open-nomad/scheduler/reconcile.go
2017-07-07 12:03:11 -07:00

729 lines
22 KiB
Go

package scheduler
import (
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/nomad/structs"
)
// allocReconciler is used to determine the set of allocations that require
// placement, inplace updating or stopping given the job specification and
// existing cluster state. The reconciler should only be used for batch and
// service jobs.
type allocReconciler struct {
// ctx gives access to the state store and logger
ctx Context
// stack allows checking for the ability to do an in-place update
stack Stack
// batch marks whether the job is a batch job
batch bool
// eval is the evaluation triggering the scheduling event
eval *structs.Evaluation
// job is the job being operated on, it may be nil if the job is being
// stopped via a purge
job *structs.Job
// deployment is the current deployment for the job
deployment *structs.Deployment
// deploymentPaused marks whether the deployment is paused
deploymentPaused bool
// taintedNodes contains a map of nodes that are tainted
taintedNodes map[string]*structs.Node
// existingAllocs is non-terminal existing allocations
existingAllocs []*structs.Allocation
// result is the results of the reconcile. During computation it can be
// used to store intermediate state
result *reconcileResults
}
// reconcileResults contains the results of the reconciliation and should be
// applied by the scheduler.
type reconcileResults struct {
// createDeployment is the deployment that should be created as a result of
// scheduling
createDeployment *structs.Deployment
// deploymentUpdates contains a set of deployment updates that should be
// applied as a result of scheduling
deploymentUpdates []*structs.DeploymentStatusUpdate
// place is the set of allocations to place by the scheduler
place []allocPlaceResult
// inplaceUpdate is the set of allocations to apply an inplace update to
inplaceUpdate []*structs.Allocation
// stop is the set of allocations to stop
stop []allocStopResult
// desiredTGUpdates captures the desired set of changes to make for each
// task group.
desiredTGUpdates map[string]*structs.DesiredUpdates
}
// allocPlaceResult contains the information required to place a single
// allocation
type allocPlaceResult struct {
name string
canary bool
taskGroup *structs.TaskGroup
previousAlloc *structs.Allocation
}
// allocStopResult contains the information required to stop a single allocation
type allocStopResult struct {
alloc *structs.Allocation
clientStatus string
statusDescription string
}
// NewAllocReconciler creates a new reconciler that should be used to determine
// the changes required to bring the cluster state inline with the declared jobspec
func NewAllocReconciler(ctx Context, stack Stack, batch bool,
eval *structs.Evaluation, job *structs.Job, deployment *structs.Deployment,
existingAllocs []*structs.Allocation, taintedNodes map[string]*structs.Node) *allocReconciler {
a := &allocReconciler{
ctx: ctx,
stack: stack,
eval: eval,
batch: batch,
job: job,
deployment: deployment,
existingAllocs: existingAllocs,
taintedNodes: taintedNodes,
result: &reconcileResults{
desiredTGUpdates: make(map[string]*structs.DesiredUpdates),
},
}
// Detect if the deployment is paused
if deployment != nil {
a.deploymentPaused = deployment.Status == structs.DeploymentStatusPaused
}
return a
}
// Compute reconciles the existing cluster state and returns the set of changes
// required to converge the job spec and state
func (a *allocReconciler) Compute() *reconcileResults {
// If we are just stopping a job we do not need to do anything more than
// stopping all running allocs
stopped := a.job == nil || a.job.Stop
if stopped {
a.handleStop()
// Cancel the deployment since it is not needed
if a.deployment != nil {
a.result.deploymentUpdates = append(a.result.deploymentUpdates, &structs.DeploymentStatusUpdate{
DeploymentID: a.deployment.ID,
Status: structs.DeploymentStatusCancelled,
StatusDescription: structs.DeploymentStatusDescriptionStoppedJob,
})
}
return a.result
}
// Check if the deployment is referencing an older job and cancel it
if d := a.deployment; d != nil {
if d.JobCreateIndex != a.job.CreateIndex || d.JobModifyIndex != a.job.JobModifyIndex {
a.result.deploymentUpdates = append(a.result.deploymentUpdates, &structs.DeploymentStatusUpdate{
DeploymentID: a.deployment.ID,
Status: structs.DeploymentStatusCancelled,
StatusDescription: structs.DeploymentStatusDescriptionNewerJob,
})
a.deployment = nil
}
}
// Create a new deployment if necessary
if a.deployment == nil && !stopped && a.job.HasUpdateStrategy() {
a.deployment = structs.NewDeployment(a.job)
a.result.createDeployment = a.deployment
a.ctx.Logger().Printf("ALEX: MADE DEPLOYMENT %q", a.deployment.ID)
}
if a.deployment != nil {
a.ctx.Logger().Printf("ALEX: CURRENT DEPLOYMENT %q", a.deployment.ID)
}
m := newAllocMatrix(a.job, a.existingAllocs)
for group, as := range m {
a.computeGroup(group, as)
}
return a.result
}
// handleStop marks all allocations to be stopped, handling the lost case
func (a *allocReconciler) handleStop() {
as := newAllocSet(a.existingAllocs)
untainted, migrate, lost := as.filterByTainted(a.taintedNodes)
a.markStop(untainted, "", allocNotNeeded)
a.markStop(migrate, "", allocNotNeeded)
a.markStop(lost, structs.AllocClientStatusLost, allocLost)
}
// markStop is a helper for marking a set of allocation for stop with a
// particular client status and description.
