open-nomad/nomad/leader.go
Tim Gross a7a64443e1
csi: move volume claim release into volumewatcher (#7794)
This changeset adds a subsystem to run on the leader, similar to the
deployment watcher or node drainer. The `Watcher` performs a blocking
query on updates to the `CSIVolumes` table and triggers reaping of
volume claims.

This will avoid tying up scheduling workers by immediately sending
volume claim workloads into their own loop, rather than blocking the
scheduling workers in the core GC job doing things like talking to CSI
controllers

The volume watcher is enabled on leader step-up and disabled on leader
step-down.

The volume claim GC mechanism now makes an empty claim RPC for the
volume to trigger an index bump. That in turn unblocks the blocking
query in the volume watcher so it can assess which claims can be
released for a volume.
2020-04-30 09:13:00 -04:00

1424 lines
43 KiB
Go

package nomad
import (
"bytes"
"context"
"fmt"
"math/rand"
"net"
"strings"
"sync"
"time"
"golang.org/x/time/rate"
metrics "github.com/armon/go-metrics"
log "github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
version "github.com/hashicorp/go-version"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/raft"
"github.com/hashicorp/serf/serf"
"github.com/pkg/errors"
)
const (
// failedEvalUnblockInterval is the interval at which failed evaluations are
// unblocked to re-enter the scheduler. A failed evaluation occurs under
// high contention when the schedulers plan does not make progress.
failedEvalUnblockInterval = 1 * time.Minute
// replicationRateLimit is used to rate limit how often data is replicated
// between the authoritative region and the local region
replicationRateLimit rate.Limit = 10.0
// barrierWriteTimeout is used to give Raft a chance to process a
// possible loss of leadership event if we are unable to get a barrier
// while leader.
barrierWriteTimeout = 2 * time.Minute
)
var minAutopilotVersion = version.Must(version.NewVersion("0.8.0"))
var minSchedulerConfigVersion = version.Must(version.NewVersion("0.9.0"))
var minClusterIDVersion = version.Must(version.NewVersion("0.10.4"))
// monitorLeadership is used to monitor if we acquire or lose our role
// as the leader in the Raft cluster. There is some work the leader is
// expected to do, so we must react to changes
func (s *Server) monitorLeadership() {
var weAreLeaderCh chan struct{}
var leaderLoop sync.WaitGroup
leaderCh := s.raft.LeaderCh()
leaderStep := func(isLeader bool) {
if isLeader {
if weAreLeaderCh != nil {
s.logger.Error("attempted to start the leader loop while running")
return
}
weAreLeaderCh = make(chan struct{})
leaderLoop.Add(1)
go func(ch chan struct{}) {
defer leaderLoop.Done()
s.leaderLoop(ch)
}(weAreLeaderCh)
s.logger.Info("cluster leadership acquired")
return
}
if weAreLeaderCh == nil {
s.logger.Error("attempted to stop the leader loop while not running")
return
}
s.logger.Debug("shutting down leader loop")
close(weAreLeaderCh)
leaderLoop.Wait()
weAreLeaderCh = nil
s.logger.Info("cluster leadership lost")
}
wasLeader := false
for {
select {
case isLeader := <-leaderCh:
if wasLeader != isLeader {
wasLeader = isLeader
// normal case where we went through a transition
leaderStep(isLeader)
} else if wasLeader && isLeader {
// Server lost but then gained leadership immediately.
// During this time, this server may have received
// Raft transitions that haven't been applied to the FSM
// yet.
// Ensure that that FSM caught up and eval queues are refreshed
s.logger.Warn("cluster leadership lost and gained leadership immediately. Could indicate network issues, memory paging, or high CPU load.")
leaderStep(false)
leaderStep(true)
} else {
// Server gained but lost leadership immediately
// before it reacted; nothing to do, move on
s.logger.Warn("cluster leadership gained and lost leadership immediately. Could indicate network issues, memory paging, or high CPU load.")
