1232 lines
37 KiB
Go
1232 lines
37 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"math/rand"
|
|
"reflect"
|
|
"time"
|
|
|
|
log "github.com/hashicorp/go-hclog"
|
|
memdb "github.com/hashicorp/go-memdb"
|
|
"github.com/hashicorp/nomad/helper"
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
// allocTuple is a tuple of the allocation name and potential alloc ID
|
|
type allocTuple struct {
|
|
Name string
|
|
TaskGroup *structs.TaskGroup
|
|
Alloc *structs.Allocation
|
|
}
|
|
|
|
// materializeTaskGroups is used to materialize all the task groups
|
|
// a job requires. This is used to do the count expansion.
|
|
func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup {
|
|
out := make(map[string]*structs.TaskGroup)
|
|
if job.Stopped() {
|
|
return out
|
|
}
|
|
|
|
for _, tg := range job.TaskGroups {
|
|
for i := 0; i < tg.Count; i++ {
|
|
name := fmt.Sprintf("%s.%s[%d]", job.Name, tg.Name, i)
|
|
out[name] = tg
|
|
}
|
|
}
|
|
return out
|
|
}
|
|
|
|
// diffResult is used to return the sets that result from the diff
|
|
type diffResult struct {
|
|
place, update, migrate, stop, ignore, lost, disconnecting, reconnecting []allocTuple
|
|
}
|
|
|
|
func (d *diffResult) GoString() string {
|
|
return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d) (lost %d) (disconnecting %d) (reconnecting %d)",
|
|
len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore), len(d.lost), len(d.disconnecting), len(d.reconnecting))
|
|
}
|
|
|
|
func (d *diffResult) Append(other *diffResult) {
|
|
d.place = append(d.place, other.place...)
|
|
d.update = append(d.update, other.update...)
|
|
d.migrate = append(d.migrate, other.migrate...)
|
|
d.stop = append(d.stop, other.stop...)
|
|
d.ignore = append(d.ignore, other.ignore...)
|
|
d.lost = append(d.lost, other.lost...)
|
|
d.disconnecting = append(d.disconnecting, other.disconnecting...)
|
|
d.reconnecting = append(d.reconnecting, other.reconnecting...)
|
|
}
|
|
|
|
// diffSystemAllocsForNode is used to do a set difference between the target allocations
|
|
// and the existing allocations for a particular node. This returns 8 sets of results,
|
|
// the list of named task groups that need to be placed (no existing allocation), the
|
|
// allocations that need to be updated (job definition is newer), allocs that
|
|
// need to be migrated (node is draining), the allocs that need to be evicted
|
|
// (no longer required), those that should be ignored, those that are lost
|
|
// that need to be replaced (running on a lost node), those that are running on
|
|
// a disconnected node but may resume, and those that may still be running on
|
|
// a node that has resumed reconnected.
|
|
func diffSystemAllocsForNode(
|
|
job *structs.Job, // job whose allocs are going to be diff-ed
|
|
nodeID string,
|
|
eligibleNodes map[string]*structs.Node,
|
|
notReadyNodes map[string]struct{}, // nodes that are not ready, e.g. draining
|
|
taintedNodes map[string]*structs.Node, // nodes which are down (by node id)
|
|
required map[string]*structs.TaskGroup, // set of allocations that must exist
|
|
allocs []*structs.Allocation, // non-terminal allocations that exist
|
|
terminal structs.TerminalByNodeByName, // latest terminal allocations (by node, id)
|
|
serverSupportsDisconnectedClients bool, // flag indicating whether to apply disconnected client logic
|
|
) *diffResult {
|
|
result := new(diffResult)
|
|
|
|
// Scan the existing updates
|
|
existing := make(map[string]struct{}) // set of alloc names
|
|
for _, exist := range allocs {
|
|
// Index the existing node
|
|
name := exist.Name
|
|
existing[name] = struct{}{}
|
|
|
|
// Check for the definition in the required set
|
|
tg, ok := required[name]
|
|
|
|
// If not required, we stop the alloc
|
|
if !ok {
|
|
result.stop = append(result.stop, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
supportsDisconnectedClients := exist.SupportsDisconnectedClients(serverSupportsDisconnectedClients)
|
|
|
|
reconnected := false
|
|
// Only compute reconnected for unknown and running since they need to go through the reconnect process.
|
|
if supportsDisconnectedClients &&
|
|
(exist.ClientStatus == structs.AllocClientStatusUnknown ||
|
|
exist.ClientStatus == structs.AllocClientStatusRunning) {
|
|
reconnected, _ = exist.Reconnected()
|
|
}
|
|
|
|
// If we have been marked for migration and aren't terminal, migrate
|
|
if !exist.TerminalStatus() && exist.DesiredTransition.ShouldMigrate() {
|
|
result.migrate = append(result.migrate, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// If we are a sysbatch job and terminal, ignore (or stop?) the alloc
|
|
if job.Type == structs.JobTypeSysBatch && exist.TerminalStatus() {
|
|
result.ignore = append(result.ignore, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// Expired unknown allocs are lost. Expired checks that status is unknown.
|
|
if supportsDisconnectedClients && exist.Expired(time.Now().UTC()) {
|
|
result.lost = append(result.lost, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// Ignore unknown allocs that we want to reconnect eventually.
|
|
if supportsDisconnectedClients &&
|
|
exist.ClientStatus == structs.AllocClientStatusUnknown &&
|
|
exist.DesiredStatus == structs.AllocDesiredStatusRun {
|
|
result.ignore = append(result.ignore, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
node, nodeIsTainted := taintedNodes[exist.NodeID]
|
|
|
|
// Filter allocs on a node that is now re-connected to reconnecting.