func (a *allocReconciler) markStop(allocs allocSet, clientStatus, statusDescription string) {
for _, alloc := range allocs {
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
clientStatus: clientStatus,
statusDescription: statusDescription,
})
}
}
// computeGroup reconciles state for a particular task group.
func (a *allocReconciler) computeGroup(group string, as allocSet) {
// Create the desired update object for the group
desiredChanges := new(structs.DesiredUpdates)
a.result.desiredTGUpdates[group] = desiredChanges
// Get the task group. The task group may be nil if the job was updates such
// that the task group no longer exists
tg := a.job.LookupTaskGroup(group)
// Determine what set of alloations are on tainted nodes
untainted, migrate, lost := as.filterByTainted(a.taintedNodes)
// If the task group is nil, then the task group has been removed so all we
// need to do is stop everything
if tg == nil {
a.ctx.Logger().Printf("RECONCILER -- STOPPING ALL")
a.markStop(untainted, "", allocNotNeeded)
a.markStop(migrate, "", allocNotNeeded)
a.markStop(lost, structs.AllocClientStatusLost, allocLost)
desiredChanges.Stop = uint64(len(untainted) + len(migrate) + len(lost))
return
}
// Get the deployment state for the group
creatingDeployment := a.result.createDeployment != nil
var dstate *structs.DeploymentState
if a.deployment != nil {
var ok bool
dstate, ok = a.deployment.TaskGroups[group]
// We are creating a deployment
if !ok && creatingDeployment {
dstate = &structs.DeploymentState{}
a.deployment.TaskGroups[group] = dstate
}
}
// Track the lost and migrating
desiredChanges.Migrate += uint64(len(migrate) + len(lost))
a.ctx.Logger().Printf("RECONCILER -- untainted (%d); migrate (%d); lost (%d)", len(untainted), len(migrate), len(lost))
a.ctx.Logger().Printf("RECONCILER -- untainted %#v", untainted)
// Mark all lost allocations for stop. Previous allocation doesn't matter
// here since it is on a lost node
for _, alloc := range lost {
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
clientStatus: structs.AllocClientStatusLost,
statusDescription: allocLost,
})
}
// Get any existing canaries
canaries := untainted.filterByCanary()
// Cancel any canary from a prior deployment
if len(canaries) != 0 {
if a.deployment != nil {
current, older := canaries.filterByDeployment(a.deployment.ID)
a.markStop(older, "", allocNotNeeded)
desiredChanges.Stop += uint64(len(older))
a.ctx.Logger().Printf("RECONCILER -- older canaries %#v", older)
a.ctx.Logger().Printf("RECONCILER -- current canaries %#v", current)
untainted = untainted.difference(older)
canaries = current
} else {
// We don't need any of those canaries since there no longer is a
// deployment
a.markStop(canaries, "", allocNotNeeded)
desiredChanges.Stop += uint64(len(canaries))
untainted = untainted.difference(canaries)
canaries = nil
}
a.ctx.Logger().Printf("RECONCILER -- untainted - remove canaries %#v", untainted)
}
// Create a structure for choosing names
nameIndex := newAllocNameIndex(a.eval.JobID, group, tg.Count, untainted)
// Stop any unneeded allocations and update the untainted set to not
// included stopped allocations. We ignore canaries since that can push us
// over the desired count
existingCanariesPromoted := dstate == nil || dstate.DesiredCanaries == 0 || dstate.Promoted
stop := a.computeStop(tg, nameIndex, untainted.difference(canaries), canaries, existingCanariesPromoted)
a.markStop(stop, "", allocNotNeeded)
desiredChanges.Stop += uint64(len(stop))
untainted = untainted.difference(stop)
// Having stopped un-needed allocations, append the canaries to the existing
// set of untainted because they are promoted. This will cause them to be
// treated like non-canaries
if existingCanariesPromoted {
untainted = untainted.union(canaries)
nameIndex.Add(canaries)
}
// Do inplace upgrades where possible and capture the set of upgrades that
// need to be done destructively.