}
case <-s.shutdownCh:
return
}
}
}
// leaderLoop runs as long as we are the leader to run various
// maintenance activities
func (s *Server) leaderLoop(stopCh chan struct{}) {
var reconcileCh chan serf.Member
establishedLeader := false
RECONCILE:
// Setup a reconciliation timer
reconcileCh = nil
interval := time.After(s.config.ReconcileInterval)
// Apply a raft barrier to ensure our FSM is caught up
start := time.Now()
barrier := s.raft.Barrier(barrierWriteTimeout)
if err := barrier.Error(); err != nil {
s.logger.Error("failed to wait for barrier", "error", err)
goto WAIT
}
metrics.MeasureSince([]string{"nomad", "leader", "barrier"}, start)
// Check if we need to handle initial leadership actions
if !establishedLeader {
if err := s.establishLeadership(stopCh); err != nil {
s.logger.Error("failed to establish leadership", "error", err)
// Immediately revoke leadership since we didn't successfully
// establish leadership.
if err := s.revokeLeadership(); err != nil {
s.logger.Error("failed to revoke leadership", "error", err)
}
goto WAIT
}
establishedLeader = true
defer func() {
if err := s.revokeLeadership(); err != nil {
s.logger.Error("failed to revoke leadership", "error", err)
}
}()
}
// Reconcile any missing data
if err := s.reconcile(); err != nil {
s.logger.Error("failed to reconcile", "error", err)
goto WAIT
}
// Initial reconcile worked, now we can process the channel
// updates
reconcileCh = s.reconcileCh
// Poll the stop channel to give it priority so we don't waste time
// trying to perform the other operations if we have been asked to shut
// down.
select {
case <-stopCh:
return
default:
}
WAIT:
// Wait until leadership is lost
for {
select {
case <-stopCh:
return
case <-s.shutdownCh:
return
case <-interval:
goto RECONCILE
case member := <-reconcileCh:
s.reconcileMember(member)
}
}
}
// establishLeadership is invoked once we become leader and are able
// to invoke an initial barrier. The barrier is used to ensure any
// previously inflight transactions have been committed and that our
// state is up-to-date.
func (s *Server) establishLeadership(stopCh chan struct{}) error {
defer metrics.MeasureSince([]string{"nomad", "leader", "establish_leadership"}, time.Now())
// Generate a leader ACL token. This will allow the leader to issue work
// that requires a valid ACL token.
s.setLeaderAcl(uuid.Generate())
// Disable workers to free half the cores for use in the plan queue and
// evaluation broker
if numWorkers := len(s.workers); numWorkers > 1 {
// Disabling 3/4 of the workers frees CPU for raft and the
// plan applier which uses 1/2 the cores.
for i := 0; i < (3 * numWorkers / 4); i++ {
s.workers[i].SetPause(true)
}
}
// Initialize and start the autopilot routine
s.getOrCreateAutopilotConfig()
s.autopilot.Start()
// Initialize scheduler configuration
s.getOrCreateSchedulerConfig()
// Initialize the ClusterID
_, _ = s.ClusterID()
// todo: use cluster ID for stuff, later!
// Enable the plan queue, since we are now the leader
s.planQueue.SetEnabled(true)
// Start the plan evaluator
go s.planApply()
// Enable the eval broker, since we are now the leader
s.evalBroker.SetEnabled(true)
// Enable the blocked eval tracker, since we are now the leader
s.blockedEvals.SetEnabled(true)
s.blockedEvals.SetTimetable(s.fsm.TimeTable())
// Enable the deployment watcher, since we are now the leader
s.deploymentWatcher.SetEnabled(true, s.State())
// Enable the NodeDrainer
s.nodeDrainer.SetEnabled(true, s.State())
// Enable the volume watcher, since we are now the leader
s.volumeWatcher.SetEnabled(true, s.State())
// Restore the eval broker state
if err := s.restoreEvals(); err != nil {
return err
}
// Activate the vault client
s.vault.SetActive(true)
// Cleanup orphaned Vault token accessors
if err := s.revokeVaultAccessorsOnRestore(); err != nil {
return err
}
// Cleanup orphaned Service Identity token accessors
if err := s.revokeSITokenAccessorsOnRestore(); err != nil {
return err
}
// Enable the periodic dispatcher, since we are now the leader.