|
|
if supportsDisconnectedClients &&
|
|
!nodeIsTainted &&
|
|
reconnected {
|
|
result.reconnecting = append(result.reconnecting, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// If we are on a tainted node, we must migrate if we are a service or
|
|
// if the batch allocation did not finish
|
|
if nodeIsTainted {
|
|
// If the job is batch and finished successfully, the fact that the
|
|
// node is tainted does not mean it should be migrated or marked as
|
|
// lost as the work was already successfully finished. However for
|
|
// service/system jobs, tasks should never complete. The check of
|
|
// batch type, defends against client bugs.
|
|
if exist.Job.Type == structs.JobTypeSysBatch && exist.RanSuccessfully() {
|
|
goto IGNORE
|
|
}
|
|
|
|
// Filter running allocs on a node that is disconnected to be marked as unknown.
|
|
if node != nil &&
|
|
supportsDisconnectedClients &&
|
|
node.Status == structs.NodeStatusDisconnected &&
|
|
exist.ClientStatus == structs.AllocClientStatusRunning {
|
|
|
|
disconnect := exist.Copy()
|
|
disconnect.ClientStatus = structs.AllocClientStatusUnknown
|
|
disconnect.AppendState(structs.AllocStateFieldClientStatus, structs.AllocClientStatusUnknown)
|
|
disconnect.ClientDescription = allocUnknown
|
|
result.disconnecting = append(result.disconnecting, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: disconnect,
|
|
})
|
|
continue
|
|
}
|
|
|
|
if !exist.TerminalStatus() && (node == nil || node.TerminalStatus()) {
|
|
result.lost = append(result.lost, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
} else {
|
|
goto IGNORE
|
|
}
|
|
|
|
continue
|
|
}
|
|
|
|
// For an existing allocation, if the nodeID is no longer
|
|
// eligible, the diff should be ignored
|
|
if _, ineligible := notReadyNodes[nodeID]; ineligible {
|
|
goto IGNORE
|
|
}
|
|
|
|
// Existing allocations on nodes that are no longer targeted
|
|
// should be stopped
|
|
if _, eligible := eligibleNodes[nodeID]; !eligible {
|
|
result.stop = append(result.stop, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// If the definition is updated we need to update
|
|
if job.JobModifyIndex != exist.Job.JobModifyIndex {
|
|
result.update = append(result.update, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
continue
|
|
}
|
|
|
|
// Everything is up-to-date
|
|
IGNORE:
|
|
result.ignore = append(result.ignore, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: exist,
|
|
})
|
|
}
|
|
|
|
// Scan the required groups
|
|
for name, tg := range required {
|
|
|
|
// Check for an existing allocation
|
|
if _, ok := existing[name]; !ok {
|
|
|
|
// Check for a terminal sysbatch allocation, which should be not placed
|
|
// again unless the job has been updated.
|
|
if job.Type == structs.JobTypeSysBatch {
|
|
if alloc, termExists := terminal.Get(nodeID, name); termExists {
|
|
// the alloc is terminal, but now the job has been updated
|
|
if job.JobModifyIndex != alloc.Job.JobModifyIndex {
|
|
result.update = append(result.update, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: alloc,
|
|
})
|
|
} else {
|
|
// alloc is terminal and job unchanged, leave it alone
|
|
result.ignore = append(result.ignore, allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: alloc,
|
|
})
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Require a placement if no existing allocation. If there
|
|
// is an existing allocation, we would have checked for a potential
|
|
// update or ignore above. Ignore placements for tainted or
|
|
// ineligible nodes
|
|
|
|
// Tainted and ineligible nodes for a non existing alloc
|
|
// should be filtered out and not count towards ignore or place
|
|
if _, tainted := taintedNodes[nodeID]; tainted {
|
|
continue
|
|
}
|
|
if _, eligible := eligibleNodes[nodeID]; !eligible {
|
|
continue
|
|
}
|
|
|
|
termOnNode, _ := terminal.Get(nodeID, name)
|
|
allocTuple := allocTuple{
|
|
Name: name,
|
|
TaskGroup: tg,
|
|
Alloc: termOnNode,
|
|
}
|
|
|
|
// If the new allocation isn't annotated with a previous allocation
|
|
// or if the previous allocation isn't from the same node then we
|
|
// annotate the allocTuple with a new Allocation
|
|
if allocTuple.Alloc == nil || allocTuple.Alloc.NodeID != nodeID {
|
|
allocTuple.Alloc = &structs.Allocation{NodeID: nodeID}
|
|
}
|
|
|
|
result.place = append(result.place, allocTuple)
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// diffSystemAllocs is like diffSystemAllocsForNode however, the allocations in the
|
|
// diffResult contain the specific nodeID they should be allocated on.
|
|
func diffSystemAllocs(
|
|
job *structs.Job, // jobs whose allocations are going to be diff-ed
|
|
readyNodes []*structs.Node, // list of nodes in the ready state
|
|
notReadyNodes map[string]struct{}, // list of nodes in DC but not ready, e.g. draining
|
|
taintedNodes map[string]*structs.Node, // nodes which are down or drain mode (by node id)
|
|
allocs []*structs.Allocation, // non-terminal allocations
|
|
terminal structs.TerminalByNodeByName, // latest terminal allocations (by node id)
|
|
serverSupportsDisconnectedClients bool, // flag indicating whether to apply disconnected client logic
|
|
) *diffResult {
|
|
|
|
// Build a mapping of nodes to all their allocs.
|
|
nodeAllocs := make(map[string][]*structs.Allocation, len(allocs))
|
|
for _, alloc := range allocs {
|
|
nodeAllocs[alloc.NodeID] = append(nodeAllocs[alloc.NodeID], alloc)
|
|
}
|
|
|
|
eligibleNodes := make(map[string]*structs.Node)
|
|
for _, node := range readyNodes {
|
|
if _, ok := nodeAllocs[node.ID]; !ok {
|
|
nodeAllocs[node.ID] = nil
|
|
}
|
|
eligibleNodes[node.ID] = node
|
|
}
|
|
|
|
// Create the required task groups.
