open-nomad/client/alloc_runner.go

1072 lines
31 KiB
Go

package client
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"sync"
"time"
"github.com/boltdb/bolt"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/vaultclient"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/nomad/structs"
cstructs "github.com/hashicorp/nomad/client/structs"
)
var (
// The following are the key paths written to the state database
allocRunnerStateAllocKey = []byte("alloc")
allocRunnerStateImmutableKey = []byte("immutable")
allocRunnerStateMutableKey = []byte("mutable")
allocRunnerStateAllocDirKey = []byte("alloc-dir")
)
// AllocStateUpdater is used to update the status of an allocation
type AllocStateUpdater func(alloc *structs.Allocation)
type AllocStatsReporter interface {
LatestAllocStats(taskFilter string) (*cstructs.AllocResourceUsage, error)
}
// AllocRunner is used to wrap an allocation and provide the execution context.
type AllocRunner struct {
config *config.Config
updater AllocStateUpdater
logger *log.Logger
// allocID is the ID of this runner's allocation. Since it does not
// change for the lifetime of the AllocRunner it is safe to read
// without acquiring a lock (unlike alloc).
allocID string
alloc *structs.Allocation
allocClientStatus string // Explicit status of allocation. Set when there are failures
allocClientDescription string
allocHealth *bool // Whether the allocation is healthy
allocBroadcast *cstructs.AllocBroadcaster
allocLock sync.Mutex
dirtyCh chan struct{}
allocDir *allocdir.AllocDir
allocDirLock sync.Mutex
tasks map[string]*TaskRunner
taskStates map[string]*structs.TaskState
restored map[string]struct{}
taskLock sync.RWMutex
taskStatusLock sync.RWMutex
updateCh chan *structs.Allocation
vaultClient vaultclient.VaultClient
consulClient ConsulServiceAPI
// prevAlloc allows for Waiting until a previous allocation exits and
// the migrates it data. If sticky volumes aren't used and there's no
// previous allocation a noop implementation is used so it always safe
// to call.
prevAlloc prevAllocWatcher
ctx context.Context
exitFn context.CancelFunc
waitCh chan struct{}
// State related fields
// stateDB is used to store the alloc runners state
stateDB *bolt.DB
allocStateLock sync.Mutex
// persistedEval is the last persisted evaluation ID. Since evaluation
// IDs change on every allocation update we only need to persist the
// allocation when its eval ID != the last persisted eval ID.
persistedEvalLock sync.Mutex
persistedEval string
// immutablePersisted and allocDirPersisted are used to track whether the
// immutable data and the alloc dir have been persisted. Once persisted we
// can lower write volume by not re-writing these values
immutablePersisted bool
allocDirPersisted bool
}
// COMPAT: Remove in 0.7.0
// allocRunnerState is used to snapshot the state of the alloc runner
type allocRunnerState struct {
Version string
Alloc *structs.Allocation
AllocDir *allocdir.AllocDir
AllocClientStatus string
AllocClientDescription string
// COMPAT: Remove in 0.7.0: removing will break upgrading directly from
// 0.5.2, so don't remove in the 0.6 series.
// Context is deprecated and only used to migrate from older releases.
// It will be removed in the future.
Context *struct {
AllocID string // unused; included for completeness
AllocDir struct {
AllocDir string
SharedDir string // unused; included for completeness
TaskDirs map[string]string
}
} `json:"Context,omitempty"`
}
// allocRunnerAllocState is state that only has to be written when the alloc
// changes.
type allocRunnerAllocState struct {
Alloc *structs.Allocation
}
// allocRunnerImmutableState is state that only has to be written once.
type allocRunnerImmutableState struct {
Version string
}
// allocRunnerMutableState is state that has to be written on each save as it
// changes over the life-cycle of the alloc_runner.