s.periodicDispatcher.SetEnabled(true)
// Restore the periodic dispatcher state
if err := s.restorePeriodicDispatcher(); err != nil {
return err
}
// Scheduler periodic jobs
go s.schedulePeriodic(stopCh)
// Reap any failed evaluations
go s.reapFailedEvaluations(stopCh)
// Reap any duplicate blocked evaluations
go s.reapDupBlockedEvaluations(stopCh)
// Periodically unblock failed allocations
go s.periodicUnblockFailedEvals(stopCh)
// Periodically publish job summary metrics
go s.publishJobSummaryMetrics(stopCh)
// Periodically publish job status metrics
go s.publishJobStatusMetrics(stopCh)
// Setup the heartbeat timers. This is done both when starting up or when
// a leader fail over happens. Since the timers are maintained by the leader
// node, effectively this means all the timers are renewed at the time of failover.
// The TTL contract is that the session will not be expired before the TTL,
// so expiring it later is allowable.
//
// This MUST be done after the initial barrier to ensure the latest Nodes
// are available to be initialized. Otherwise initialization may use stale
// data.
if err := s.initializeHeartbeatTimers(); err != nil {
s.logger.Error("heartbeat timer setup failed", "error", err)
return err
}
// Start replication of ACLs and Policies if they are enabled,
// and we are not the authoritative region.
if s.config.ACLEnabled && s.config.Region != s.config.AuthoritativeRegion {
go s.replicateACLPolicies(stopCh)
go s.replicateACLTokens(stopCh)
}
// Setup any enterprise systems required.
if err := s.establishEnterpriseLeadership(stopCh); err != nil {
return err
}
s.setConsistentReadReady()
return nil
}
// restoreEvals is used to restore pending evaluations into the eval broker and
// blocked evaluations into the blocked eval tracker. The broker and blocked
// eval tracker is maintained only by the leader, so it must be restored anytime
// a leadership transition takes place.
func (s *Server) restoreEvals() error {
// Get an iterator over every evaluation
ws := memdb.NewWatchSet()
iter, err := s.fsm.State().Evals(ws)
if err != nil {
return fmt.Errorf("failed to get evaluations: %v", err)
}
for {
raw := iter.Next()
if raw == nil {
break
}
eval := raw.(*structs.Evaluation)
if eval.ShouldEnqueue() {
s.evalBroker.Enqueue(eval)
} else if eval.ShouldBlock() {
s.blockedEvals.Block(eval)
}
}
return nil
}
// revokeVaultAccessorsOnRestore is used to restore Vault accessors that should be
// revoked.
func (s *Server) revokeVaultAccessorsOnRestore() error {
// An accessor should be revoked if its allocation or node is terminal
ws := memdb.NewWatchSet()
state := s.fsm.State()
iter, err := state.VaultAccessors(ws)
if err != nil {
return fmt.Errorf("failed to get vault accessors: %v", err)
}
var revoke []*structs.VaultAccessor
for {
raw := iter.Next()
if raw == nil {
break
}
va := raw.(*structs.VaultAccessor)
// Check the allocation
alloc, err := state.AllocByID(ws, va.AllocID)
if err != nil {
return fmt.Errorf("failed to lookup allocation %q: %v", va.AllocID, err)
}
if alloc == nil || alloc.Terminated() {
// No longer running and should be revoked
revoke = append(revoke, va)
continue
}
// Check the node
node, err := state.NodeByID(ws, va.NodeID)
if err != nil {
return fmt.Errorf("failed to lookup node %q: %v", va.NodeID, err)
}
if node == nil || node.TerminalStatus() {
// Node is terminal so any accessor from it should be revoked
revoke = append(revoke, va)
continue
}
}
if len(revoke) != 0 {
if err := s.vault.RevokeTokens(context.Background(), revoke, true); err != nil {
return fmt.Errorf("failed to revoke tokens: %v", err)
}
}
return nil
}
// revokeSITokenAccessorsOnRestore is used to revoke Service Identity token
// accessors on behalf of allocs that are now gone / terminal.