|
|
required := materializeTaskGroups(job)
|
|
|
|
result := new(diffResult)
|
|
for nodeID, allocs := range nodeAllocs {
|
|
diff := diffSystemAllocsForNode(job, nodeID, eligibleNodes, notReadyNodes, taintedNodes, required, allocs, terminal, serverSupportsDisconnectedClients)
|
|
result.Append(diff)
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// readyNodesInDCs returns all the ready nodes in the given datacenters and a
|
|
// mapping of each data center to the count of ready nodes.
|
|
func readyNodesInDCs(state State, dcs []string) ([]*structs.Node, map[string]struct{}, map[string]int, error) {
|
|
// Index the DCs
|
|
dcMap := make(map[string]int, len(dcs))
|
|
for _, dc := range dcs {
|
|
dcMap[dc] = 0
|
|
}
|
|
|
|
// Scan the nodes
|
|
ws := memdb.NewWatchSet()
|
|
var out []*structs.Node
|
|
notReady := map[string]struct{}{}
|
|
iter, err := state.Nodes(ws)
|
|
if err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
for {
|
|
raw := iter.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
|
|
// Filter on datacenter and status
|
|
node := raw.(*structs.Node)
|
|
if !node.Ready() {
|
|
notReady[node.ID] = struct{}{}
|
|
continue
|
|
}
|
|
if _, ok := dcMap[node.Datacenter]; !ok {
|
|
continue
|
|
}
|
|
out = append(out, node)
|
|
dcMap[node.Datacenter]++
|
|
}
|
|
return out, notReady, dcMap, nil
|
|
}
|
|
|
|
// retryMax is used to retry a callback until it returns success or
|
|
// a maximum number of attempts is reached. An optional reset function may be
|
|
// passed which is called after each failed iteration. If the reset function is
|
|
// set and returns true, the number of attempts is reset back to max.
|
|
func retryMax(max int, cb func() (bool, error), reset func() bool) error {
|
|
attempts := 0
|
|
for attempts < max {
|
|
done, err := cb()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if done {
|
|
return nil
|
|
}
|
|
|
|
// Check if we should reset the number attempts
|
|
if reset != nil && reset() {
|
|
attempts = 0
|
|
} else {
|
|
attempts++
|
|
}
|
|
}
|
|
return &SetStatusError{
|
|
Err: fmt.Errorf("maximum attempts reached (%d)", max),
|
|
EvalStatus: structs.EvalStatusFailed,
|
|
}
|
|
}
|
|
|
|
// progressMade checks to see if the plan result made allocations or updates.
|
|
// If the result is nil, false is returned.
|
|
func progressMade(result *structs.PlanResult) bool {
|
|
return result != nil && (len(result.NodeUpdate) != 0 ||
|
|
len(result.NodeAllocation) != 0 || result.Deployment != nil ||
|
|
len(result.DeploymentUpdates) != 0)
|
|
}
|
|
|
|
// taintedNodes is used to scan the allocations and then check if the
|
|
// underlying nodes are tainted, and should force a migration of the allocation,
|
|
// or if the underlying nodes are disconnected, and should be used to calculate
|
|
// the reconnect timeout of its allocations. All the nodes returned in the map are tainted.
|
|
func taintedNodes(state State, allocs []*structs.Allocation) (map[string]*structs.Node, error) {
|
|
out := make(map[string]*structs.Node)
|
|
for _, alloc := range allocs {
|
|
if _, ok := out[alloc.NodeID]; ok {
|
|
continue
|
|
}
|
|
|
|
ws := memdb.NewWatchSet()
|
|
node, err := state.NodeByID(ws, alloc.NodeID)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If the node does not exist, we should migrate
|
|
if node == nil {
|
|
out[alloc.NodeID] = nil
|
|
continue
|
|
}
|
|
if structs.ShouldDrainNode(node.Status) || node.DrainStrategy != nil {
|
|
out[alloc.NodeID] = node
|
|
}
|
|
|
|
// Disconnected nodes are included in the tainted set so that their
|
|
// MaxClientDisconnect configuration can be included in the
|
|
// timeout calculation.
|
|
if node.Status == structs.NodeStatusDisconnected {
|
|
out[alloc.NodeID] = node
|
|
}
|
|
}
|
|
|
|
return out, nil
|
|
}
|
|
|
|
// shuffleNodes randomizes the slice order with the Fisher-Yates
|
|
// algorithm. We seed the random source with the eval ID (which is
|
|
// random) to aid in postmortem debugging of specific evaluations and
|
|
// state snapshots.
|
|
func shuffleNodes(plan *structs.Plan, index uint64, nodes []*structs.Node) {
|
|
|
|
// use the last 4 bytes because those are the random bits
|
|
// if we have sortable IDs
|
|
buf := []byte(plan.EvalID)
|
|
seed := binary.BigEndian.Uint64(buf[len(buf)-8:])
|
|
|
|
// for retried plans the index is the plan result's RefreshIndex
|
|
// so that we don't retry with the exact same shuffle
|
|
seed ^= index
|
|
r := rand.New(rand.NewSource(int64(seed >> 2)))
|
|
|
|
n := len(nodes)
|
|
for i := n - 1; i > 0; i-- {
|
|
j := r.Intn(i + 1)
|
|
nodes[i], nodes[j] = nodes[j], nodes[i]
|
|
}
|
|
}
|
|
|
|
// tasksUpdated does a diff between task groups to see if the
|
|
// tasks, their drivers, environment variables or config have updated. The
|
|
// inputs are the task group name to diff and two jobs to diff.
