open-nomad/scheduler/generic_sched.go

548 lines
17 KiB
Go

package scheduler
import (
"fmt"
"log"
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxServiceScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for services.
maxServiceScheduleAttempts = 5
// maxBatchScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for batch.
maxBatchScheduleAttempts = 2
// allocNotNeeded is the status used when a job no longer requires an allocation
allocNotNeeded = "alloc not needed due to job update"
// allocMigrating is the status used when we must migrate an allocation
allocMigrating = "alloc is being migrated"
// allocUpdating is the status used when a job requires an update
allocUpdating = "alloc is being updated due to job update"
// allocLost is the status used when an allocation is lost
allocLost = "alloc is lost since its node is down"
// allocInPlace is the status used when speculating on an in-place update
allocInPlace = "alloc updating in-place"
// blockedEvalMaxPlanDesc is the description used for blocked evals that are
// a result of hitting the max number of plan attempts
blockedEvalMaxPlanDesc = "created due to placement conflicts"
// blockedEvalFailedPlacements is the description used for blocked evals
// that are a result of failing to place all allocations.
blockedEvalFailedPlacements = "created to place remaining allocations"
)
// SetStatusError is used to set the status of the evaluation to the given error
type SetStatusError struct {
Err error
EvalStatus string
}
func (s *SetStatusError) Error() string {
return s.Err.Error()
}
// GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
// designed for long-lived services, and as such spends more time attemping
// to make a high quality placement. This is the primary scheduler for
// most workloads. It also supports a 'batch' mode to optimize for fast decision
// making at the cost of quality.
type GenericScheduler struct {
logger *log.Logger
state State
planner Planner
batch bool
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
planResult *structs.PlanResult
ctx *EvalContext
stack *GenericStack
limitReached bool
nextEval *structs.Evaluation
deployment *structs.Deployment
blocked *structs.Evaluation
failedTGAllocs map[string]*structs.AllocMetric
queuedAllocs map[string]int
}
// NewServiceScheduler is a factory function to instantiate a new service scheduler
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: false,
}
return s
}
// NewBatchScheduler is a factory function to instantiate a new batch scheduler
func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: true,
}
return s
}
// Process is used to handle a single evaluation
func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
// Store the evaluation
s.eval = eval
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate,
structs.EvalTriggerPeriodicJob, structs.EvalTriggerMaxPlans,
structs.EvalTriggerDeploymentWatcher:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked,
s.failedTGAllocs, structs.EvalStatusFailed, desc, s.queuedAllocs)
}
// Retry up to the maxScheduleAttempts and reset if progress is made.
progress := func() bool { return progressMade(s.planResult) }
limit := maxServiceScheduleAttempts
if s.batch {
limit = maxBatchScheduleAttempts
}
if err := retryMax(limit, s.process, progress); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
// Scheduling was tried but made no forward progress so create a
// blocked eval to retry once resources become available.
var mErr multierror.Error
if err := s.createBlockedEval(true); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
if err := setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked,
s.failedTGAllocs, statusErr.EvalStatus, err.Error(),
s.queuedAllocs); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
return mErr.ErrorOrNil()
}
return err
}
// If the current evaluation is a blocked evaluation and we didn't place
// everything, do not update the status to complete.
if s.eval.Status == structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 {
e := s.ctx.Eligibility()
newEval := s.eval.Copy()
newEval.EscapedComputedClass = e.HasEscaped()
newEval.ClassEligibility = e.GetClasses()
return s.planner.ReblockEval(newEval)
}
// Update the status to complete
return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked,
s.failedTGAllocs, structs.EvalStatusComplete, "", s.queuedAllocs)
}
// createBlockedEval creates a blocked eval and submits it to the planner. If
// failure is set to true, the eval's trigger reason reflects that.
func (s *GenericScheduler) createBlockedEval(planFailure bool) error {
e := s.ctx.Eligibility()
escaped := e.HasEscaped()
// Only store the eligible classes if the eval hasn't escaped.
