5bcf32282f | ||
---|---|---|
.. | ||
docker | ||
README.md | ||
RunningSparkOnNomad.pdf | ||
hdfs.nomad | ||
spark-history-server-hdfs.nomad |
README.md
Nomad / Spark integration
The Nomad ecosystem includes a fork of Apache Spark that natively supports using a Nomad cluster to run Spark applications. When running on Nomad, the Spark executors that run Spark tasks for your application, and optionally the application driver itself, run as Nomad tasks in a Nomad job. See the usage guide for more details.
Clusters provisioned with Nomad's Terraform templates are automatically configured to run the Spark integration. The sample job files found here are also provisioned onto every client and server.
Setup
To give the Spark integration a test drive, provision a cluster and SSH to any one of the clients or servers (the public IPs are displayed when the Terraform provisioning process completes):
$ ssh -i /path/to/key ubuntu@PUBLIC_IP
The Spark history server and several of the sample Spark jobs below require HDFS. Using the included job file, deploy an HDFS cluster on Nomad:
$ cd $HOME/examples/spark
$ nomad run hdfs.nomad
$ nomad status hdfs
When the allocations are all in the running
state (as shown by nomad status hdfs
), query Consul to verify that the HDFS service has been registered:
$ dig hdfs.service.consul
Next, create directories and files in HDFS for use by the history server and the sample Spark jobs:
$ hdfs dfs -mkdir /foo
$ hdfs dfs -put /var/log/apt/history.log /foo
$ hdfs dfs -mkdir /spark-events
$ hdfs dfs -ls /
Finally, deploy the Spark history server:
$ nomad run spark-history-server-hdfs.nomad
You can get the private IP for the history server with a Consul DNS lookup:
$ dig spark-history.service.consul
Cross-reference the private IP with the terraforom apply
output to get the
corresponding public IP. You can access the history server at
http://PUBLIC_IP:18080
.
Sample Spark jobs
The sample spark-submit
commands listed below demonstrate several of the
official Spark examples. Features like spark-sql
, spark-shell
and pyspark
are included. The commands can be executed from any client or server.
You can monitor the status of a Spark job in a second terminal session with:
$ nomad status
$ nomad status JOB_ID
$ nomad alloc-status DRIVER_ALLOC_ID
$ nomad logs DRIVER_ALLOC_ID
To view the output of the job, run nomad logs
for the driver's Allocation ID.
SparkPi (Java)
spark-submit \
--class org.apache.spark.examples.JavaSparkPi \
--master nomad \
--deploy-mode cluster \
--conf spark.executor.instances=4 \
--conf spark.nomad.cluster.monitorUntil=complete \
--conf spark.eventLog.enabled=true \
--conf spark.eventLog.dir=hdfs://hdfs.service.consul/spark-events \
--conf spark.nomad.sparkDistribution=https://s3.amazonaws.com/nomad-spark/spark-2.1.0-bin-nomad.tgz \
https://s3.amazonaws.com/nomad-spark/spark-examples_2.11-2.1.0-SNAPSHOT.jar 100
Word count (Java)
spark-submit \
--class org.apache.spark.examples.JavaWordCount \
--master nomad \
--deploy-mode cluster \
--conf spark.executor.instances=4 \
--conf spark.nomad.cluster.monitorUntil=complete \
--conf spark.eventLog.enabled=true \
--conf spark.eventLog.dir=hdfs://hdfs.service.consul/spark-events \
--conf spark.nomad.sparkDistribution=https://s3.amazonaws.com/nomad-spark/spark-2.1.0-bin-nomad.tgz \
https://s3.amazonaws.com/nomad-spark/spark-examples_2.11-2.1.0-SNAPSHOT.jar \
hdfs://hdfs.service.consul/foo/history.log
DFSReadWriteTest (Scala)
spark-submit \
--class org.apache.spark.examples.DFSReadWriteTest \
--master nomad \
--deploy-mode cluster \
--conf spark.executor.instances=4 \
--conf spark.nomad.cluster.monitorUntil=complete \
--conf spark.eventLog.enabled=true \
--conf spark.eventLog.dir=hdfs://hdfs.service.consul/spark-events \
--conf spark.nomad.sparkDistribution=https://s3.amazonaws.com/nomad-spark/spark-2.1.0-bin-nomad.tgz \
https://s3.amazonaws.com/nomad-spark/spark-examples_2.11-2.1.0-SNAPSHOT.jar \
/etc/sudoers hdfs://hdfs.service.consul/foo
spark-shell
Start the shell:
spark-shell \
--master nomad \
--conf spark.executor.instances=4 \
--conf spark.nomad.sparkDistribution=https://s3.amazonaws.com/nomad-spark/spark-2.1.0-bin-nomad.tgz
Run a few commands:
$ spark.version
$ val data = 1 to 10000
$ val distData = sc.parallelize(data)
$ distData.filter(_ < 10).collect()
sql-shell
Start the shell:
spark-sql \
--master nomad \
--conf spark.executor.instances=4 \
--conf spark.nomad.sparkDistribution=https://s3.amazonaws.com/nomad-spark/spark-2.1.0-bin-nomad.tgz jars/spark-sql_2.11-2.1.0-SNAPSHOT.jar
Run a few commands:
$ CREATE TEMPORARY VIEW usersTable
USING org.apache.spark.sql.parquet
OPTIONS (
path "/usr/local/bin/spark/examples/src/main/resources/users.parquet"
);
$ SELECT * FROM usersTable;
pyspark
Start the shell:
pyspark \
--master nomad \
--conf spark.executor.instances=4 \
--conf spark.nomad.sparkDistribution=https://s3.amazonaws.com/nomad-spark/spark-2.1.0-bin-nomad.tgz
Run a few commands:
$ df = spark.read.json("/usr/local/bin/spark/examples/src/main/resources/people.json")
$ df.show()
$ df.printSchema()
$ df.createOrReplaceTempView("people")
$ sqlDF = spark.sql("SELECT * FROM people")
$ sqlDF.show()