|
|
// taskUpdated and functions called within assume that the given
|
|
// taskGroup has already been checked to not be nil
|
|
func tasksUpdated(jobA, jobB *structs.Job, taskGroup string) bool {
|
|
a := jobA.LookupTaskGroup(taskGroup)
|
|
b := jobB.LookupTaskGroup(taskGroup)
|
|
|
|
// If the number of tasks do not match, clearly there is an update
|
|
if len(a.Tasks) != len(b.Tasks) {
|
|
return true
|
|
}
|
|
|
|
// Check ephemeral disk
|
|
if !reflect.DeepEqual(a.EphemeralDisk, b.EphemeralDisk) {
|
|
return true
|
|
}
|
|
|
|
// Check that the network resources haven't changed
|
|
if networkUpdated(a.Networks, b.Networks) {
|
|
return true
|
|
}
|
|
|
|
// Check Affinities
|
|
if affinitiesUpdated(jobA, jobB, taskGroup) {
|
|
return true
|
|
}
|
|
|
|
// Check Spreads
|
|
if spreadsUpdated(jobA, jobB, taskGroup) {
|
|
return true
|
|
}
|
|
|
|
// Check consul namespace updated
|
|
if consulNamespaceUpdated(a, b) {
|
|
return true
|
|
}
|
|
|
|
// Check connect service(s) updated
|
|
if connectServiceUpdated(a.Services, b.Services) {
|
|
return true
|
|
}
|
|
|
|
// Check if volumes are updated (no task driver can support
|
|
// altering mounts in-place)
|
|
if !reflect.DeepEqual(a.Volumes, b.Volumes) {
|
|
return true
|
|
}
|
|
|
|
// Check each task
|
|
for _, at := range a.Tasks {
|
|
bt := b.LookupTask(at.Name)
|
|
if bt == nil {
|
|
return true
|
|
}
|
|
if at.Driver != bt.Driver {
|
|
return true
|
|
}
|
|
if at.User != bt.User {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.Config, bt.Config) {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.Env, bt.Env) {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.Artifacts, bt.Artifacts) {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.Vault, bt.Vault) {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.Templates, bt.Templates) {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.CSIPluginConfig, bt.CSIPluginConfig) {
|
|
return true
|
|
}
|
|
if !reflect.DeepEqual(at.VolumeMounts, bt.VolumeMounts) {
|
|
return true
|
|
}
|
|
|
|
// Check the metadata
|
|
if !reflect.DeepEqual(
|
|
jobA.CombinedTaskMeta(taskGroup, at.Name),
|
|
jobB.CombinedTaskMeta(taskGroup, bt.Name)) {
|
|
return true
|
|
}
|
|
|
|
// Inspect the network to see if the dynamic ports are different
|
|
if networkUpdated(at.Resources.Networks, bt.Resources.Networks) {
|
|
return true
|
|
}
|
|
|
|
// Inspect the non-network resources
|
|
if ar, br := at.Resources, bt.Resources; ar.CPU != br.CPU {
|
|
return true
|
|
} else if ar.Cores != br.Cores {
|
|
return true
|
|
} else if ar.MemoryMB != br.MemoryMB {
|
|
return true
|
|
} else if ar.MemoryMaxMB != br.MemoryMaxMB {
|
|
return true
|
|
} else if !ar.Devices.Equals(&br.Devices) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// consulNamespaceUpdated returns true if the Consul namespace in the task group
|
|
// has been changed.
|
|
//
|
|
// This is treated as a destructive update unlike ordinary Consul service configuration
|
|
// because Namespaces directly impact networking validity among Consul intentions.
|
|
// Forcing the task through a reschedule is a sure way of breaking no-longer valid
|
|
// network connections.
|
|
func consulNamespaceUpdated(tgA, tgB *structs.TaskGroup) bool {
|
|
// job.ConsulNamespace is pushed down to the TGs, just check those
|
|
return tgA.Consul.GetNamespace() != tgB.Consul.GetNamespace()
|
|
}
|
|
|
|
// connectServiceUpdated returns true if any services with a connect stanza have
|
|
// been changed in such a way that requires a destructive update.
|
|
//
|
|
// Ordinary services can be updated in-place by updating the service definition
|
|
// in Consul. Connect service changes mostly require destroying the task.
|
|
func connectServiceUpdated(servicesA, servicesB []*structs.Service) bool {
|
|
for _, serviceA := range servicesA {
|
|
if serviceA.Connect != nil {
|
|
for _, serviceB := range servicesB {
|
|
if serviceA.Name == serviceB.Name {
|
|
if connectUpdated(serviceA.Connect, serviceB.Connect) {
|
|
return true
|
|
}
|
|
// Part of the Connect plumbing is derived from port label,
|
|
// if that changes we need to destroy the task.
|
|
if serviceA.PortLabel != serviceB.PortLabel {
|
|
return true
|
|
}
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// connectUpdated returns true if the connect block has been updated in a manner
|
|
// that will require a destructive update.
|
|
//
|
|
// Fields that can be updated through consul-sync do not need a destructive
|
|
// update.