type allocRunnerMutableState struct {
AllocClientStatus string
AllocClientDescription string
TaskStates map[string]*structs.TaskState
DeploymentStatus *structs.AllocDeploymentStatus
}
// NewAllocRunner is used to create a new allocation context
func NewAllocRunner(logger *log.Logger, config *config.Config, stateDB *bolt.DB, updater AllocStateUpdater,
alloc *structs.Allocation, vaultClient vaultclient.VaultClient, consulClient ConsulServiceAPI,
prevAlloc prevAllocWatcher) *AllocRunner {
ar := &AllocRunner{
config: config,
stateDB: stateDB,
updater: updater,
logger: logger,
alloc: alloc,
allocID: alloc.ID,
allocBroadcast: cstructs.NewAllocBroadcaster(8),
prevAlloc: prevAlloc,
dirtyCh: make(chan struct{}, 1),
allocDir: allocdir.NewAllocDir(logger, filepath.Join(config.AllocDir, alloc.ID)),
tasks: make(map[string]*TaskRunner),
taskStates: copyTaskStates(alloc.TaskStates),
restored: make(map[string]struct{}),
updateCh: make(chan *structs.Allocation, 64),
waitCh: make(chan struct{}),
vaultClient: vaultClient,
consulClient: consulClient,
}
// TODO Should be passed a context
ar.ctx, ar.exitFn = context.WithCancel(context.TODO())
return ar
}
// pre060StateFilePath returns the path to our state file that would have been
// written pre v0.6.0
// COMPAT: Remove in 0.7.0
func (r *AllocRunner) pre060StateFilePath() string {
r.allocLock.Lock()
defer r.allocLock.Unlock()
path := filepath.Join(r.config.StateDir, "alloc", r.allocID, "state.json")
return path
}
// RestoreState is used to restore the state of the alloc runner
func (r *AllocRunner) RestoreState() error {
// COMPAT: Remove in 0.7.0
// Check if the old snapshot is there
oldPath := r.pre060StateFilePath()
var snap allocRunnerState
var upgrading bool
if err := pre060RestoreState(oldPath, &snap); err == nil {
// Restore fields
r.logger.Printf("[INFO] client: restoring pre v0.6.0 alloc runner state for alloc %q", r.allocID)
r.alloc = snap.Alloc
r.allocDir = snap.AllocDir
r.allocClientStatus = snap.AllocClientStatus
r.allocClientDescription = snap.AllocClientDescription
if r.alloc != nil {
r.taskStates = snap.Alloc.TaskStates
}
// COMPAT: Remove in 0.7.0
// #2132 Upgrade path: if snap.AllocDir is nil, try to convert old
// Context struct to new AllocDir struct
if snap.AllocDir == nil && snap.Context != nil {
r.logger.Printf("[DEBUG] client: migrating state snapshot for alloc %q", r.allocID)
r.allocDir = allocdir.NewAllocDir(r.logger, snap.Context.AllocDir.AllocDir)
for taskName := range snap.Context.AllocDir.TaskDirs {
r.allocDir.NewTaskDir(taskName)
}
}
// Delete the old state
os.RemoveAll(oldPath)
upgrading = true
} else if !os.IsNotExist(err) {
// Something corrupt in the old state file
return err
} else {
// We are doing a normal restore
err := r.stateDB.View(func(tx *bolt.Tx) error {
bkt, err := getAllocationBucket(tx, r.allocID)
if err != nil {
return fmt.Errorf("failed to get allocation bucket: %v", err)
}
// Get the state objects
var mutable allocRunnerMutableState
var immutable allocRunnerImmutableState
var allocState allocRunnerAllocState
var allocDir allocdir.AllocDir
if err := getObject(bkt, allocRunnerStateAllocKey, &allocState); err != nil {
return fmt.Errorf("failed to read alloc runner alloc state: %v", err)
}
if err := getObject(bkt, allocRunnerStateImmutableKey, &immutable); err != nil {
return fmt.Errorf("failed to read alloc runner immutable state: %v", err)
}
if err := getObject(bkt, allocRunnerStateMutableKey, &mutable); err != nil {
return fmt.Errorf("failed to read alloc runner mutable state: %v", err)
}
if err := getObject(bkt, allocRunnerStateAllocDirKey, &allocDir); err != nil {
return fmt.Errorf("failed to read alloc runner alloc_dir state: %v", err)
}
// Populate the fields
r.alloc = allocState.Alloc
r.allocDir = &allocDir
r.allocClientStatus = mutable.AllocClientStatus
r.allocClientDescription = mutable.AllocClientDescription
r.taskStates = mutable.TaskStates
r.alloc.ClientStatus = getClientStatus(r.taskStates)
r.alloc.DeploymentStatus = mutable.DeploymentStatus
return nil
})
if err != nil {
return fmt.Errorf("failed to read allocation state: %v", err)
}
}
var snapshotErrors multierror.Error
if r.alloc == nil {
snapshotErrors.Errors = append(snapshotErrors.Errors, fmt.Errorf("alloc_runner snapshot includes a nil allocation"))
}
if r.allocDir == nil {
snapshotErrors.Errors = append(snapshotErrors.Errors, fmt.Errorf("alloc_runner snapshot includes a nil alloc dir"))
}
if e := snapshotErrors.ErrorOrNil(); e != nil {
return e
}
tg := r.alloc.Job.LookupTaskGroup(r.alloc.TaskGroup)
if tg == nil {
return fmt.Errorf("restored allocation doesn't contain task group %q", r.alloc.TaskGroup)
}
// Restore the task runners
taskDestroyEvent := structs.NewTaskEvent(structs.TaskKilled)
var mErr multierror.Error
for _, task := range tg.Tasks {
name := task.Name
state := r.taskStates[name]
// Nomad exited before task could start, nothing to restore.
