type
var existing *structs.ScalingPolicy
for raw := it.Next(); raw != nil; raw = it.Next() {
p := raw.(*structs.ScalingPolicy)
if p.Type == typ {
existing = p
break
}
}
if existing != nil {
return existing, nil
}
return nil, nil
}
func (s *StateStore) ScalingPoliciesByIDPrefix(ws memdb.WatchSet, namespace string, prefix string) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get("scaling_policy", "id_prefix", prefix)
if err != nil {
return nil, fmt.Errorf("scaling policy lookup failed: %v", err)
}
ws.Add(iter.WatchCh())
iter = memdb.NewFilterIterator(iter, scalingPolicyNamespaceFilter(namespace))
return iter, nil
}
// scalingPolicyNamespaceFilter returns a filter function that filters all
// scaling policies not targeting the given namespace.
func scalingPolicyNamespaceFilter(namespace string) func(interface{}) bool {
return func(raw interface{}) bool {
p, ok := raw.(*structs.ScalingPolicy)
if !ok {
return true
}
return p.Target[structs.ScalingTargetNamespace] != namespace
}
}
// StateSnapshot is used to provide a point-in-time snapshot
type StateSnapshot struct {
StateStore
}
// DenormalizeAllocationsMap takes in a map of nodes to allocations, and queries the
// Allocation for each of the Allocation diffs and merges the updated attributes with
// the existing Allocation, and attaches the Job provided
func (s *StateSnapshot) DenormalizeAllocationsMap(nodeAllocations map[string][]*structs.Allocation) error {
for nodeID, allocs := range nodeAllocations {
denormalizedAllocs, err := s.DenormalizeAllocationSlice(allocs)
if err != nil {
return err
}
nodeAllocations[nodeID] = denormalizedAllocs
}
return nil
}
// DenormalizeAllocationSlice queries the Allocation for each allocation diff
// represented as an Allocation and merges the updated attributes with the existing
// Allocation, and attaches the Job provided.
//
// This should only be called on terminal allocs, particularly stopped or preempted allocs
func (s *StateSnapshot) DenormalizeAllocationSlice(allocs []*structs.Allocation) ([]*structs.Allocation, error) {
allocDiffs := make([]*structs.AllocationDiff, len(allocs))
for i, alloc := range allocs {
allocDiffs[i] = alloc.AllocationDiff()
}
return s.DenormalizeAllocationDiffSlice(allocDiffs)
}
// DenormalizeAllocationDiffSlice queries the Allocation for each AllocationDiff and merges
// the updated attributes with the existing Allocation, and attaches the Job provided.
//
// This should only be called on terminal alloc, particularly stopped or preempted allocs
func (s *StateSnapshot) DenormalizeAllocationDiffSlice(allocDiffs []*structs.AllocationDiff) ([]*structs.Allocation, error) {
// Output index for denormalized Allocations
j := 0
denormalizedAllocs := make([]*structs.Allocation, len(allocDiffs))
for _, allocDiff := range allocDiffs {
alloc, err := s.AllocByID(nil, allocDiff.ID)
if err != nil {
return nil, fmt.Errorf("alloc lookup failed: %v", err)
}
if alloc == nil {
return nil, fmt.Errorf("alloc %v doesn't exist", allocDiff.ID)
}
// Merge the updates to the Allocation. Don't update alloc.Job for terminal allocs
// so alloc refers to the latest Job view before destruction and to ease handler implementations
allocCopy := alloc.Copy()
if allocDiff.PreemptedByAllocation != "" {
allocCopy.PreemptedByAllocation = allocDiff.PreemptedByAllocation
allocCopy.DesiredDescription = getPreemptedAllocDesiredDescription(allocDiff.PreemptedByAllocation)
allocCopy.DesiredStatus = structs.AllocDesiredStatusEvict
} else {
// If alloc is a stopped alloc
allocCopy.DesiredDescription = allocDiff.DesiredDescription
allocCopy.DesiredStatus = structs.AllocDesiredStatusStop
if allocDiff.ClientStatus != "" {
allocCopy.ClientStatus = allocDiff.ClientStatus
}
if allocDiff.FollowupEvalID != "" {
allocCopy.FollowupEvalID = allocDiff.FollowupEvalID
}
}
if allocDiff.ModifyTime != 0 {
allocCopy.ModifyTime = allocDiff.ModifyTime
}
// Update the allocDiff in the slice to equal the denormalized alloc
denormalizedAllocs[j] = allocCopy
j++
}
// Retain only the denormalized Allocations in the slice
denormalizedAllocs = denormalizedAllocs[:j]
return denormalizedAllocs, nil
}
func getPreemptedAllocDesiredDescription(preemptedByAllocID string) string {
return fmt.Sprintf("Preempted by alloc ID %v", preemptedByAllocID)
}
// UpsertRootKeyMeta saves root key meta or updates it in-place.