func (s *Server) revokeSITokenAccessorsOnRestore() error {
ws := memdb.NewWatchSet()
fsmState := s.fsm.State()
iter, err := fsmState.SITokenAccessors(ws)
if err != nil {
return errors.Wrap(err, "failed to get SI token accessors")
}
var toRevoke []*structs.SITokenAccessor
for raw := iter.Next(); raw != nil; raw = iter.Next() {
accessor := raw.(*structs.SITokenAccessor)
// Check the allocation
alloc, err := fsmState.AllocByID(ws, accessor.AllocID)
if err != nil {
return errors.Wrapf(err, "failed to lookup alloc %q", accessor.AllocID)
}
if alloc == nil || alloc.Terminated() {
// no longer running and associated accessors should be revoked
toRevoke = append(toRevoke, accessor)
continue
}
// Check the node
node, err := fsmState.NodeByID(ws, accessor.NodeID)
if err != nil {
return errors.Wrapf(err, "failed to lookup node %q", accessor.NodeID)
}
if node == nil || node.TerminalStatus() {
// node is terminal and associated accessors should be revoked
toRevoke = append(toRevoke, accessor)
continue
}
}
if len(toRevoke) > 0 {
ctx := context.Background()
s.consulACLs.RevokeTokens(ctx, toRevoke, true)
}
return nil
}
// restorePeriodicDispatcher is used to restore all periodic jobs into the
// periodic dispatcher. It also determines if a periodic job should have been
// created during the leadership transition and force runs them. The periodic
// dispatcher is maintained only by the leader, so it must be restored anytime a
// leadership transition takes place.
func (s *Server) restorePeriodicDispatcher() error {
logger := s.logger.Named("periodic")
ws := memdb.NewWatchSet()
iter, err := s.fsm.State().JobsByPeriodic(ws, true)
if err != nil {
return fmt.Errorf("failed to get periodic jobs: %v", err)
}
now := time.Now()
for i := iter.Next(); i != nil; i = iter.Next() {
job := i.(*structs.Job)
// We skip adding parameterized jobs because they themselves aren't
// tracked, only the dispatched children are.
if job.IsParameterized() {
continue
}
if err := s.periodicDispatcher.Add(job); err != nil {
logger.Error("failed to add job to periodic dispatcher", "error", err)
continue
}
// We do not need to force run the job since it isn't active.
if !job.IsPeriodicActive() {
continue
}
// If the periodic job has never been launched before, launch will hold
// the time the periodic job was added. Otherwise it has the last launch
// time of the periodic job.
launch, err := s.fsm.State().PeriodicLaunchByID(ws, job.Namespace, job.ID)
if err != nil {
return fmt.Errorf("failed to get periodic launch time: %v", err)
}
if launch == nil {
return fmt.Errorf("no recorded periodic launch time for job %q in namespace %q",
job.ID, job.Namespace)
}
// nextLaunch is the next launch that should occur.
nextLaunch, err := job.Periodic.Next(launch.Launch.In(job.Periodic.GetLocation()))
if err != nil {
logger.Error("failed to determine next periodic launch for job", "job", job.NamespacedID(), "error", err)
continue
}
// We skip force launching the job if there should be no next launch
// (the zero case) or if the next launch time is in the future. If it is
// in the future, it will be handled by the periodic dispatcher.
