open-nomad/scheduler/generic_sched.go
2016-03-01 14:09:25 -08:00

374 lines
11 KiB
Go

package scheduler
import (
"fmt"
"log"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxServiceScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for services.
maxServiceScheduleAttempts = 5
// maxBatchScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for batch.
maxBatchScheduleAttempts = 2
// allocNotNeeded is the status used when a job no longer requires an allocation
allocNotNeeded = "alloc not needed due to job update"
// allocMigrating is the status used when we must migrate an allocation
allocMigrating = "alloc is being migrated"
// allocUpdating is the status used when a job requires an update
allocUpdating = "alloc is being updated due to job update"
// allocInPlace is the status used when speculating on an in-place update
allocInPlace = "alloc updating in-place"
)
// SetStatusError is used to set the status of the evaluation to the given error
type SetStatusError struct {
Err error
EvalStatus string
}
func (s *SetStatusError) Error() string {
return s.Err.Error()
}
// GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
// designed for long-lived services, and as such spends more time attemping
// to make a high quality placement. This is the primary scheduler for
// most workloads. It also supports a 'batch' mode to optimize for fast decision
// making at the cost of quality.
type GenericScheduler struct {
logger *log.Logger
state State
planner Planner
batch bool
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
planResult *structs.PlanResult
ctx *EvalContext
stack *GenericStack
limitReached bool
nextEval *structs.Evaluation
blocked *structs.Evaluation
}
// NewServiceScheduler is a factory function to instantiate a new service scheduler
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: false,
}
return s
}
// NewBatchScheduler is a factory function to instantiate a new batch scheduler
func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: true,
}
return s
}
// Process is used to handle a single evaluation
func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
// Store the evaluation
s.eval = eval
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate,
structs.EvalTriggerPeriodicJob:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return setStatus(s.logger, s.planner, s.eval, s.nextEval, structs.EvalStatusFailed, desc)
}
// Retry up to the maxScheduleAttempts and reset if progress is made.
progress := func() bool { return progressMade(s.planResult) }
limit := maxServiceScheduleAttempts
if s.batch {
limit = maxBatchScheduleAttempts
}
if err := retryMax(limit, s.process, progress); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
// Scheduling was tried but made no forward progress so create a
// blocked eval to retry once resources become available.
var mErr multierror.Error
if err := s.createBlockedEval(); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
if err := setStatus(s.logger, s.planner, s.eval, s.nextEval, statusErr.EvalStatus, err.Error()); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
return mErr.ErrorOrNil()
}
return err
}
// Update the status to complete
return setStatus(s.logger, s.planner, s.eval, s.nextEval, structs.EvalStatusComplete, "")
}
// createBlockedEval creates a blocked eval and stores it.
func (s *GenericScheduler) createBlockedEval() error {
e := s.ctx.Eligibility()
escaped := e.HasEscaped()
// Only store the eligible classes if the eval hasn't escaped.
var classEligibility map[string]bool
if !escaped {
classEligibility = e.GetClasses()
}
s.blocked = s.eval.BlockedEval(classEligibility, escaped)
return s.planner.CreateEval(s.blocked)
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *GenericScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
s.job, err = s.state.JobByID(s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job '%s': %v",
s.eval.JobID, err)
}
// Create a plan
s.plan = s.eval.MakePlan(s.job)
// Create an evaluation context
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewGenericStack(s.batch, s.ctx)
if s.job != nil {
s.stack.SetJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
return false, err
}
// If the plan is a no-op, we can bail
if s.plan.IsNoOp() {
return true, nil
}
// If the limit of placements was reached we need to create an evaluation
// to pickup from here after the stagger period.
if s.limitReached && s.nextEval == nil {
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
if err := s.planner.CreateEval(s.nextEval); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
}
// If there are failed allocations, we need to create a blocked evaluation
// to place the failed allocations when resources become available.
if len(s.plan.FailedAllocs) != 0 && s.blocked == nil {
if err := s.createBlockedEval(); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make blocked eval: %v", s.eval, err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: failed to place all allocations, blocked eval '%s' created", s.eval, s.blocked.ID)
}
// Submit the plan and store the results.
