open-nomad/scheduler/generic_sched.go
2015-09-13 15:20:50 -07:00

394 lines
11 KiB
Go

package scheduler
import (
"fmt"
"log"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxServiceScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for services.
maxServiceScheduleAttempts = 5
// maxBatchScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for batch.
maxBatchScheduleAttempts = 2
// allocNotNeeded is the status used when a job no longer requires an allocation
allocNotNeeded = "alloc not needed due to job update"
// allocMigrating is the status used when we must migrate an allocation
allocMigrating = "alloc is being migrated"
// allocUpdating is the status used when a job requires an update
allocUpdating = "alloc is being updated due to job update"
// allocInPlace is the status used when speculating on an in-place update
allocInPlace = "alloc updating in-place"
)
// SetStatusError is used to set the status of the evaluation to the given error
type SetStatusError struct {
Err error
EvalStatus string
}
func (s *SetStatusError) Error() string {
return s.Err.Error()
}
// GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
// designed for long-lived services, and as such spends more time attemping
// to make a high quality placement. This is the primary scheduler for
// most workloads. It also supports a 'batch' mode to optimize for fast decision
// making at the cost of quality.
type GenericScheduler struct {
logger *log.Logger
state State
planner Planner
batch bool
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
ctx *EvalContext
stack *GenericStack
limitReached bool
nextEval *structs.Evaluation
}
// NewServiceScheduler is a factory function to instantiate a new service scheduler
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: false,
}
return s
}
// NewBatchScheduler is a factory function to instantiate a new batch scheduler
func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: true,
}
return s
}
// setStatus is used to update the status of the evaluation
func (s *GenericScheduler) setStatus(status, desc string) error {
s.logger.Printf("[DEBUG] sched: %#v: setting status to %s", s.eval, status)
newEval := s.eval.Copy()
newEval.Status = status
newEval.StatusDescription = desc
if s.nextEval != nil {
newEval.NextEval = s.nextEval.ID
}
return s.planner.UpdateEval(newEval)
}
// Process is used to handle a single evaluation
func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerJobDeregister:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return s.setStatus(structs.EvalStatusFailed, desc)
}
// Store the evaluation
s.eval = eval
// Retry up to the maxScheduleAttempts
limit := maxServiceScheduleAttempts
if s.batch {
limit = maxBatchScheduleAttempts
}
if err := retryMax(limit, s.process); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
return s.setStatus(statusErr.EvalStatus, err.Error())
}
return err
}
// Update the status to complete
return s.setStatus(structs.EvalStatusComplete, "")
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *GenericScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
s.job, err = s.state.JobByID(s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job '%s': %v",
s.eval.JobID, err)
}
// Create a plan
s.plan = s.eval.MakePlan(s.job)
// Create an evaluation context
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewGenericStack(s.batch, s.ctx, nil)
if s.job != nil {
s.stack.SetJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
return false, err
}
// If the plan is a no-op, we can bail
if s.plan.IsNoOp() {
return true, nil
}
// If the limit of placements was reached we need to create an evaluation
// to pickup from here after the stagger period.
if s.limitReached && s.nextEval == nil {
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
if err := s.planner.CreateEval(s.nextEval); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
}
// Submit the plan
result, newState, err := s.planner.SubmitPlan(s.plan)
if err != nil {
return false, err
}
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
s.eval, expected, actual)
return false, nil
}
// Success!
return true, nil
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *GenericScheduler) computeJobAllocs() error {
// Materialize all the task groups, job could be missing if deregistered
var groups map[string]*structs.TaskGroup
if s.job != nil {
groups = materializeTaskGroups(s.job)
}
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(s.eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Diff the required and existing allocations
diff := diffAllocs(s.job, tainted, groups, allocs)
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
// Add all the allocs to stop
for _, e := range diff.stop {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded)
}
// Attempt to do the upgrades in place
diff.update = s.inplaceUpdate(diff.update)
// Check if a rolling upgrade strategy is being used
limit := len(diff.update) + len(diff.migrate)
if s.job != nil && s.job.Update.Rolling() {
limit = s.job.Update.MaxParallel
}
// Treat migrations as an eviction and a new placement.
s.evictAndPlace(diff, diff.migrate, allocMigrating, &limit)
// Treat non in-place updates as an eviction and new placement.