// AllocRunner.Run will start a new TaskRunner for this task
if state == nil {
continue
}
// Mark the task as restored.
r.restored[name] = struct{}{}
td, ok := r.allocDir.TaskDirs[name]
if !ok {
// Create the task dir metadata if it doesn't exist.
// Since task dirs are created during r.Run() the
// client may save state and exit before all task dirs
// are created
td = r.allocDir.NewTaskDir(name)
}
// Skip tasks in terminal states.
if state.State == structs.TaskStateDead {
continue
}
tr := NewTaskRunner(r.logger, r.config, r.stateDB, r.setTaskState, td, r.Alloc(), task, r.vaultClient, r.consulClient)
r.tasks[name] = tr
if restartReason, err := tr.RestoreState(); err != nil {
r.logger.Printf("[ERR] client: failed to restore state for alloc %s task %q: %v", r.allocID, name, err)
mErr.Errors = append(mErr.Errors, err)
} else if !r.alloc.TerminalStatus() {
// Only start if the alloc isn't in a terminal status.
go tr.Run()
if upgrading {
if err := tr.SaveState(); err != nil {
r.logger.Printf("[WARN] client: initial save state for alloc %s task %s failed: %v", r.allocID, name, err)
}
}
// Restart task runner if RestoreState gave a reason
if restartReason != "" {
r.logger.Printf("[INFO] client: restarting alloc %s task %s: %v", r.allocID, name, restartReason)
const failure = false
tr.Restart("upgrade", restartReason, failure)
}
} else {
tr.Destroy(taskDestroyEvent)
}
}
return mErr.ErrorOrNil()
}
// SaveState is used to snapshot the state of the alloc runner
// if the fullSync is marked as false only the state of the Alloc Runner
// is snapshotted. If fullSync is marked as true, we snapshot
// all the Task Runners associated with the Alloc
func (r *AllocRunner) SaveState() error {
if err := r.saveAllocRunnerState(); err != nil {
return err
}
// Save state for each task
runners := r.getTaskRunners()
var mErr multierror.Error
for _, tr := range runners {
if err := tr.SaveState(); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("failed to save state for alloc %s task %q: %v",
r.allocID, tr.task.Name, err))
}
}
return mErr.ErrorOrNil()
}
func (r *AllocRunner) saveAllocRunnerState() error {
r.allocStateLock.Lock()
defer r.allocStateLock.Unlock()
if r.ctx.Err() == context.Canceled {
return nil
}
// Grab all the relevant data
alloc := r.Alloc()
r.allocLock.Lock()
allocClientStatus := r.allocClientStatus
allocClientDescription := r.allocClientDescription
r.allocLock.Unlock()
r.allocDirLock.Lock()
allocDir := r.allocDir.Copy()
r.allocDirLock.Unlock()
// Start the transaction.