if nextLaunch.IsZero() || !nextLaunch.Before(now) {
continue
}
if _, err := s.periodicDispatcher.ForceRun(job.Namespace, job.ID); err != nil {
logger.Error("force run of periodic job failed", "job", job.NamespacedID(), "error", err)
return fmt.Errorf("force run of periodic job %q failed: %v", job.NamespacedID(), err)
}
logger.Debug("periodic job force runned during leadership establishment", "job", job.NamespacedID())
}
return nil
}
// schedulePeriodic is used to do periodic job dispatch while we are leader
func (s *Server) schedulePeriodic(stopCh chan struct{}) {
evalGC := time.NewTicker(s.config.EvalGCInterval)
defer evalGC.Stop()
nodeGC := time.NewTicker(s.config.NodeGCInterval)
defer nodeGC.Stop()
jobGC := time.NewTicker(s.config.JobGCInterval)
defer jobGC.Stop()
deploymentGC := time.NewTicker(s.config.DeploymentGCInterval)
defer deploymentGC.Stop()
// getLatest grabs the latest index from the state store. It returns true if
// the index was retrieved successfully.
getLatest := func() (uint64, bool) {
snapshotIndex, err := s.fsm.State().LatestIndex()
if err != nil {
s.logger.Error("failed to determine state store's index", "error", err)
return 0, false
}
return snapshotIndex, true
}
for {
select {
case <-evalGC.C:
if index, ok := getLatest(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobEvalGC, index))
}
case <-nodeGC.C:
if index, ok := getLatest(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobNodeGC, index))
}
case <-jobGC.C:
if index, ok := getLatest(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobJobGC, index))
}
case <-deploymentGC.C:
if index, ok := getLatest(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobDeploymentGC, index))
}
case <-stopCh:
return
}
}
}
// coreJobEval returns an evaluation for a core job
func (s *Server) coreJobEval(job string, modifyIndex uint64) *structs.Evaluation {
return &structs.Evaluation{
ID: uuid.Generate(),
Namespace: "-",
Priority: structs.CoreJobPriority,
Type: structs.JobTypeCore,
TriggeredBy: structs.EvalTriggerScheduled,
JobID: job,
LeaderACL: s.getLeaderAcl(),
Status: structs.EvalStatusPending,
ModifyIndex: modifyIndex,
}
}
// reapFailedEvaluations is used to reap evaluations that
// have reached their delivery limit and should be failed
func (s *Server) reapFailedEvaluations(stopCh chan struct{}) {
for {
select {
case <-stopCh:
return
default:
// Scan for a failed evaluation
eval, token, err := s.evalBroker.Dequeue([]string{failedQueue}, time.Second)
if err != nil {
return
}
if eval == nil {
continue
}
// Update the status to failed
updateEval := eval.Copy()
updateEval.Status = structs.EvalStatusFailed
updateEval.StatusDescription = fmt.Sprintf("evaluation reached delivery limit (%d)", s.config.EvalDeliveryLimit)
s.logger.Warn("eval reached delivery limit, marking as failed", "eval", updateEval.GoString())
// Create a follow-up evaluation that will be used to retry the
// scheduling for the job after the cluster is hopefully more stable
// due to the fairly large backoff.
followupEvalWait := s.config.EvalFailedFollowupBaselineDelay +
time.Duration(rand.Int63n(int64(s.config.EvalFailedFollowupDelayRange)))
followupEval := eval.CreateFailedFollowUpEval(followupEvalWait)
updateEval.NextEval = followupEval.ID
updateEval.UpdateModifyTime()
// Update via Raft
req := structs.EvalUpdateRequest{
Evals: []*structs.Evaluation{updateEval, followupEval},
}
if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil {
s.logger.Error("failed to update failed eval and create a follow-up", "eval", updateEval.GoString(), "error", err)
continue
}
// Ack completion
s.evalBroker.Ack(eval.ID, token)
}
}
}
// reapDupBlockedEvaluations is used to reap duplicate blocked evaluations and
// should be cancelled.