|
|
func connectUpdated(connectA, connectB *structs.ConsulConnect) bool {
|
|
if connectA == nil || connectB == nil {
|
|
return connectA != connectB
|
|
}
|
|
|
|
if connectA.Native != connectB.Native {
|
|
return true
|
|
}
|
|
|
|
if !connectA.Gateway.Equals(connectB.Gateway) {
|
|
return true
|
|
}
|
|
|
|
if !connectA.SidecarTask.Equals(connectB.SidecarTask) {
|
|
return true
|
|
}
|
|
|
|
// not everything in sidecar_service needs task destruction
|
|
if connectSidecarServiceUpdated(connectA.SidecarService, connectB.SidecarService) {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func connectSidecarServiceUpdated(ssA, ssB *structs.ConsulSidecarService) bool {
|
|
if ssA == nil || ssB == nil {
|
|
return ssA != ssB
|
|
}
|
|
|
|
if ssA.Port != ssB.Port {
|
|
return true
|
|
}
|
|
|
|
// sidecar_service.tags handled in-place (registration)
|
|
|
|
// sidecar_service.proxy handled in-place (registration + xDS)
|
|
|
|
return false
|
|
}
|
|
|
|
func networkUpdated(netA, netB []*structs.NetworkResource) bool {
|
|
if len(netA) != len(netB) {
|
|
return true
|
|
}
|
|
for idx := range netA {
|
|
an := netA[idx]
|
|
bn := netB[idx]
|
|
|
|
if an.Mode != bn.Mode {
|
|
return true
|
|
}
|
|
|
|
if an.MBits != bn.MBits {
|
|
return true
|
|
}
|
|
|
|
if an.Hostname != bn.Hostname {
|
|
return true
|
|
}
|
|
|
|
if !reflect.DeepEqual(an.DNS, bn.DNS) {
|
|
return true
|
|
}
|
|
|
|
aPorts, bPorts := networkPortMap(an), networkPortMap(bn)
|
|
if !reflect.DeepEqual(aPorts, bPorts) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// networkPortMap takes a network resource and returns a AllocatedPorts.
|
|
// The value for dynamic ports is disregarded even if it is set. This
|
|
// makes this function suitable for comparing two network resources for changes.
|
|
func networkPortMap(n *structs.NetworkResource) structs.AllocatedPorts {
|
|
var m structs.AllocatedPorts
|
|
for _, p := range n.ReservedPorts {
|
|
m = append(m, structs.AllocatedPortMapping{
|
|
Label: p.Label,
|
|
Value: p.Value,
|
|
To: p.To,
|
|
HostIP: p.HostNetwork,
|
|
})
|
|
}
|
|
for _, p := range n.DynamicPorts {
|
|
m = append(m, structs.AllocatedPortMapping{
|
|
Label: p.Label,
|
|
Value: -1,
|
|
To: p.To,
|
|
HostIP: p.HostNetwork,
|
|
})
|
|
}
|
|
return m
|
|
}
|
|
|
|
func affinitiesUpdated(jobA, jobB *structs.Job, taskGroup string) bool {
|
|
var aAffinities []*structs.Affinity
|
|
var bAffinities []*structs.Affinity
|
|
|
|
tgA := jobA.LookupTaskGroup(taskGroup)
|
|
tgB := jobB.LookupTaskGroup(taskGroup)
|
|
|
|
// Append jobA job and task group level affinities
|
|
aAffinities = append(aAffinities, jobA.Affinities...)
|
|
aAffinities = append(aAffinities, tgA.Affinities...)
|
|
|
|
// Append jobB job and task group level affinities
|
|
bAffinities = append(bAffinities, jobB.Affinities...)
|
|
bAffinities = append(bAffinities, tgB.Affinities...)
|
|
|
|
// append task affinities
|
|
for _, task := range tgA.Tasks {
|
|
aAffinities = append(aAffinities, task.Affinities...)
|
|
}
|
|
|
|
for _, task := range tgB.Tasks {
|
|
bAffinities = append(bAffinities, task.Affinities...)
|
|
}
|
|
|
|
// Check for equality
|
|
if len(aAffinities) != len(bAffinities) {
|
|
return true
|
|
}
|
|
|
|
return !reflect.DeepEqual(aAffinities, bAffinities)
|
|
}
|
|
|
|
func spreadsUpdated(jobA, jobB *structs.Job, taskGroup string) bool {
|
|
var aSpreads []*structs.Spread
|
|
var bSpreads []*structs.Spread
|
|
|
|
tgA := jobA.LookupTaskGroup(taskGroup)
|
|
tgB := jobB.LookupTaskGroup(taskGroup)
|
|
|
|
// append jobA and task group level spreads
|
|
aSpreads = append(aSpreads, jobA.Spreads...)
|
|
aSpreads = append(aSpreads, tgA.Spreads...)
|
|
|
|
// append jobB and task group level spreads
|
|
bSpreads = append(bSpreads, jobB.Spreads...)
|
|
bSpreads = append(bSpreads, tgB.Spreads...)
|
|
|
|
// Check for equality
|
|
if len(aSpreads) != len(bSpreads) {
|
|
return true
|
|
}
|
|
|
|
return !reflect.DeepEqual(aSpreads, bSpreads)
|
|
}
|
|
|
|
// setStatus is used to update the status of the evaluation
|
|
func setStatus(logger log.Logger, planner Planner,
|
|
eval, nextEval, spawnedBlocked *structs.Evaluation,
|
|
tgMetrics map[string]*structs.AllocMetric, status, desc string,
|
|
queuedAllocs map[string]int, deploymentID string) error {
|
|
|
|
logger.Debug("setting eval status", "status", status)
|
|
newEval := eval.Copy()
|
|
newEval.Status = status
|
|
newEval.StatusDescription = desc
|
|
newEval.DeploymentID = deploymentID
|
|
newEval.FailedTGAllocs = tgMetrics
|
|
if nextEval != nil {
|
|
newEval.NextEval = nextEval.ID
|
|
}
|
|
if spawnedBlocked != nil {
|
|
newEval.BlockedEval = spawnedBlocked.ID
|
|
}
|
|
if queuedAllocs != nil {
|
|
newEval.QueuedAllocations = queuedAllocs
|
|
}
|
|
|
|
return planner.UpdateEval(newEval)
|
|
}
|
|
|
|
// inplaceUpdate attempts to update allocations in-place where possible. It
|
|
// returns the allocs that couldn't be done inplace and then those that could.