result, newState, err := s.planner.SubmitPlan(s.plan)
s.planResult = result
if err != nil {
return false, err
}
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
s.eval, expected, actual)
if newState == nil {
return false, fmt.Errorf("missing state refresh after partial commit")
}
return false, nil
}
// Success!
return true, nil
}
// filterCompleteAllocs filters allocations that are terminal and should be
// re-placed.
func (s *GenericScheduler) filterCompleteAllocs(allocs []*structs.Allocation) []*structs.Allocation {
filter := func(a *structs.Allocation) bool {
// Allocs from batch jobs should be filtered when their status is failed so that
// they will be replaced. If they are dead but not failed, they
// shouldn't be replaced.
if s.batch {
return a.ClientStatus == structs.AllocClientStatusFailed
}
// Filter terminal, non batch allocations
return a.TerminalStatus()
}
n := len(allocs)
for i := 0; i < n; i++ {
if filter(allocs[i]) {
allocs[i], allocs[n-1] = allocs[n-1], nil
i--
n--
}
}
return allocs[:n]
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *GenericScheduler) computeJobAllocs() error {
// Materialize all the task groups, job could be missing if deregistered
var groups map[string]*structs.TaskGroup
if s.job != nil {
groups = materializeTaskGroups(s.job)
}
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(s.eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Filter out the allocations in a terminal state
allocs = s.filterCompleteAllocs(allocs)
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Diff the required and existing allocations
diff := diffAllocs(s.job, tainted, groups, allocs)
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
// Add all the allocs to stop
for _, e := range diff.stop {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded)
}
// Attempt to do the upgrades in place
diff.update = inplaceUpdate(s.ctx, s.eval, s.job, s.stack, diff.update)
// Check if a rolling upgrade strategy is being used
limit := len(diff.update) + len(diff.migrate)
if s.job != nil && s.job.Update.Rolling() {
limit = s.job.Update.MaxParallel
}
// Treat migrations as an eviction and a new placement.
s.limitReached = evictAndPlace(s.ctx, diff, diff.migrate, allocMigrating, &limit)
// Treat non in-place updates as an eviction and new placement.
s.limitReached = s.limitReached || evictAndPlace(s.ctx, diff, diff.update, allocUpdating, &limit)
// Nothing remaining to do if placement is not required
if len(diff.place) == 0 {
return nil
}
// Compute the placements
return s.computePlacements(diff.place)
}
// computePlacements computes placements for allocations
func (s *GenericScheduler) computePlacements(place []allocTuple) error {
// Get the base nodes
nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters)
if err != nil {
return err
}
// Update the set of placement ndoes
s.stack.SetNodes(nodes)
// Track the failed task groups so that we can coalesce
// the failures together to avoid creating many failed allocs.
failedTG := make(map[*structs.TaskGroup]*structs.Allocation)
for _, missing := range place {
// Check if this task group has already failed
if alloc, ok := failedTG[missing.TaskGroup]; ok {
alloc.Metrics.CoalescedFailures += 1
continue
}
// Attempt to match the task group
option, _ := s.stack.Select(missing.TaskGroup)
// Create an allocation for this
alloc := &structs.Allocation{
ID: structs.GenerateUUID(),
EvalID: s.eval.ID,
Name: missing.Name,
JobID: s.job.ID,
TaskGroup: missing.TaskGroup.Name,
Metrics: s.ctx.Metrics(),
}
// Store the available nodes by datacenter
s.ctx.Metrics().NodesAvailable = byDC
// Set fields based on if we found an allocation option
if option != nil {
// Generate service IDs tasks in this allocation
alloc.PopulateServiceIDs(missing.TaskGroup)
alloc.NodeID = option.Node.ID
alloc.TaskResources = option.TaskResources
alloc.DesiredStatus = structs.AllocDesiredStatusRun
alloc.ClientStatus = structs.AllocClientStatusPending
s.plan.AppendAlloc(alloc)
} else {
alloc.DesiredStatus = structs.AllocDesiredStatusFailed
alloc.DesiredDescription = "failed to find a node for placement"
alloc.ClientStatus = structs.AllocClientStatusFailed
s.plan.AppendFailed(alloc)
failedTG[missing.TaskGroup] = alloc
}
}
return nil
}