func (s *Server) reapDupBlockedEvaluations(stopCh chan struct{}) {
for {
select {
case <-stopCh:
return
default:
// Scan for duplicate blocked evals.
dups := s.blockedEvals.GetDuplicates(time.Second)
if dups == nil {
continue
}
cancel := make([]*structs.Evaluation, len(dups))
for i, dup := range dups {
// Update the status to cancelled
newEval := dup.Copy()
newEval.Status = structs.EvalStatusCancelled
newEval.StatusDescription = fmt.Sprintf("existing blocked evaluation exists for job %q", newEval.JobID)
newEval.UpdateModifyTime()
cancel[i] = newEval
}
// Update via Raft
req := structs.EvalUpdateRequest{
Evals: cancel,
}
if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil {
s.logger.Error("failed to update duplicate evals", "evals", log.Fmt("%#v", cancel), "error", err)
continue
}
}
}
}
// periodicUnblockFailedEvals periodically unblocks failed, blocked evaluations.
func (s *Server) periodicUnblockFailedEvals(stopCh chan struct{}) {
ticker := time.NewTicker(failedEvalUnblockInterval)
defer ticker.Stop()
for {
select {
case <-stopCh:
return
case <-ticker.C:
// Unblock the failed allocations
s.blockedEvals.UnblockFailed()
}
}
}
// publishJobSummaryMetrics publishes the job summaries as metrics
func (s *Server) publishJobSummaryMetrics(stopCh chan struct{}) {
timer := time.NewTimer(0)
defer timer.Stop()
for {
select {
case <-stopCh:
return
case <-timer.C:
timer.Reset(s.config.StatsCollectionInterval)
state, err := s.State().Snapshot()
if err != nil {
s.logger.Error("failed to get state", "error", err)
continue
}
ws := memdb.NewWatchSet()
iter, err := state.JobSummaries(ws)
if err != nil {
s.logger.Error("failed to get job summaries", "error", err)
continue
}
for {
raw := iter.Next()
if raw == nil {
break
}
summary := raw.(*structs.JobSummary)
if s.config.DisableDispatchedJobSummaryMetrics {
job, err := state.JobByID(ws, summary.Namespace, summary.JobID)
if err != nil {
s.logger.Error("error getting job for summary", "error", err)
continue
}
if job.Dispatched {
continue
}
}
s.iterateJobSummaryMetrics(summary)
}
}
}
}
func (s *Server) iterateJobSummaryMetrics(summary *structs.JobSummary) {
for name, tgSummary := range summary.Summary {
if !s.config.DisableTaggedMetrics {
labels := []metrics.Label{
{
Name: "job",
Value: summary.JobID,
},
{
Name: "task_group",
Value: name,
},
{
Name: "namespace",
Value: summary.Namespace,
},
}
if strings.Contains(summary.JobID, "/dispatch-") {
jobInfo := strings.Split(summary.JobID, "/dispatch-")
labels = append(labels, metrics.Label{
Name: "parent_id",
Value: jobInfo[0],
}, metrics.Label{
Name: "dispatch_id",
Value: jobInfo[1],
})
}
if strings.Contains(summary.JobID, "/periodic-") {
jobInfo := strings.Split(summary.JobID, "/periodic-")
labels = append(labels, metrics.Label{
Name: "parent_id",
Value: jobInfo[0],
}, metrics.Label{
Name: "periodic_id",
Value: jobInfo[1],
})
}
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "queued"},
float32(tgSummary.Queued), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "complete"},
float32(tgSummary.Complete), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "failed"},
float32(tgSummary.Failed), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "running"},
float32(tgSummary.Running), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "starting"},
float32(tgSummary.Starting), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "lost"},
float32(tgSummary.Lost), labels)
}
if s.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"nomad", "job_summary", summary.JobID, name, "queued"}, float32(tgSummary.Queued))