return r.stateDB.Batch(func(tx *bolt.Tx) error {
// Grab the allocation bucket
allocBkt, err := getAllocationBucket(tx, r.allocID)
if err != nil {
return fmt.Errorf("failed to retrieve allocation bucket: %v", err)
}
// Write the allocation if the eval has changed
r.persistedEvalLock.Lock()
lastPersisted := r.persistedEval
r.persistedEvalLock.Unlock()
if alloc.EvalID != lastPersisted {
allocState := &allocRunnerAllocState{
Alloc: alloc,
}
if err := putObject(allocBkt, allocRunnerStateAllocKey, &allocState); err != nil {
return fmt.Errorf("failed to write alloc_runner alloc state: %v", err)
}
tx.OnCommit(func() {
r.persistedEvalLock.Lock()
r.persistedEval = alloc.EvalID
r.persistedEvalLock.Unlock()
})
}
// Write immutable data iff it hasn't been written yet
if !r.immutablePersisted {
immutable := &allocRunnerImmutableState{
Version: r.config.Version.VersionNumber(),
}
if err := putObject(allocBkt, allocRunnerStateImmutableKey, &immutable); err != nil {
return fmt.Errorf("failed to write alloc_runner immutable state: %v", err)
}
tx.OnCommit(func() {
r.immutablePersisted = true
})
}
// Write the alloc dir data if it hasn't been written before and it exists.
if !r.allocDirPersisted && allocDir != nil {
if err := putObject(allocBkt, allocRunnerStateAllocDirKey, allocDir); err != nil {
return fmt.Errorf("failed to write alloc_runner allocDir state: %v", err)
}
tx.OnCommit(func() {
r.allocDirPersisted = true
})
}
// Write the mutable state every time
mutable := &allocRunnerMutableState{
AllocClientStatus: allocClientStatus,
AllocClientDescription: allocClientDescription,
TaskStates: alloc.TaskStates,
DeploymentStatus: alloc.DeploymentStatus,
}
if err := putObject(allocBkt, allocRunnerStateMutableKey, &mutable); err != nil {
return fmt.Errorf("failed to write alloc_runner mutable state: %v", err)
}
return nil
})
}
// DestroyState is used to cleanup after ourselves
func (r *AllocRunner) DestroyState() error {
r.allocStateLock.Lock()
defer r.allocStateLock.Unlock()
return r.stateDB.Update(func(tx *bolt.Tx) error {
if err := deleteAllocationBucket(tx, r.allocID); err != nil {
return fmt.Errorf("failed to delete allocation bucket: %v", err)
}
return nil
})
}
// DestroyContext is used to destroy the context
func (r *AllocRunner) DestroyContext() error {
return r.allocDir.Destroy()
}
// GetAllocDir returns the alloc dir for the alloc runner
func (r *AllocRunner) GetAllocDir() *allocdir.AllocDir {
return r.allocDir
}
// GetListener returns a listener for updates broadcast by this alloc runner.
// Callers are responsible for calling Close on their Listener.
func (r *AllocRunner) GetListener() *cstructs.AllocListener {
return r.allocBroadcast.Listen()
}
// copyTaskStates returns a copy of the passed task states.
func copyTaskStates(states map[string]*structs.TaskState) map[string]*structs.TaskState {
copy := make(map[string]*structs.TaskState, len(states))
for task, state := range states {
copy[task] = state.Copy()
}
return copy
}
// Alloc returns the associated allocation
func (r *AllocRunner) Alloc() *structs.Allocation {
r.allocLock.Lock()
// Don't do a deep copy of the job
alloc := r.alloc.CopySkipJob()
// The status has explicitly been set.
if r.allocClientStatus != "" || r.allocClientDescription != "" {
alloc.ClientStatus = r.allocClientStatus
alloc.ClientDescription = r.allocClientDescription
// Copy over the task states so we don't lose them
r.taskStatusLock.RLock()
alloc.TaskStates = copyTaskStates(r.taskStates)
r.taskStatusLock.RUnlock()
r.allocLock.Unlock()
return alloc
}
// The health has been set
if r.allocHealth != nil {
if alloc.DeploymentStatus == nil {
alloc.DeploymentStatus = &structs.AllocDeploymentStatus{}
}
alloc.DeploymentStatus.Healthy = helper.BoolToPtr(*r.allocHealth)
}
r.allocLock.Unlock()
// Scan the task states to determine the status of the alloc
r.taskStatusLock.RLock()
alloc.TaskStates = copyTaskStates(r.taskStates)
alloc.ClientStatus = getClientStatus(r.taskStates)
r.taskStatusLock.RUnlock()
// If the client status is failed and we are part of a deployment, mark the
// alloc as unhealthy. This guards against the watcher not be started.
