406 lines
12 KiB
Go
406 lines
12 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
const (
|
|
// maxServiceScheduleAttempts is used to limit the number of times
|
|
// we will attempt to schedule if we continue to hit conflicts for services.
|
|
maxServiceScheduleAttempts = 5
|
|
|
|
// maxBatchScheduleAttempts is used to limit the number of times
|
|
// we will attempt to schedule if we continue to hit conflicts for batch.
|
|
maxBatchScheduleAttempts = 2
|
|
|
|
// allocNotNeeded is the status used when a job no longer requires an allocation
|
|
allocNotNeeded = "alloc not needed due to job update"
|
|
|
|
// allocMigrating is the status used when we must migrate an allocation
|
|
allocMigrating = "alloc is being migrated"
|
|
|
|
// allocUpdating is the status used when a job requires an update
|
|
allocUpdating = "alloc is being updated due to job update"
|
|
|
|
// allocInPlace is the status used when speculating on an in-place update
|
|
allocInPlace = "alloc updating in-place"
|
|
)
|
|
|
|
// SetStatusError is used to set the status of the evaluation to the given error
|
|
type SetStatusError struct {
|
|
Err error
|
|
EvalStatus string
|
|
}
|
|
|
|
func (s *SetStatusError) Error() string {
|
|
return s.Err.Error()
|
|
}
|
|
|
|
// GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
|
|
// designed for long-lived services, and as such spends more time attemping
|
|
// to make a high quality placement. This is the primary scheduler for
|
|
// most workloads. It also supports a 'batch' mode to optimize for fast decision
|
|
// making at the cost of quality.
|
|
type GenericScheduler struct {
|
|
logger *log.Logger
|
|
state State
|
|
planner Planner
|
|
batch bool
|
|
|
|
eval *structs.Evaluation
|
|
job *structs.Job
|
|
plan *structs.Plan
|
|
ctx *EvalContext
|
|
stack *GenericStack
|
|
|
|
limitReached bool
|
|
nextEval *structs.Evaluation
|
|
}
|
|
|
|
// NewServiceScheduler is a factory function to instantiate a new service scheduler
|
|
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
|
|
s := &GenericScheduler{
|
|
logger: logger,
|
|
state: state,
|
|
planner: planner,
|
|
batch: false,
|
|
}
|
|
return s
|
|
}
|
|
|
|
// NewBatchScheduler is a factory function to instantiate a new batch scheduler
|
|
func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
|
|
s := &GenericScheduler{
|
|
logger: logger,
|
|
state: state,
|
|
planner: planner,
|
|
batch: true,
|
|
}
|
|
return s
|
|
}
|
|
|
|
// setStatus is used to update the status of the evaluation
|
|
func (s *GenericScheduler) setStatus(status, desc string) error {
|
|
s.logger.Printf("[DEBUG] sched: %#v: setting status to %s", s.eval, status)
|
|
newEval := s.eval.Copy()
|
|
newEval.Status = status
|
|
newEval.StatusDescription = desc
|
|
if s.nextEval != nil {
|
|
newEval.NextEval = s.nextEval.ID
|
|
}
|
|
return s.planner.UpdateEval(newEval)
|
|
}
|
|
|
|
// Process is used to handle a single evaluation
|
|
func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
|
|
// Store the evaluation
|
|
s.eval = eval
|
|
|
|
// Verify the evaluation trigger reason is understood
|
|
switch eval.TriggeredBy {
|
|
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
|
|
structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate:
|
|
default:
|
|
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
|
|
eval.TriggeredBy)
|
|
return s.setStatus(structs.EvalStatusFailed, desc)
|
|
}
|
|
|
|
// Retry up to the maxScheduleAttempts
|
|
limit := maxServiceScheduleAttempts
|
|
if s.batch {
|
|
limit = maxBatchScheduleAttempts
|
|
}
|
|
if err := retryMax(limit, s.process); err != nil {
|
|
if statusErr, ok := err.(*SetStatusError); ok {
|
|
return s.setStatus(statusErr.EvalStatus, err.Error())
|
|
}
|
|
return err
|
|
}
|
|
|
|
// Update the status to complete
|
|
return s.setStatus(structs.EvalStatusComplete, "")
|
|
}
|
|
|
|
// process is wrapped in retryMax to iteratively run the handler until we have no
|
|
// further work or we've made the maximum number of attempts.