ignore, inplace, destructive := a.computeUpdates(tg, untainted)
desiredChanges.Ignore += uint64(len(ignore))
desiredChanges.InPlaceUpdate += uint64(len(inplace))
desiredChanges.DestructiveUpdate += uint64(len(destructive))
a.ctx.Logger().Printf("RECONCILER -- Stopping (%d)", len(stop))
a.ctx.Logger().Printf("RECONCILER -- Inplace (%d); Destructive (%d)", len(inplace), len(destructive))
// Get the update strategy of the group
strategy := tg.Update
// The fact that we have destructive updates and have less canaries than is
// desired means we need to create canaries
numDestructive := len(destructive)
requireCanary := numDestructive != 0 && strategy != nil && len(canaries) < strategy.Canary
if requireCanary && !a.deploymentPaused {
number := strategy.Canary - len(canaries)
number = helper.IntMin(numDestructive, number)
desiredChanges.Canary += uint64(number)
if creatingDeployment {
dstate.DesiredCanaries = strategy.Canary
dstate.DesiredTotal += strategy.Canary
}
a.ctx.Logger().Printf("RECONCILER -- Canary (%d)", number)
for _, name := range nameIndex.NextCanaries(uint(number), canaries, destructive) {
a.result.place = append(a.result.place, allocPlaceResult{
name: name,
canary: true,
taskGroup: tg,
})
}
}
// Determine how many we can place
haveCanaries := dstate != nil && dstate.DesiredCanaries != 0
limit := a.computeLimit(tg, untainted, destructive, haveCanaries)
a.ctx.Logger().Printf("RECONCILER -- LIMIT %v", limit)
// Place if:
// * The deployment is not paused
// * Not placing any canaries
// * If there are any canaries that they have been promoted
place := a.computePlacements(tg, nameIndex, untainted)
if creatingDeployment {
dstate.DesiredTotal += len(place)
}
if !a.deploymentPaused && existingCanariesPromoted {
// Update the desired changes and if we are creating a deployment update
// the state.
desiredChanges.Place += uint64(len(place))
// Place all new allocations
a.ctx.Logger().Printf("RECONCILER -- Placing (%d)", len(place))
for _, p := range place {
a.result.place = append(a.result.place, p)
}
// Do all destructive updates
min := helper.IntMin(len(destructive), limit)
i := 0
a.ctx.Logger().Printf("RECONCILER -- Destructive Updating (%d)", min)
for _, alloc := range destructive {
if i == min {
break
}
i++
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
statusDescription: allocUpdating,
})
a.result.place = append(a.result.place, allocPlaceResult{
name: alloc.Name,
taskGroup: tg,
previousAlloc: alloc,
})
}
limit -= min
}
// TODO Migrations should be done using a stagger and max_parallel.
a.ctx.Logger().Printf("RECONCILER -- Migrating (%d)", len(migrate))
for _, alloc := range migrate {
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
statusDescription: allocMigrating,
})
a.result.place = append(a.result.place, allocPlaceResult{
name: alloc.Name,
canary: false,
taskGroup: tg,
previousAlloc: alloc,
})
}
}
// computeLimit returns the placement limit for a particular group. The inputs
// are the group definition, the existing/untainted allocation set and whether
// any canaries exist or are being placed.
func (a *allocReconciler) computeLimit(group *structs.TaskGroup, untainted, destructive allocSet, canaries bool) int {
// If there is no update stategy or deployment for the group we can deploy
// as many as the group has
if group.Update == nil || len(destructive) == 0 {
return group.Count
} else if a.deploymentPaused {
// If the deployment is paused, do not create anything else
return 0
}
// Get the state of the deployment for the group
deploymentState := a.deployment.TaskGroups[group.Name]
// If we have canaries and they have not been promoted the limit is 0
if canaries && (deploymentState == nil || !deploymentState.Promoted) {
return 0
}
// If we have been promoted or there are no canaries, the limit is the
// configured MaxParallel - any outstanding non-healthy alloc for the
// deployment
limit := group.Update.MaxParallel
partOf, _ := untainted.filterByDeployment(a.deployment.ID)
for _, alloc := range partOf {
if alloc.DeploymentStatus == nil || alloc.DeploymentStatus.Healthy == nil {
limit--
}
}
return limit
}
// computePlacement returns the set of allocations to place given the group
// definiton and the set of untainted/existing allocations for the group.