r.allocLock.Lock()
if alloc.ClientStatus == structs.AllocClientStatusFailed &&
alloc.DeploymentID != "" && !alloc.DeploymentStatus.IsUnhealthy() {
alloc.DeploymentStatus = &structs.AllocDeploymentStatus{
Healthy: helper.BoolToPtr(false),
}
}
r.allocLock.Unlock()
return alloc
}
// getClientStatus takes in the task states for a given allocation and computes
// the client status
func getClientStatus(taskStates map[string]*structs.TaskState) string {
var pending, running, dead, failed bool
for _, state := range taskStates {
switch state.State {
case structs.TaskStateRunning:
running = true
case structs.TaskStatePending:
pending = true
case structs.TaskStateDead:
if state.Failed {
failed = true
} else {
dead = true
}
}
}
// Determine the alloc status
if failed {
return structs.AllocClientStatusFailed
} else if running {
return structs.AllocClientStatusRunning
} else if pending {
return structs.AllocClientStatusPending
} else if dead {
return structs.AllocClientStatusComplete
}
return ""
}
// dirtySyncState is used to watch for state being marked dirty to sync
func (r *AllocRunner) dirtySyncState() {
for {
select {
case <-r.dirtyCh:
if err := r.syncStatus(); err != nil {
// Only WARN instead of ERR because we continue on
r.logger.Printf("[WARN] client: error persisting alloc %q state: %v",
r.allocID, err)
}
case <-r.ctx.Done():
return
}
}
}
// syncStatus is used to run and sync the status when it changes
func (r *AllocRunner) syncStatus() error {
// Get a copy of our alloc, update status server side and sync to disk
alloc := r.Alloc()
r.updater(alloc)
r.sendBroadcast(alloc)
return r.saveAllocRunnerState()
}
// sendBroadcast broadcasts an alloc update.
func (r *AllocRunner) sendBroadcast(alloc *structs.Allocation) {
// Try to send the alloc up to three times with a delay to allow recovery.
sent := false
for i := 0; i < 3; i++ {
if sent = r.allocBroadcast.Send(alloc); sent {
break
}
time.Sleep(500 * time.Millisecond)
}
if !sent {
r.logger.Printf("[WARN] client: failed to broadcast update to allocation %q", r.allocID)
}
}
// setStatus is used to update the allocation status
func (r *AllocRunner) setStatus(status, desc string) {
r.allocLock.Lock()
r.allocClientStatus = status
r.allocClientDescription = desc
r.allocLock.Unlock()
select {
case r.dirtyCh <- struct{}{}:
default:
}
}
// setTaskState is used to set the status of a task. If lazySync is set then the
// event is appended but not synced with the server. If state is omitted, the
// last known state is used.
func (r *AllocRunner) setTaskState(taskName, state string, event *structs.TaskEvent, lazySync bool) {
r.taskStatusLock.Lock()
defer r.taskStatusLock.Unlock()
taskState, ok := r.taskStates[taskName]
if !ok {
taskState = &structs.TaskState{}
r.taskStates[taskName] = taskState
}
// Set the tasks state.
if event != nil {
if event.FailsTask {
taskState.Failed = true
}
if event.Type == structs.TaskRestarting {
taskState.Restarts++
taskState.LastRestart = time.Unix(0, event.Time)
}
r.appendTaskEvent(taskState, event)
}
if lazySync {
return
}
// If the state hasn't been set use the existing state.
if state == "" {
state = taskState.State
if taskState.State == "" {
state = structs.TaskStatePending
}
}
switch state {
case structs.TaskStateRunning:
// Capture the start time if it is just starting
if taskState.State != structs.TaskStateRunning {
taskState.StartedAt = time.Now().UTC()
}
case structs.TaskStateDead:
// Capture the finished time. If it has never started there is no finish
// time
if !taskState.StartedAt.IsZero() {
taskState.FinishedAt = time.Now().UTC()
}
// Find all tasks that are not the one that is dead and check if the one
// that is dead is a leader
var otherTaskRunners []*TaskRunner
var otherTaskNames []string
leader := false
for task, tr := range r.tasks {
if task != taskName {
otherTaskRunners = append(otherTaskRunners, tr)
otherTaskNames = append(otherTaskNames, task)
} else if tr.task.Leader {
leader = true
}
}
// If the task failed, we should kill all the other tasks in the task group.