|
|
func (s *GenericScheduler) process() (bool, error) {
|
|
// Lookup the Job by ID
|
|
var err error
|
|
s.job, err = s.state.JobByID(s.eval.JobID)
|
|
if err != nil {
|
|
return false, fmt.Errorf("failed to get job '%s': %v",
|
|
s.eval.JobID, err)
|
|
}
|
|
|
|
// Create a plan
|
|
s.plan = s.eval.MakePlan(s.job)
|
|
|
|
// Create an evaluation context
|
|
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
|
|
|
|
// Construct the placement stack
|
|
s.stack = NewGenericStack(s.batch, s.ctx, nil)
|
|
if s.job != nil {
|
|
s.stack.SetJob(s.job)
|
|
}
|
|
|
|
// Compute the target job allocations
|
|
if err := s.computeJobAllocs(); err != nil {
|
|
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
|
|
return false, err
|
|
}
|
|
|
|
// If the plan is a no-op, we can bail
|
|
if s.plan.IsNoOp() {
|
|
return true, nil
|
|
}
|
|
|
|
// If the limit of placements was reached we need to create an evaluation
|
|
// to pickup from here after the stagger period.
|
|
if s.limitReached && s.nextEval == nil {
|
|
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
|
|
if err := s.planner.CreateEval(s.nextEval); err != nil {
|
|
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", err)
|
|
return false, err
|
|
}
|
|
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
|
|
}
|
|
|
|
// Submit the plan
|
|
result, newState, err := s.planner.SubmitPlan(s.plan)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
// If we got a state refresh, try again since we have stale data
|
|
if newState != nil {
|
|
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
|
|
s.state = newState
|
|
return false, nil
|
|
}
|
|
|
|
// Try again if the plan was not fully committed, potential conflict
|
|
fullCommit, expected, actual := result.FullCommit(s.plan)
|
|
if !fullCommit {
|
|
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
|
|
s.eval, expected, actual)
|
|
return false, nil
|
|
}
|
|
|
|
// Success!
|
|
return true, nil
|
|
}
|
|
|
|
// computeJobAllocs is used to reconcile differences between the job,
|
|
// existing allocations and node status to update the allocations.
|
|
func (s *GenericScheduler) computeJobAllocs() error {
|
|
// Materialize all the task groups, job could be missing if deregistered
|
|
var groups map[string]*structs.TaskGroup
|
|
if s.job != nil {
|
|
groups = materializeTaskGroups(s.job)
|
|
}
|
|
|
|
// Lookup the allocations by JobID
|
|
allocs, err := s.state.AllocsByJob(s.eval.JobID)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get allocs for job '%s': %v",
|
|
s.eval.JobID, err)
|
|
}
|
|
|
|
// Filter out the allocations in a terminal state
|
|
allocs = structs.FilterTerminalAllocs(allocs)
|
|
|
|
// Determine the tainted nodes containing job allocs
|
|
tainted, err := taintedNodes(s.state, allocs)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
|
|
s.eval.JobID, err)
|
|
}
|
|
|
|
// Diff the required and existing allocations
|
|
diff := diffAllocs(s.job, tainted, groups, allocs)
|
|
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
|
|
|
|
// Add all the allocs to stop
|
|
for _, e := range diff.stop {
|
|
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded)
|
|
}
|
|
|
|
// Attempt to do the upgrades in place
|
|
diff.update = s.inplaceUpdate(diff.update)
|
|
|
|
// Check if a rolling upgrade strategy is being used
|
|
limit := len(diff.update) + len(diff.migrate)
|
|
if s.job != nil && s.job.Update.Rolling() {
|
|
limit = s.job.Update.MaxParallel
|
|
}
|
|
|
|
// Treat migrations as an eviction and a new placement.
|
|
s.evictAndPlace(diff, diff.migrate, allocMigrating, &limit)
|
|
|
|
// Treat non in-place updates as an eviction and new placement.
|
|
s.evictAndPlace(diff, diff.update, allocUpdating, &limit)
|
|
|
|
// Nothing remaining to do if placement is not required
|
|
if len(diff.place) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// Compute the placements
|
|
return s.computePlacements(diff.place)
|
|
}
|
|
|
|
// evictAndPlace is used to mark allocations for evicts and add them to the placement queue
|
|
func (s *GenericScheduler) evictAndPlace(diff *diffResult, allocs []allocTuple, desc string, limit *int) {
|
|
n := len(allocs)
|
|
for i := 0; i < n && i < *limit; i++ {
|
|
a := allocs[i]
|
|
s.plan.AppendUpdate(a.Alloc, structs.AllocDesiredStatusStop, desc)
|
|
diff.place = append(diff.place, a)
|
|
}
|
|
if n <= *limit {
|
|
*limit -= n
|
|
} else {
|
|
*limit = 0
|
|
s.limitReached = true
|
|
}
|
|
}
|
|
|
|
// inplaceUpdate attempts to update allocations in-place where possible.
|
|
func (s *GenericScheduler) inplaceUpdate(updates []allocTuple) []allocTuple {
|
|
n := len(updates)
|
|
inplace := 0
|
|
for i := 0; i < n; i++ {
|
|
// Get the udpate
|
|
update := updates[i]
|
|
|
|
// Check if the task drivers or config has changed, requires
|
|
// a rolling upgrade since that cannot be done in-place.