s.evictAndPlace(diff, diff.update, allocUpdating, &limit)
// Nothing remaining to do if placement is not required
if len(diff.place) == 0 {
return nil
}
// Compute the placements
return s.computePlacements(diff.place)
}
// evictAndPlace is used to mark allocations for evicts and add them to the placement queue
func (s *GenericScheduler) evictAndPlace(diff *diffResult, allocs []allocTuple, desc string, limit *int) {
n := len(allocs)
for i := 0; i < n && i < *limit; i++ {
a := allocs[i]
s.plan.AppendUpdate(a.Alloc, structs.AllocDesiredStatusStop, desc)
diff.place = append(diff.place, a)
}
if n <= *limit {
*limit -= n
} else {
*limit = 0
s.limitReached = true
}
}
// inplaceUpdate attempts to update allocations in-place where possible.
func (s *GenericScheduler) inplaceUpdate(updates []allocTuple) []allocTuple {
n := len(updates)
inplace := 0
for i := 0; i < n; i++ {
// Get the udpate
update := updates[i]
// Check if the task drivers or config has changed, requires
// a rolling upgrade since that cannot be done in-place.
existing := update.Alloc.Job.LookupTaskGroup(update.TaskGroup.Name)
if tasksUpdated(update.TaskGroup, existing) {
continue
}
// Get the existing node
node, err := s.state.NodeByID(update.Alloc.NodeID)
if err != nil {
s.logger.Printf("[ERR] sched: %#v failed to get node '%s': %v",
update.Alloc.NodeID, err)
continue
}
if node == nil {
continue
}
// Set the existing node as the base set
s.stack.SetNodes([]*structs.Node{node})
// Stage an eviction of the current allocation
s.plan.AppendUpdate(update.Alloc, structs.AllocDesiredStatusStop,
allocInPlace)
// Attempt to match the task group
option, size := s.stack.Select(update.TaskGroup)
// Pop the allocation
s.plan.PopUpdate(update.Alloc)
// Skip if we could not do an in-place update
if option == nil {
continue
}
// Create a shallow copy
newAlloc := new(structs.Allocation)
*newAlloc = *update.Alloc
// Update the allocation
newAlloc.EvalID = s.eval.ID
newAlloc.Job = s.job
newAlloc.Resources = size
newAlloc.TaskResources = option.TaskResources
newAlloc.Metrics = s.ctx.Metrics()
newAlloc.DesiredStatus = structs.AllocDesiredStatusRun
newAlloc.ClientStatus = structs.AllocClientStatusPending
s.plan.AppendAlloc(newAlloc)
// Remove this allocation from the slice
updates[i] = updates[n-1]
i--
n--
inplace++
}
if len(updates) > 0 {
s.logger.Printf("[DEBUG] sched: %#v: %d in-place updates of %d", s.eval, inplace, len(updates))
}
return updates[:n]
}
// computePlacements computes placements for allocations
func (s *GenericScheduler) computePlacements(place []allocTuple) error {
// Get the base nodes
nodes, err := readyNodesInDCs(s.state, s.job.Datacenters)
if err != nil {
return err
}
// Update the set of placement ndoes
s.stack.SetNodes(nodes)
// Track the failed task groups so that we can coalesce
// the failures together to avoid creating many failed allocs.
failedTG := make(map[*structs.TaskGroup]*structs.Allocation)
for _, missing := range place {
// Check if this task group has already failed
if alloc, ok := failedTG[missing.TaskGroup]; ok {
alloc.Metrics.CoalescedFailures += 1
continue
}
// Attempt to match the task group
option, size := s.stack.Select(missing.TaskGroup)
// Create an allocation for this
alloc := &structs.Allocation{
ID: structs.GenerateUUID(),
EvalID: s.eval.ID,
Name: missing.Name,
JobID: s.job.ID,
Job: s.job,
TaskGroup: missing.TaskGroup.Name,
Resources: size,
Metrics: s.ctx.Metrics(),
}
// Set fields based on if we found an allocation option
if option != nil {
alloc.NodeID = option.Node.ID
alloc.TaskResources = option.TaskResources
alloc.DesiredStatus = structs.AllocDesiredStatusRun
alloc.ClientStatus = structs.AllocClientStatusPending
s.plan.AppendAlloc(alloc)
} else {
alloc.DesiredStatus = structs.AllocDesiredStatusFailed
alloc.DesiredDescription = "failed to find a node for placement"
alloc.ClientStatus = structs.AllocClientStatusFailed
s.plan.AppendFailed(alloc)
failedTG[missing.TaskGroup] = alloc
}
}
return nil
}