|
|
func inplaceUpdate(ctx Context, eval *structs.Evaluation, job *structs.Job,
|
|
stack Stack, updates []allocTuple) (destructive, inplace []allocTuple) {
|
|
|
|
// doInplace manipulates the updates map to make the current allocation
|
|
// an inplace update.
|
|
doInplace := func(cur, last, inplaceCount *int) {
|
|
updates[*cur], updates[*last-1] = updates[*last-1], updates[*cur]
|
|
*cur--
|
|
*last--
|
|
*inplaceCount++
|
|
}
|
|
|
|
ws := memdb.NewWatchSet()
|
|
n := len(updates)
|
|
inplaceCount := 0
|
|
for i := 0; i < n; i++ {
|
|
// Get the update
|
|
update := updates[i]
|
|
|
|
// Check if the task drivers or config has changed, requires
|
|
// a rolling upgrade since that cannot be done in-place.
|
|
existing := update.Alloc.Job
|
|
if tasksUpdated(job, existing, update.TaskGroup.Name) {
|
|
continue
|
|
}
|
|
|
|
// Terminal batch allocations are not filtered when they are completed
|
|
// successfully. We should avoid adding the allocation to the plan in
|
|
// the case that it is an in-place update to avoid both additional data
|
|
// in the plan and work for the clients.
|
|
if update.Alloc.TerminalStatus() {
|
|
doInplace(&i, &n, &inplaceCount)
|
|
continue
|
|
}
|
|
|
|
// Get the existing node
|
|
node, err := ctx.State().NodeByID(ws, update.Alloc.NodeID)
|
|
if err != nil {
|
|
ctx.Logger().Error("failed to get node", "node_id", update.Alloc.NodeID, "error", err)
|
|
continue
|
|
}
|
|
if node == nil {
|
|
continue
|
|
}
|
|
|
|
// The alloc is on a node that's now in an ineligible DC
|
|
if !helper.SliceStringContains(job.Datacenters, node.Datacenter) {
|
|
continue
|
|
}
|
|
|
|
// Set the existing node as the base set
|
|
stack.SetNodes([]*structs.Node{node})
|
|
|
|
// Stage an eviction of the current allocation. This is done so that
|
|
// the current allocation is discounted when checking for feasibility.
|
|
// Otherwise we would be trying to fit the tasks current resources and
|
|
// updated resources. After select is called we can remove the evict.
|
|
ctx.Plan().AppendStoppedAlloc(update.Alloc, allocInPlace, "", "")
|
|
|
|
// Attempt to match the task group
|
|
option := stack.Select(update.TaskGroup,
|
|
&SelectOptions{AllocName: update.Alloc.Name})
|
|
|
|
// Pop the allocation
|
|
ctx.Plan().PopUpdate(update.Alloc)
|
|
|
|
// Skip if we could not do an in-place update
|
|
if option == nil {
|
|
continue
|
|
}
|
|
|
|
// Restore the network and device offers from the existing allocation.
|
|
// We do not allow network resources (reserved/dynamic ports)
|
|
// to be updated. This is guarded in taskUpdated, so we can
|
|
// safely restore those here.
|
|
for task, resources := range option.TaskResources {
|
|
var networks structs.Networks
|
|
var devices []*structs.AllocatedDeviceResource
|
|
if update.Alloc.AllocatedResources != nil {
|
|
if tr, ok := update.Alloc.AllocatedResources.Tasks[task]; ok {
|
|
networks = tr.Networks
|
|
devices = tr.Devices
|
|
}
|
|
} else if tr, ok := update.Alloc.TaskResources[task]; ok {
|
|
networks = tr.Networks
|
|
}
|
|
|
|
// Add the networks and devices back
|
|
resources.Networks = networks
|
|
resources.Devices = devices
|
|
}
|
|
|
|
// Create a shallow copy
|
|
newAlloc := new(structs.Allocation)
|
|
*newAlloc = *update.Alloc
|
|
|
|
// Update the allocation
|
|
newAlloc.EvalID = eval.ID
|
|
newAlloc.Job = nil // Use the Job in the Plan
|
|
newAlloc.Resources = nil // Computed in Plan Apply
|
|
newAlloc.AllocatedResources = &structs.AllocatedResources{
|
|
Tasks: option.TaskResources,
|
|
TaskLifecycles: option.TaskLifecycles,
|
|
Shared: structs.AllocatedSharedResources{
|
|
DiskMB: int64(update.TaskGroup.EphemeralDisk.SizeMB),
|
|
Ports: update.Alloc.AllocatedResources.Shared.Ports,
|
|
Networks: update.Alloc.AllocatedResources.Shared.Networks.Copy(),
|
|
},
|
|
}
|
|
newAlloc.Metrics = ctx.Metrics()
|
|
ctx.Plan().AppendAlloc(newAlloc, nil)
|
|
|
|
// Remove this allocation from the slice
|
|
doInplace(&i, &n, &inplaceCount)
|
|
}
|
|
|
|
if len(updates) > 0 {
|
|
ctx.Logger().Debug("made in-place updates", "in-place", inplaceCount, "total_updates", len(updates))
|
|
}
|
|
return updates[:n], updates[n:]
|
|
}
|
|
|
|
// evictAndPlace is used to mark allocations for evicts and add them to the
|
|
// placement queue. evictAndPlace modifies both the diffResult and the
|
|
// limit. It returns true if the limit has been reached.
|
|
func evictAndPlace(ctx Context, diff *diffResult, allocs []allocTuple, desc string, limit *int) bool {
|
|
n := len(allocs)
|
|
for i := 0; i < n && i < *limit; i++ {
|
|
a := allocs[i]
|
|
ctx.Plan().AppendStoppedAlloc(a.Alloc, desc, "", "")
|
|
diff.place = append(diff.place, a)
|
|
}
|
|
if n <= *limit {
|
|
*limit -= n
|
|
return false
|
|
}
|
|
*limit = 0
|
|
return true
|
|
}
|
|
|
|
// tgConstrainTuple is used to store the total constraints of a task group.