|
|
existing := update.Alloc.Job.LookupTaskGroup(update.TaskGroup.Name)
|
|
if tasksUpdated(update.TaskGroup, existing) {
|
|
continue
|
|
}
|
|
|
|
// Get the existing node
|
|
node, err := s.state.NodeByID(update.Alloc.NodeID)
|
|
if err != nil {
|
|
s.logger.Printf("[ERR] sched: %#v failed to get node '%s': %v",
|
|
update.Alloc.NodeID, err)
|
|
continue
|
|
}
|
|
if node == nil {
|
|
continue
|
|
}
|
|
|
|
// Set the existing node as the base set
|
|
s.stack.SetNodes([]*structs.Node{node})
|
|
|
|
// Stage an eviction of the current allocation
|
|
s.plan.AppendUpdate(update.Alloc, structs.AllocDesiredStatusStop,
|
|
allocInPlace)
|
|
|
|
// Attempt to match the task group
|
|
option, size := s.stack.Select(update.TaskGroup)
|
|
|
|
// Pop the allocation
|
|
s.plan.PopUpdate(update.Alloc)
|
|
|
|
// Skip if we could not do an in-place update
|
|
if option == nil {
|
|
continue
|
|
}
|
|
|
|
// Restore the network offers from the existing allocation.
|
|
// We do not allow network resources (reserved/dynamic ports)
|
|
// to be updated. This is guarded in taskUpdated, so we can
|
|
// safely restore those here.
|
|
for task, resources := range option.TaskResources {
|
|
existing := update.Alloc.TaskResources[task]
|
|
resources.Networks = existing.Networks
|
|
}
|
|
|
|
// Create a shallow copy
|
|
newAlloc := new(structs.Allocation)
|
|
*newAlloc = *update.Alloc
|
|
|
|
// Update the allocation
|
|
newAlloc.EvalID = s.eval.ID
|
|
newAlloc.Job = s.job
|
|
newAlloc.Resources = size
|
|
newAlloc.TaskResources = option.TaskResources
|
|
newAlloc.Metrics = s.ctx.Metrics()
|
|
newAlloc.DesiredStatus = structs.AllocDesiredStatusRun
|
|
newAlloc.ClientStatus = structs.AllocClientStatusPending
|
|
s.plan.AppendAlloc(newAlloc)
|
|
|
|
// Remove this allocation from the slice
|
|
updates[i] = updates[n-1]
|
|
i--
|
|
n--
|
|
inplace++
|
|
}
|
|
if len(updates) > 0 {
|
|
s.logger.Printf("[DEBUG] sched: %#v: %d in-place updates of %d", s.eval, inplace, len(updates))
|
|
}
|
|
return updates[:n]
|
|
}
|
|
|
|
// computePlacements computes placements for allocations
|
|
func (s *GenericScheduler) computePlacements(place []allocTuple) error {
|
|
// Get the base nodes
|
|
nodes, err := readyNodesInDCs(s.state, s.job.Datacenters)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Update the set of placement ndoes
|
|
s.stack.SetNodes(nodes)
|
|
|
|
// Track the failed task groups so that we can coalesce
|
|
// the failures together to avoid creating many failed allocs.
|
|
failedTG := make(map[*structs.TaskGroup]*structs.Allocation)
|
|
|
|
for _, missing := range place {
|
|
// Check if this task group has already failed
|
|
if alloc, ok := failedTG[missing.TaskGroup]; ok {
|
|
alloc.Metrics.CoalescedFailures += 1
|
|
continue
|
|
}
|
|
|
|
// Attempt to match the task group
|
|
option, size := s.stack.Select(missing.TaskGroup)
|
|
|
|
// Create an allocation for this
|
|
alloc := &structs.Allocation{
|
|
ID: structs.GenerateUUID(),
|
|
EvalID: s.eval.ID,
|
|
Name: missing.Name,
|
|
JobID: s.job.ID,
|
|
Job: s.job,
|
|
TaskGroup: missing.TaskGroup.Name,
|
|
Resources: size,
|
|
Metrics: s.ctx.Metrics(),
|
|
}
|
|
|
|
// Set fields based on if we found an allocation option
|
|
if option != nil {
|
|
alloc.NodeID = option.Node.ID
|
|
alloc.TaskResources = option.TaskResources
|
|
alloc.DesiredStatus = structs.AllocDesiredStatusRun
|
|
alloc.ClientStatus = structs.AllocClientStatusPending
|
|
s.plan.AppendAlloc(alloc)
|
|
} else {
|
|
alloc.DesiredStatus = structs.AllocDesiredStatusFailed
|
|
alloc.DesiredDescription = "failed to find a node for placement"
|
|
alloc.ClientStatus = structs.AllocClientStatusFailed
|
|
s.plan.AppendFailed(alloc)
|
|
failedTG[missing.TaskGroup] = alloc
|
|
}
|
|
}
|
|
return nil
|
|
}
|