if taskState.Failed {
for _, tr := range otherTaskRunners {
tr.Destroy(structs.NewTaskEvent(structs.TaskSiblingFailed).SetFailedSibling(taskName))
}
if len(otherTaskRunners) > 0 {
r.logger.Printf("[DEBUG] client: task %q failed, destroying other tasks in task group: %v", taskName, otherTaskNames)
}
} else if leader {
// If the task was a leader task we should kill all the other tasks.
for _, tr := range otherTaskRunners {
tr.Destroy(structs.NewTaskEvent(structs.TaskLeaderDead))
}
if len(otherTaskRunners) > 0 {
r.logger.Printf("[DEBUG] client: leader task %q is dead, destroying other tasks in task group: %v", taskName, otherTaskNames)
}
}
}
// Store the new state
taskState.State = state
select {
case r.dirtyCh <- struct{}{}:
default:
}
}
// appendTaskEvent updates the task status by appending the new event.
func (r *AllocRunner) appendTaskEvent(state *structs.TaskState, event *structs.TaskEvent) {
capacity := 10
if state.Events == nil {
state.Events = make([]*structs.TaskEvent, 0, capacity)
}
// If we hit capacity, then shift it.
if len(state.Events) == capacity {
old := state.Events
state.Events = make([]*structs.TaskEvent, 0, capacity)
state.Events = append(state.Events, old[1:]...)
}
state.Events = append(state.Events, event)
}
// Run is a long running goroutine used to manage an allocation
func (r *AllocRunner) Run() {
defer close(r.waitCh)
go r.dirtySyncState()
// Find the task group to run in the allocation
alloc := r.Alloc()
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
r.logger.Printf("[ERR] client: alloc %q for missing task group %q", r.allocID, alloc.TaskGroup)
r.setStatus(structs.AllocClientStatusFailed, fmt.Sprintf("missing task group '%s'", alloc.TaskGroup))
return
}
// Build allocation directory (idempotent)
r.allocDirLock.Lock()
err := r.allocDir.Build()
r.allocDirLock.Unlock()
if err != nil {
r.logger.Printf("[ERR] client: failed to build task directories: %v", err)
r.setStatus(structs.AllocClientStatusFailed, fmt.Sprintf("failed to build task dirs for '%s'", alloc.TaskGroup))
return
}
// Wait for a previous alloc - if any - to terminate
if err := r.prevAlloc.Wait(r.ctx); err != nil {
if err == context.Canceled {
return
}
r.setStatus(structs.AllocClientStatusFailed, fmt.Sprintf("error while waiting for previous alloc to terminate: %v", err))
return
}
// Wait for data to be migrated from a previous alloc if applicable
if err := r.prevAlloc.Migrate(r.ctx, r.allocDir); err != nil {
if err == context.Canceled {
return
}
// Soft-fail on migration errors
r.logger.Printf("[WARN] client: alloc %q error while migrating data from previous alloc: %v", r.allocID, err)
}
// Check if the allocation is in a terminal status. In this case, we don't
// start any of the task runners and directly wait for the destroy signal to
// clean up the allocation.
if alloc.TerminalStatus() {
r.logger.Printf("[DEBUG] client: alloc %q in terminal status, waiting for destroy", r.allocID)
// mark this allocation as completed if it is not already in a
// terminal state
if !alloc.Terminated() {
r.setStatus(structs.AllocClientStatusComplete, "canceled running tasks for allocation in terminal state")
}
r.handleDestroy()
r.logger.Printf("[DEBUG] client: terminating runner for alloc '%s'", r.allocID)
return
}
// Start the watcher
wCtx, watcherCancel := context.WithCancel(r.ctx)
go r.watchHealth(wCtx)
// Start the task runners
r.logger.Printf("[DEBUG] client: starting task runners for alloc '%s'", r.allocID)
r.taskLock.Lock()
for _, task := range tg.Tasks {
if _, ok := r.restored[task.Name]; ok {
continue
}
r.allocDirLock.Lock()
taskdir := r.allocDir.NewTaskDir(task.Name)
r.allocDirLock.Unlock()
tr := NewTaskRunner(r.logger, r.config, r.stateDB, r.setTaskState, taskdir, r.Alloc(), task.Copy(), r.vaultClient, r.consulClient)
r.tasks[task.Name] = tr
tr.MarkReceived()
go tr.Run()
}
r.taskLock.Unlock()
// taskDestroyEvent contains an event that caused the destroyment of a task
// in the allocation.