|
|
type tgConstrainTuple struct {
|
|
// Holds the combined constraints of the task group and all it's sub-tasks.
|
|
constraints []*structs.Constraint
|
|
|
|
// The set of required drivers within the task group.
|
|
drivers map[string]struct{}
|
|
}
|
|
|
|
// taskGroupConstraints collects the constraints, drivers and resources required by each
|
|
// sub-task to aggregate the TaskGroup totals
|
|
func taskGroupConstraints(tg *structs.TaskGroup) tgConstrainTuple {
|
|
c := tgConstrainTuple{
|
|
constraints: make([]*structs.Constraint, 0, len(tg.Constraints)),
|
|
drivers: make(map[string]struct{}),
|
|
}
|
|
|
|
c.constraints = append(c.constraints, tg.Constraints...)
|
|
for _, task := range tg.Tasks {
|
|
c.drivers[task.Driver] = struct{}{}
|
|
c.constraints = append(c.constraints, task.Constraints...)
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
// desiredUpdates takes the diffResult as well as the set of inplace and
|
|
// destructive updates and returns a map of task groups to their set of desired
|
|
// updates.
|
|
func desiredUpdates(diff *diffResult, inplaceUpdates,
|
|
destructiveUpdates []allocTuple) map[string]*structs.DesiredUpdates {
|
|
desiredTgs := make(map[string]*structs.DesiredUpdates)
|
|
|
|
for _, tuple := range diff.place {
|
|
name := tuple.TaskGroup.Name
|
|
des, ok := desiredTgs[name]
|
|
if !ok {
|
|
des = &structs.DesiredUpdates{}
|
|
desiredTgs[name] = des
|
|
}
|
|
|
|
des.Place++
|
|
}
|
|
|
|
for _, tuple := range diff.stop {
|
|
name := tuple.Alloc.TaskGroup
|
|
des, ok := desiredTgs[name]
|
|
if !ok {
|
|
des = &structs.DesiredUpdates{}
|
|
desiredTgs[name] = des
|
|
}
|
|
|
|
des.Stop++
|
|
}
|
|
|
|
for _, tuple := range diff.ignore {
|
|
name := tuple.TaskGroup.Name
|
|
des, ok := desiredTgs[name]
|
|
if !ok {
|
|
des = &structs.DesiredUpdates{}
|
|
desiredTgs[name] = des
|
|
}
|
|
|
|
des.Ignore++
|
|
}
|
|
|
|
for _, tuple := range diff.migrate {
|
|
name := tuple.TaskGroup.Name
|
|
des, ok := desiredTgs[name]
|
|
if !ok {
|
|
des = &structs.DesiredUpdates{}
|
|
desiredTgs[name] = des
|
|
}
|
|
|
|
des.Migrate++
|
|
}
|
|
|
|
for _, tuple := range inplaceUpdates {
|
|
name := tuple.TaskGroup.Name
|
|
des, ok := desiredTgs[name]
|
|
if !ok {
|
|
des = &structs.DesiredUpdates{}
|
|
desiredTgs[name] = des
|
|
}
|
|
|
|
des.InPlaceUpdate++
|
|
}
|
|
|
|
for _, tuple := range destructiveUpdates {
|
|
name := tuple.TaskGroup.Name
|
|
des, ok := desiredTgs[name]
|
|
if !ok {
|
|
des = &structs.DesiredUpdates{}
|
|
desiredTgs[name] = des
|
|
}
|
|
|
|
des.DestructiveUpdate++
|
|
}
|
|
|
|
return desiredTgs
|
|
}
|
|
|
|
// adjustQueuedAllocations decrements the number of allocations pending per task
|
|
// group based on the number of allocations successfully placed
|
|
func adjustQueuedAllocations(logger log.Logger, result *structs.PlanResult, queuedAllocs map[string]int) {
|
|
if result == nil {
|
|
return
|
|
}
|
|
|
|
for _, allocations := range result.NodeAllocation {
|
|
for _, allocation := range allocations {
|
|
// Ensure that the allocation is newly created. We check that
|
|
// the CreateIndex is equal to the ModifyIndex in order to check
|
|
// that the allocation was just created. We do not check that
|
|
// the CreateIndex is equal to the results AllocIndex because
|
|
// the allocations we get back have gone through the planner's
|
|
// optimistic snapshot and thus their indexes may not be
|
|
// correct, but they will be consistent.
|
|
if allocation.CreateIndex != allocation.ModifyIndex {
|
|
continue
|
|
}
|
|
|
|
if _, ok := queuedAllocs[allocation.TaskGroup]; ok {
|
|
queuedAllocs[allocation.TaskGroup]--
|
|
} else {
|
|
logger.Error("allocation placed but task group is not in list of unplaced allocations", "task_group", allocation.TaskGroup)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// updateNonTerminalAllocsToLost updates the allocations which are in pending/running state
|
|
// on tainted node to lost, but only for allocs already DesiredStatus stop or evict
|
|
func updateNonTerminalAllocsToLost(plan *structs.Plan, tainted map[string]*structs.Node, allocs []*structs.Allocation) {
|
|
for _, alloc := range allocs {
|
|
node, ok := tainted[alloc.NodeID]
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
// Only handle down nodes or nodes that are gone (node == nil)
|
|
if node != nil && node.Status != structs.NodeStatusDown {
|
|
continue
|
|
}
|
|
|
|
// If the alloc is already correctly marked lost, we're done
|
|
if (alloc.DesiredStatus == structs.AllocDesiredStatusStop ||
|
|
alloc.DesiredStatus == structs.AllocDesiredStatusEvict) &&
|
|
(alloc.ClientStatus == structs.AllocClientStatusRunning ||
|
|
alloc.ClientStatus == structs.AllocClientStatusPending) {
|
|
plan.AppendStoppedAlloc(alloc, allocLost, structs.AllocClientStatusLost, "")
|
|
}
|
|
}
|
|
}
|
|
|
|
// genericAllocUpdateFn is a factory for the scheduler to create an allocUpdateType
|
|
// function to be passed into the reconciler. The factory takes objects that
|
|
// exist only in the scheduler context and returns a function that can be used
|
|
// by the reconciler to make decisions about how to update an allocation. The
|
|
// factory allows the reconciler to be unaware of how to determine the type of
|
|
// update necessary and can minimize the set of objects it is exposed to.