func (a *allocReconciler) computePlacements(group *structs.TaskGroup,
nameIndex *allocNameIndex, untainted allocSet) []allocPlaceResult {
// Hot path the nothing to do case
existing := len(untainted)
if existing >= group.Count {
return nil
}
var place []allocPlaceResult
for _, name := range nameIndex.Next(uint(group.Count - existing)) {
place = append(place, allocPlaceResult{
name: name,
taskGroup: group,
})
}
return place
}
// computeStop returns the set of allocations to stop given the group definiton
// and the set of untainted and canary allocations for the group.
func (a *allocReconciler) computeStop(group *structs.TaskGroup, nameIndex *allocNameIndex,
untainted, canaries allocSet, promoted bool) allocSet {
// Hot path the nothing to do case
remove := len(untainted) - group.Count
if promoted {
remove += len(canaries)
}
if remove <= 0 {
return nil
}
// nameIndex does not include the canaries
removeNames := nameIndex.Highest(uint(remove))
stop := make(map[string]*structs.Allocation)
for id, a := range untainted {
if _, remove := removeNames[a.Name]; remove {
stop[id] = a
}
}
return stop
}
// computeUpdates determines which allocations for the passed group require
// updates. Three groups are returned:
// 1. Those that require no upgrades
// 2. Those that can be upgraded in-place. These are added to the results
// automatically since the function contains the correct state to do so,
// 3. Those that require destructive updates
func (a *allocReconciler) computeUpdates(group *structs.TaskGroup, untainted allocSet) (ignore, inplace, destructive allocSet) {
// Determine the set of allocations that need to be updated
ignore = make(map[string]*structs.Allocation)
inplace = make(map[string]*structs.Allocation)
destructive = make(map[string]*structs.Allocation)
ws := memdb.NewWatchSet()
for _, alloc := range untainted {
if alloc.Job.JobModifyIndex == a.job.JobModifyIndex {
ignore[alloc.ID] = alloc
continue
}
// Check if the task drivers or config has changed, requires
// a destructive upgrade since that cannot be done in-place.
if tasksUpdated(a.job, alloc.Job, group.Name) {
destructive[alloc.ID] = alloc
continue
}
// Terminal batch allocations are not filtered when they are completed
// successfully. We should avoid adding the allocation to the plan in
// the case that it is an in-place update to avoid both additional data
// in the plan and work for the clients.
if alloc.TerminalStatus() {
ignore[alloc.ID] = alloc
continue
}
// Get the existing node
node, err := a.ctx.State().NodeByID(ws, alloc.NodeID)
if err != nil {
a.ctx.Logger().Printf("[ERR] sched: %#v failed to get node '%s': %v", a.eval, alloc.NodeID, err)
continue
}
if node == nil {
destructive[alloc.ID] = alloc
continue
}
// Set the existing node as the base set
a.stack.SetNodes([]*structs.Node{node})
// Stage an eviction of the current allocation. This is done so that
// the current allocation is discounted when checking for feasability.
// Otherwise we would be trying to fit the tasks current resources and
// updated resources. After select is called we can remove the evict.
a.ctx.Plan().AppendUpdate(alloc, structs.AllocDesiredStatusStop, allocInPlace, "")
// Attempt to match the task group
option, _ := a.stack.Select(group)
// Pop the allocation
a.ctx.Plan().PopUpdate(alloc)
// Skip if we could not do an in-place update
if option == nil {
destructive[alloc.ID] = alloc
continue
}
// Restore the network offers from the existing allocation.