var taskDestroyEvent *structs.TaskEvent
OUTER:
// Wait for updates
for {
select {
case update := <-r.updateCh:
// Store the updated allocation.
r.allocLock.Lock()
// If the deployment ids have changed clear the health
if r.alloc.DeploymentID != update.DeploymentID {
r.allocHealth = nil
}
r.alloc = update
r.allocLock.Unlock()
// Create a new watcher
watcherCancel()
wCtx, watcherCancel = context.WithCancel(r.ctx)
go r.watchHealth(wCtx)
// Check if we're in a terminal status
if update.TerminalStatus() {
taskDestroyEvent = structs.NewTaskEvent(structs.TaskKilled)
break OUTER
}
// Update the task groups
runners := r.getTaskRunners()
for _, tr := range runners {
tr.Update(update)
}
if err := r.syncStatus(); err != nil {
r.logger.Printf("[WARN] client: failed to sync alloc %q status upon receiving alloc update: %v",
r.allocID, err)
}
case <-r.ctx.Done():
taskDestroyEvent = structs.NewTaskEvent(structs.TaskKilled)
break OUTER
}
}
// Kill the task runners
r.destroyTaskRunners(taskDestroyEvent)
// Block until we should destroy the state of the alloc
r.handleDestroy()
// Free up the context. It has likely exited already
watcherCancel()
r.logger.Printf("[DEBUG] client: terminating runner for alloc '%s'", r.allocID)
}
// destroyTaskRunners destroys the task runners, waits for them to terminate and
// then saves state.
func (r *AllocRunner) destroyTaskRunners(destroyEvent *structs.TaskEvent) {
// First destroy the leader if one exists
tg := r.alloc.Job.LookupTaskGroup(r.alloc.TaskGroup)
leader := ""
for _, task := range tg.Tasks {
if task.Leader {
leader = task.Name
break
}
}
if leader != "" {
r.taskLock.RLock()
tr := r.tasks[leader]
r.taskLock.RUnlock()
r.logger.Printf("[DEBUG] client: alloc %q destroying leader task %q of task group %q first",
r.allocID, leader, r.alloc.TaskGroup)
tr.Destroy(destroyEvent)
<-tr.WaitCh()
}
// Then destroy non-leader tasks concurrently
r.taskLock.RLock()
for name, tr := range r.tasks {
if name != leader {
tr.Destroy(destroyEvent)
}
}
r.taskLock.RUnlock()
// Wait for termination of the task runners
for _, tr := range r.getTaskRunners() {
<-tr.WaitCh()
}
}
// handleDestroy blocks till the AllocRunner should be destroyed and does the
// necessary cleanup.
func (r *AllocRunner) handleDestroy() {
// Final state sync. We do this to ensure that the server has the correct
// state as we wait for a destroy.
alloc := r.Alloc()
//TODO(schmichael) updater can cause a GC which can block on this alloc
// runner shutting down. Since handleDestroy can be called by Run() we
// can't block shutdown here as it would cause a deadlock.
go r.updater(alloc)
// Broadcast and persist state synchronously
r.sendBroadcast(alloc)
if err := r.saveAllocRunnerState(); err != nil {
r.logger.Printf("[WARN] client: alloc %q unable to persist state but should be GC'd soon anyway:%v",
r.allocID, err)
}
// Unmount any mounted directories as no tasks are running and makes
// cleaning up Nomad's data directory simpler.