func (s *StateStore) UpsertRootKeyMeta(index uint64, rootKeyMeta *structs.RootKeyMeta, rekey bool) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// get any existing key for updating
raw, err := txn.First(TableRootKeyMeta, indexID, rootKeyMeta.KeyID)
if err != nil {
return fmt.Errorf("root key metadata lookup failed: %v", err)
}
isRotation := false
if raw != nil {
existing := raw.(*structs.RootKeyMeta)
rootKeyMeta.CreateIndex = existing.CreateIndex
rootKeyMeta.CreateTime = existing.CreateTime
isRotation = !existing.Active() && rootKeyMeta.Active()
} else {
rootKeyMeta.CreateIndex = index
isRotation = rootKeyMeta.Active()
}
rootKeyMeta.ModifyIndex = index
if rekey && !isRotation {
return fmt.Errorf("cannot rekey without setting the new key active")
}
// if the upsert is for a newly-active key, we need to set all the
// other keys as inactive in the same transaction.
if isRotation {
iter, err := txn.Get(TableRootKeyMeta, indexID)
if err != nil {
return err
}
for {
raw := iter.Next()
if raw == nil {
break
}
key := raw.(*structs.RootKeyMeta)
modified := false
switch key.State {
case structs.RootKeyStateInactive:
if rekey {
key.SetRekeying()
modified = true
}
case structs.RootKeyStateActive:
if rekey {
key.SetRekeying()
} else {
key.SetInactive()
}
modified = true
case structs.RootKeyStateRekeying, structs.RootKeyStateDeprecated:
// nothing to do
}
if modified {
key.ModifyIndex = index
if err := txn.Insert(TableRootKeyMeta, key); err != nil {
return err
}
}
}
}
if err := txn.Insert(TableRootKeyMeta, rootKeyMeta); err != nil {
return err
}
// update the indexes table
if err := txn.Insert("index", &IndexEntry{TableRootKeyMeta, index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// DeleteRootKeyMeta deletes a single root key, or returns an error if
// it doesn't exist.
func (s *StateStore) DeleteRootKeyMeta(index uint64, keyID string) error {
txn := s.db.WriteTxn(index)
defer txn.Abort()
// find the old key
existing, err := txn.First(TableRootKeyMeta, indexID, keyID)
if err != nil {
return fmt.Errorf("root key metadata lookup failed: %v", err)
}
if existing == nil {
return fmt.Errorf("root key metadata not found")
}
if err := txn.Delete(TableRootKeyMeta, existing); err != nil {
return fmt.Errorf("root key metadata delete failed: %v", err)
}
// update the indexes table
if err := txn.Insert("index", &IndexEntry{TableRootKeyMeta, index}); err != nil {
return fmt.Errorf("index update failed: %v", err)
}
return txn.Commit()
}
// RootKeyMetas returns an iterator over all root key metadata
func (s *StateStore) RootKeyMetas(ws memdb.WatchSet) (memdb.ResultIterator, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get(TableRootKeyMeta, indexID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
return iter, nil
}
// RootKeyMetaByID returns a specific root key meta
func (s *StateStore) RootKeyMetaByID(ws memdb.WatchSet, id string) (*structs.RootKeyMeta, error) {
txn := s.db.ReadTxn()
watchCh, raw, err := txn.FirstWatch(TableRootKeyMeta, indexID, id)
if err != nil {
return nil, fmt.Errorf("root key metadata lookup failed: %v", err)
}
ws.Add(watchCh)
if raw != nil {
return raw.(*structs.RootKeyMeta), nil
}
return nil, nil
}
// GetActiveRootKeyMeta returns the metadata for the currently active root key
func (s *StateStore) GetActiveRootKeyMeta(ws memdb.WatchSet) (*structs.RootKeyMeta, error) {
txn := s.db.ReadTxn()
iter, err := txn.Get(TableRootKeyMeta, indexID)
if err != nil {
return nil, err
}
ws.Add(iter.WatchCh())
for {
raw := iter.Next()
if raw == nil {
break
}
key := raw.(*structs.RootKeyMeta)
if key.Active() {
return key, nil
}
}
return nil, nil
}