// We do not allow network resources (reserved/dynamic ports)
// to be updated. This is guarded in taskUpdated, so we can
// safely restore those here.
for task, resources := range option.TaskResources {
existing := alloc.TaskResources[task]
resources.Networks = existing.Networks
}
// Create a shallow copy
newAlloc := new(structs.Allocation)
*newAlloc = *alloc
// Update the allocation
newAlloc.EvalID = a.eval.ID
newAlloc.Job = nil // Use the Job in the Plan
newAlloc.Resources = nil // Computed in Plan Apply
newAlloc.TaskResources = option.TaskResources
newAlloc.Metrics = a.ctx.Metrics()
// Add this to the result and the tracking allocSet
inplace[alloc.ID] = alloc
a.result.inplaceUpdate = append(a.result.inplaceUpdate, newAlloc)
}
return
}
// allocNameIndex is used to select allocation names for placement or removal
// given an existing set of placed allocations.
type allocNameIndex struct {
job, taskGroup string
count int
b structs.Bitmap
}
// newAllocNameIndex returns an allocNameIndex for use in selecting names of
// allocations to create or stop. It takes the job and task group name, desired
// count and any existing allocations as input.
func newAllocNameIndex(job, taskGroup string, count int, in allocSet) *allocNameIndex {
return &allocNameIndex{
count: count,
b: bitmapFrom(in, uint(count)),
job: job,
taskGroup: taskGroup,
}
}
func bitmapFrom(input allocSet, minSize uint) structs.Bitmap {
var max uint
for _, a := range input {
if num := a.Index(); num > max {
max = num
}
}
if l := uint(len(input)); minSize < l {
minSize = l
}
if max < minSize {
max = minSize
}
if max == 0 {
max = 8
}
// byteAlign the count
if remainder := max % 8; remainder != 0 {
max = max + 8 - remainder
}
bitmap, err := structs.NewBitmap(max)
if err != nil {
panic(err)
}
for _, a := range input {
bitmap.Set(a.Index())
}
return bitmap
}
// Add adds the allocations to the name index
func (a *allocNameIndex) Add(set allocSet) {
for _, alloc := range set {
a.b.Set(alloc.Index())
}
}
// RemoveHighest removes and returns the hightest n used names. The returned set
// can be less than n if there aren't n names set in the index
func (a *allocNameIndex) Highest(n uint) map[string]struct{} {
h := make(map[string]struct{}, n)
for i := a.b.Size(); i > uint(0) && uint(len(h)) <= n; i-- {
// Use this to avoid wrapping around b/c of the unsigned int
idx := i - 1
if a.b.Check(idx) {
a.b.Unset(idx)
h[structs.AllocName(a.job, a.taskGroup, idx)] = struct{}{}
}
}
return h
}
// NextCanaries returns the next n names for use as canaries and sets them as
// used. The existing canaries and destructive updates are also passed in.
func (a *allocNameIndex) NextCanaries(n uint, existing, destructive allocSet) []string {
next := make([]string, 0, n)
// First select indexes from the allocations that are undergoing destructive
// updates. This way we avoid duplicate names as they will get replaced.
dmap := bitmapFrom(destructive, uint(a.count))
var remainder uint
for _, idx := range dmap.IndexesInRange(true, uint(0), uint(a.count)-1) {
name := structs.AllocName(a.job, a.taskGroup, uint(idx))
if _, used := existing[name]; !used {
next = append(next, name)
a.b.Set(uint(idx))
// If we have enough, return
remainder := n - uint(len(next))
if remainder == 0 {
return next
}
}
}
// Get the set of unset names that can be used
for _, idx := range a.b.IndexesInRange(false, uint(0), uint(a.count)-1) {
name := structs.AllocName(a.job, a.taskGroup, uint(idx))
if _, used := existing[name]; !used {
next = append(next, name)
a.b.Set(uint(idx))
// If we have enough, return
remainder = n - uint(len(next))
if remainder == 0 {
return next
}
}
}
// We have exhausted the prefered and free set, now just pick overlapping
// indexes
var i uint
for i = 0; i < remainder; i++ {
name := structs.AllocName(a.job, a.taskGroup, i)
if _, used := existing[name]; !used {
next = append(next, name)
a.b.Set(i)
// If we have enough, return
remainder = n - uint(len(next))
if remainder == 0 {
return next
}
}
}
return next
}
// Next returns the next n names for use as new placements and sets them as
// used.
func (a *allocNameIndex) Next(n uint) []string {
next := make([]string, 0, n)
// Get the set of unset names that can be used
var remainder uint
for _, idx := range a.b.IndexesInRange(false, uint(0), uint(a.count)-1) {
next = append(next, structs.AllocName(a.job, a.taskGroup, uint(idx)))
a.b.Set(uint(idx))
// If we have enough, return
remainder := n - uint(len(next))
if remainder == 0 {
return next
}
}
// We have exhausted the free set, now just pick overlapping indexes
var i uint
for i = 0; i < remainder; i++ {
next = append(next, structs.AllocName(a.job, a.taskGroup, i))
a.b.Set(i)
}
return next
}