|
|
func genericAllocUpdateFn(ctx Context, stack Stack, evalID string) allocUpdateType {
|
|
return func(existing *structs.Allocation, newJob *structs.Job, newTG *structs.TaskGroup) (ignore, destructive bool, updated *structs.Allocation) {
|
|
// Same index, so nothing to do
|
|
if existing.Job.JobModifyIndex == newJob.JobModifyIndex {
|
|
return true, false, nil
|
|
}
|
|
|
|
// Check if the task drivers or config has changed, requires
|
|
// a destructive upgrade since that cannot be done in-place.
|
|
if tasksUpdated(newJob, existing.Job, newTG.Name) {
|
|
return false, true, nil
|
|
}
|
|
|
|
// Terminal batch allocations are not filtered when they are completed
|
|
// successfully. We should avoid adding the allocation to the plan in
|
|
// the case that it is an in-place update to avoid both additional data
|
|
// in the plan and work for the clients.
|
|
if existing.TerminalStatus() {
|
|
return true, false, nil
|
|
}
|
|
|
|
// Get the existing node
|
|
ws := memdb.NewWatchSet()
|
|
node, err := ctx.State().NodeByID(ws, existing.NodeID)
|
|
if err != nil {
|
|
ctx.Logger().Error("failed to get node", "node_id", existing.NodeID, "error", err)
|
|
return true, false, nil
|
|
}
|
|
if node == nil {
|
|
return false, true, nil
|
|
}
|
|
|
|
// The alloc is on a node that's now in an ineligible DC
|
|
if !helper.SliceStringContains(newJob.Datacenters, node.Datacenter) {
|
|
return false, true, nil
|
|
}
|
|
|
|
// Set the existing node as the base set
|
|
stack.SetNodes([]*structs.Node{node})
|
|
|
|
// Stage an eviction of the current allocation. This is done so that
|
|
// the current allocation is discounted when checking for feasibility.
|
|
// Otherwise we would be trying to fit the tasks current resources and
|
|
// updated resources. After select is called we can remove the evict.
|
|
ctx.Plan().AppendStoppedAlloc(existing, allocInPlace, "", "")
|
|
|
|
// Attempt to match the task group
|
|
option := stack.Select(newTG, &SelectOptions{AllocName: existing.Name})
|
|
|
|
// Pop the allocation
|
|
ctx.Plan().PopUpdate(existing)
|
|
|
|
// Require destructive if we could not do an in-place update
|
|
if option == nil {
|
|
return false, true, nil
|
|
}
|
|
|
|
// Restore the network and device offers from the existing allocation.
|
|
// We do not allow network resources (reserved/dynamic ports)
|
|
// to be updated. This is guarded in taskUpdated, so we can
|
|
// safely restore those here.
|
|
for task, resources := range option.TaskResources {
|
|
var networks structs.Networks
|
|
var devices []*structs.AllocatedDeviceResource
|
|
if existing.AllocatedResources != nil {
|
|
if tr, ok := existing.AllocatedResources.Tasks[task]; ok {
|
|
networks = tr.Networks
|
|
devices = tr.Devices
|
|
}
|
|
} else if tr, ok := existing.TaskResources[task]; ok {
|
|
networks = tr.Networks
|
|
}
|
|
|
|
// Add the networks back
|
|
resources.Networks = networks
|
|
resources.Devices = devices
|
|
}
|
|
|
|
// Create a shallow copy
|
|
newAlloc := new(structs.Allocation)
|
|
*newAlloc = *existing
|
|
|
|
// Update the allocation
|
|
newAlloc.EvalID = evalID
|
|
newAlloc.Job = nil // Use the Job in the Plan
|
|
newAlloc.Resources = nil // Computed in Plan Apply
|
|
newAlloc.AllocatedResources = &structs.AllocatedResources{
|
|
Tasks: option.TaskResources,
|
|
TaskLifecycles: option.TaskLifecycles,
|
|
Shared: structs.AllocatedSharedResources{
|
|
DiskMB: int64(newTG.EphemeralDisk.SizeMB),
|
|
},
|
|
}
|
|
|
|
// Since this is an inplace update, we should copy network and port
|
|
// information from the original alloc. This is similar to how
|
|
// we copy network info for task level networks above.
|
|
//
|
|
// existing.AllocatedResources is nil on Allocations created by
|
|
// Nomad v0.8 or earlier.
|
|
if existing.AllocatedResources != nil {
|
|
newAlloc.AllocatedResources.Shared.Networks = existing.AllocatedResources.Shared.Networks
|
|
newAlloc.AllocatedResources.Shared.Ports = existing.AllocatedResources.Shared.Ports
|
|
}
|
|
|
|
// Use metrics from existing alloc for in place upgrade
|
|
// This is because if the inplace upgrade succeeded, any scoring metadata from
|
|
// when it first went through the scheduler should still be preserved. Using scoring
|
|
// metadata from the context would incorrectly replace it with metadata only from a single node that the
|
|
// allocation is already on.
|
|
newAlloc.Metrics = existing.Metrics.Copy()
|
|
return false, false, newAlloc
|
|
}
|
|
}
|