var classEligibility map[string]bool
if !escaped {
classEligibility = e.GetClasses()
}
s.blocked = s.eval.CreateBlockedEval(classEligibility, escaped)
if planFailure {
s.blocked.TriggeredBy = structs.EvalTriggerMaxPlans
s.blocked.StatusDescription = blockedEvalMaxPlanDesc
} else {
s.blocked.StatusDescription = blockedEvalFailedPlacements
}
return s.planner.CreateEval(s.blocked)
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *GenericScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
ws := memdb.NewWatchSet()
s.job, err = s.state.JobByID(ws, s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job %q: %v", s.eval.JobID, err)
}
numTaskGroups := 0
stopped := s.job.Stopped()
if !stopped {
numTaskGroups = len(s.job.TaskGroups)
}
s.queuedAllocs = make(map[string]int, numTaskGroups)
// Create a plan
s.plan = s.eval.MakePlan(s.job)
if !s.batch {
// Get any existing deployment
s.deployment, err = s.state.LatestDeploymentByJobID(ws, s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job deployment %q: %v", s.eval.JobID, err)
}
}
// Reset the failed allocations
s.failedTGAllocs = nil
// Create an evaluation context
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewGenericStack(s.batch, s.ctx)
if !s.job.Stopped() {
s.stack.SetJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
return false, err
}
// If there are failed allocations, we need to create a blocked evaluation
// to place the failed allocations when resources become available. If the
// current evaluation is already a blocked eval, we reuse it.
if s.eval.Status != structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 && s.blocked == nil {
if err := s.createBlockedEval(false); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make blocked eval: %v", s.eval, err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: failed to place all allocations, blocked eval '%s' created", s.eval, s.blocked.ID)
}
// If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan
// anyways to get the annotations.
if s.plan.IsNoOp() && !s.eval.AnnotatePlan {
return true, nil
}
// XXX Don't need a next rolling update eval
// If the limit of placements was reached we need to create an evaluation
// to pickup from here after the stagger period.
if s.limitReached && s.nextEval == nil {
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
if err := s.planner.CreateEval(s.nextEval); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
}
// Submit the plan and store the results.
result, newState, err := s.planner.SubmitPlan(s.plan)
s.planResult = result
if err != nil {
return false, err
}
// Decrement the number of allocations pending per task group based on the
// number of allocations successfully placed
adjustQueuedAllocations(s.logger, result, s.queuedAllocs)
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
s.eval, expected, actual)
if newState == nil {
return false, fmt.Errorf("missing state refresh after partial commit")
}
return false, nil
}
// Success!
return true, nil
}
// filterCompleteAllocs filters allocations that are terminal and should be
// re-placed.
func (s *GenericScheduler) filterCompleteAllocs(allocs []*structs.Allocation) ([]*structs.Allocation, map[string]*structs.Allocation) {
filter := func(a *structs.Allocation) bool {
if s.batch {
// Allocs from batch jobs should be filtered when the desired status
// is terminal and the client did not finish or when the client
// status is failed so that they will be replaced. If they are
// complete but not failed, they shouldn't be replaced.
switch a.DesiredStatus {
case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict:
return !a.RanSuccessfully()
default:
}
switch a.ClientStatus {
case structs.AllocClientStatusFailed:
return true
default:
return false
}
}
// Filter terminal, non batch allocations
return a.TerminalStatus()
}
terminalAllocsByName := make(map[string]*structs.Allocation)
n := len(allocs)
for i := 0; i < n; i++ {
if filter(allocs[i]) {
// Add the allocation to the terminal allocs map if it's not already
// added or has a higher create index than the one which is
// currently present.
alloc, ok := terminalAllocsByName[allocs[i].Name]
if !ok || alloc.CreateIndex < allocs[i].CreateIndex {
terminalAllocsByName[allocs[i].Name] = allocs[i]
}
// Remove the allocation
allocs[i], allocs[n-1] = allocs[n-1], nil
i--
n--
}
}
// If the job is batch, we want to filter allocations that have been
// replaced by a newer version for the same task group.