if err := r.allocDir.UnmountAll(); err != nil {
r.logger.Printf("[ERR] client: alloc %q unable unmount task directories: %v", r.allocID, err)
}
for {
select {
case <-r.ctx.Done():
if err := r.DestroyContext(); err != nil {
r.logger.Printf("[ERR] client: failed to destroy context for alloc '%s': %v",
r.allocID, err)
}
if err := r.DestroyState(); err != nil {
r.logger.Printf("[ERR] client: failed to destroy state for alloc '%s': %v",
r.allocID, err)
}
return
case <-r.updateCh:
r.logger.Printf("[DEBUG] client: dropping update to terminal alloc '%s'", r.allocID)
}
}
}
// IsWaiting returns true if this alloc is waiting on a previous allocation to
// terminate.
func (r *AllocRunner) IsWaiting() bool {
return r.prevAlloc.IsWaiting()
}
// IsMigrating returns true if this alloc is migrating data from a previous
// allocation.
func (r *AllocRunner) IsMigrating() bool {
return r.prevAlloc.IsMigrating()
}
// Update is used to update the allocation of the context
func (r *AllocRunner) Update(update *structs.Allocation) {
select {
case r.updateCh <- update:
default:
r.logger.Printf("[ERR] client: dropping update to alloc '%s'", update.ID)
}
}
// StatsReporter returns an interface to query resource usage statistics of an
// allocation
func (r *AllocRunner) StatsReporter() AllocStatsReporter {
return r
}
// getTaskRunners is a helper that returns a copy of the task runners list using
// the taskLock.
func (r *AllocRunner) getTaskRunners() []*TaskRunner {
// Get the task runners
r.taskLock.RLock()
defer r.taskLock.RUnlock()
runners := make([]*TaskRunner, 0, len(r.tasks))
for _, tr := range r.tasks {
runners = append(runners, tr)
}
return runners
}
// LatestAllocStats returns the latest allocation stats. If the optional taskFilter is set
// the allocation stats will only include the given task.
func (r *AllocRunner) LatestAllocStats(taskFilter string) (*cstructs.AllocResourceUsage, error) {
astat := &cstructs.AllocResourceUsage{
Tasks: make(map[string]*cstructs.TaskResourceUsage),
}
var flat []*cstructs.TaskResourceUsage
if taskFilter != "" {
r.taskLock.RLock()
tr, ok := r.tasks[taskFilter]
r.taskLock.RUnlock()
if !ok {
return nil, fmt.Errorf("allocation %q has no task %q", r.allocID, taskFilter)
}
l := tr.LatestResourceUsage()
if l != nil {
astat.Tasks[taskFilter] = l
flat = []*cstructs.TaskResourceUsage{l}
astat.Timestamp = l.Timestamp
}
} else {
// Get the task runners
runners := r.getTaskRunners()
for _, tr := range runners {
l := tr.LatestResourceUsage()
if l != nil {
astat.Tasks[tr.task.Name] = l
flat = append(flat, l)
if l.Timestamp > astat.Timestamp {
astat.Timestamp = l.Timestamp
}
}
}
}
astat.ResourceUsage = sumTaskResourceUsage(flat)
return astat, nil
}
// sumTaskResourceUsage takes a set of task resources and sums their resources
func sumTaskResourceUsage(usages []*cstructs.TaskResourceUsage) *cstructs.ResourceUsage {
summed := &cstructs.ResourceUsage{
MemoryStats: &cstructs.MemoryStats{},
CpuStats: &cstructs.CpuStats{},
}
for _, usage := range usages {
summed.Add(usage.ResourceUsage)
}
return summed
}
// shouldUpdate takes the AllocModifyIndex of an allocation sent from the server and
// checks if the current running allocation is behind and should be updated.
func (r *AllocRunner) shouldUpdate(serverIndex uint64) bool {
r.allocLock.Lock()
defer r.allocLock.Unlock()
return r.alloc.AllocModifyIndex < serverIndex
}
// Destroy is used to indicate that the allocation context should be destroyed
func (r *AllocRunner) Destroy() {
// Lock when closing the context as that gives the save state code
// serialization.
r.allocStateLock.Lock()
defer r.allocStateLock.Unlock()
r.exitFn()
r.allocBroadcast.Close()
}
// WaitCh returns a channel to wait for termination
func (r *AllocRunner) WaitCh() <-chan struct{} {
return r.waitCh
}