filtered := allocs[:n]
if s.batch {
byTG := make(map[string]*structs.Allocation)
for _, alloc := range filtered {
existing := byTG[alloc.Name]
if existing == nil || existing.CreateIndex < alloc.CreateIndex {
byTG[alloc.Name] = alloc
}
}
filtered = make([]*structs.Allocation, 0, len(byTG))
for _, alloc := range byTG {
filtered = append(filtered, alloc)
}
}
return filtered, terminalAllocsByName
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *GenericScheduler) computeJobAllocs() error {
// Lookup the allocations by JobID
ws := memdb.NewWatchSet()
allocs, err := s.state.AllocsByJob(ws, s.eval.JobID, true)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Update the allocations which are in pending/running state on tainted
// nodes to lost
updateNonTerminalAllocsToLost(s.plan, tainted, allocs)
// Filter out the allocations in a terminal state
allocs, _ = s.filterCompleteAllocs(allocs)
reconciler := NewAllocReconciler(s.ctx.Logger(),
genericAllocUpdateFn(s.ctx, s.stack, s.eval.ID),
s.batch, s.eval.JobID, s.job, s.deployment, allocs, tainted)
results := reconciler.Compute()
if s.eval.AnnotatePlan {
s.plan.Annotations = &structs.PlanAnnotations{
DesiredTGUpdates: results.desiredTGUpdates,
}
}
// Add the deployment changes to the plan
s.plan.Deployment = results.deployment
s.plan.DeploymentUpdates = results.deploymentUpdates
// Update the stored deployment
if results.deployment != nil {
s.deployment = results.deployment
}
// Handle the stop
for _, stop := range results.stop {
s.plan.AppendUpdate(stop.alloc, structs.AllocDesiredStatusStop, stop.statusDescription, stop.clientStatus)
}
// TODO test
// Handle the in-place updates
deploymentID := ""
if s.plan.Deployment != nil {
deploymentID = s.plan.Deployment.ID
}
for _, update := range results.inplaceUpdate {
if update.DeploymentID != deploymentID {
update.DeploymentID = deploymentID
update.DeploymentStatus = nil
}
s.ctx.Plan().AppendAlloc(update)
}
// Nothing remaining to do if placement is not required
if len(results.place) == 0 {
if !s.job.Stopped() {
for _, tg := range s.job.TaskGroups {
s.queuedAllocs[tg.Name] = 0
}
}
return nil
}
// Record the number of allocations that needs to be placed per Task Group
for _, place := range results.place {
s.queuedAllocs[place.taskGroup.Name] += 1
}
// Compute the placements
return s.computePlacements(results.place)
}
// computePlacements computes placements for allocations
func (s *GenericScheduler) computePlacements(place []allocPlaceResult) error {
// Get the base nodes
nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters)
if err != nil {
return err
}
var deploymentID string
if s.deployment != nil {
deploymentID = s.deployment.ID
}
// Update the set of placement ndoes
s.stack.SetNodes(nodes)
for _, missing := range place {
// Check if this task group has already failed
if metric, ok := s.failedTGAllocs[missing.taskGroup.Name]; ok {
metric.CoalescedFailures += 1
continue
}
// Find the preferred node
preferredNode, err := s.findPreferredNode(&missing)
if err != nil {
return err
}
// Attempt to match the task group
var option *RankedNode
if preferredNode != nil {
option, _ = s.stack.SelectPreferringNodes(missing.taskGroup, []*structs.Node{preferredNode})
} else {
option, _ = s.stack.Select(missing.taskGroup)
}
// Store the available nodes by datacenter
s.ctx.Metrics().NodesAvailable = byDC
// Set fields based on if we found an allocation option
if option != nil {
// Create an allocation for this
alloc := &structs.Allocation{
ID: structs.GenerateUUID(),
EvalID: s.eval.ID,
Name: missing.name,
JobID: s.job.ID,
TaskGroup: missing.taskGroup.Name,
Metrics: s.ctx.Metrics(),
NodeID: option.Node.ID,
DeploymentID: deploymentID,
TaskResources: option.TaskResources,
DesiredStatus: structs.AllocDesiredStatusRun,
ClientStatus: structs.AllocClientStatusPending,
SharedResources: &structs.Resources{
DiskMB: missing.taskGroup.EphemeralDisk.SizeMB,
},
}
// If the new allocation is replacing an older allocation then we
// set the record the older allocation id so that they are chained
if missing.previousAlloc != nil {
alloc.PreviousAllocation = missing.previousAlloc.ID
}
// TODO test
// If we are placing a canary and we found a match, add the canary
// to the deployment state object.
if missing.canary {
if state, ok := s.deployment.TaskGroups[missing.taskGroup.Name]; ok {
state.PlacedCanaries = append(state.PlacedCanaries, alloc.ID)
}
}
s.plan.AppendAlloc(alloc)
} else {
// Lazy initialize the failed map
if s.failedTGAllocs == nil {
s.failedTGAllocs = make(map[string]*structs.AllocMetric)
}
s.failedTGAllocs[missing.taskGroup.Name] = s.ctx.Metrics()
}
}
return nil
}
// findPreferredNode finds the preferred node for an allocation
func (s *GenericScheduler) findPreferredNode(place *allocPlaceResult) (node *structs.Node, err error) {
if place.previousAlloc != nil && place.taskGroup.EphemeralDisk.Sticky == true {
var preferredNode *structs.Node
ws := memdb.NewWatchSet()
preferredNode, err = s.state.NodeByID(ws, place.previousAlloc.NodeID)
if preferredNode.Ready() {
node = preferredNode
}
}
return
}