metrics.SetGauge([]string{"nomad", "job_summary", summary.JobID, name, "complete"}, float32(tgSummary.Complete))
metrics.SetGauge([]string{"nomad", "job_summary", summary.JobID, name, "failed"}, float32(tgSummary.Failed))
metrics.SetGauge([]string{"nomad", "job_summary", summary.JobID, name, "running"}, float32(tgSummary.Running))
metrics.SetGauge([]string{"nomad", "job_summary", summary.JobID, name, "starting"}, float32(tgSummary.Starting))
metrics.SetGauge([]string{"nomad", "job_summary", summary.JobID, name, "lost"}, float32(tgSummary.Lost))
}
}
}
// publishJobStatusMetrics publishes the job statuses as metrics
func (s *Server) publishJobStatusMetrics(stopCh chan struct{}) {
timer := time.NewTimer(0)
defer timer.Stop()
for {
select {
case <-stopCh:
return
case <-timer.C:
timer.Reset(s.config.StatsCollectionInterval)
state, err := s.State().Snapshot()
if err != nil {
s.logger.Error("failed to get state", "error", err)
continue
}
ws := memdb.NewWatchSet()
iter, err := state.Jobs(ws)
if err != nil {
s.logger.Error("failed to get job statuses", "error", err)
continue
}
s.iterateJobStatusMetrics(&iter)
}
}
}
func (s *Server) iterateJobStatusMetrics(jobs *memdb.ResultIterator) {
var pending int64 // Sum of all jobs in 'pending' state
var running int64 // Sum of all jobs in 'running' state
var dead int64 // Sum of all jobs in 'dead' state
for {
raw := (*jobs).Next()
if raw == nil {
break
}
job := raw.(*structs.Job)
switch job.Status {
case structs.JobStatusPending:
pending++
case structs.JobStatusRunning:
running++
case structs.JobStatusDead:
dead++
}
}
metrics.SetGauge([]string{"nomad", "job_status", "pending"}, float32(pending))
metrics.SetGauge([]string{"nomad", "job_status", "running"}, float32(running))
metrics.SetGauge([]string{"nomad", "job_status", "dead"}, float32(dead))
}
// revokeLeadership is invoked once we step down as leader.
// This is used to cleanup any state that may be specific to a leader.
func (s *Server) revokeLeadership() error {
defer metrics.MeasureSince([]string{"nomad", "leader", "revoke_leadership"}, time.Now())
s.resetConsistentReadReady()
// Clear the leader token since we are no longer the leader.
s.setLeaderAcl("")
// Disable autopilot
s.autopilot.Stop()
// Disable the plan queue, since we are no longer leader
s.planQueue.SetEnabled(false)
// Disable the eval broker, since it is only useful as a leader
s.evalBroker.SetEnabled(false)
// Disable the blocked eval tracker, since it is only useful as a leader
s.blockedEvals.SetEnabled(false)
// Disable the periodic dispatcher, since it is only useful as a leader
s.periodicDispatcher.SetEnabled(false)
// Disable the Vault client as it is only useful as a leader.
s.vault.SetActive(false)
// Disable the deployment watcher as it is only useful as a leader.
s.deploymentWatcher.SetEnabled(false, nil)
// Disable the node drainer
s.nodeDrainer.SetEnabled(false, nil)
// Disable the volume watcher
s.volumeWatcher.SetEnabled(false, nil)
// Disable any enterprise systems required.
if err := s.revokeEnterpriseLeadership(); err != nil {
return err
}
// Clear the heartbeat timers on either shutdown or step down,
// since we are no longer responsible for TTL expirations.
if err := s.clearAllHeartbeatTimers(); err != nil {
s.logger.Error("clearing heartbeat timers failed", "error", err)
return err
}
// Unpause our worker if we paused previously
if len(s.workers) > 1 {
for i := 0; i < len(s.workers)/2; i++ {
s.workers[i].SetPause(false)
}
}
return nil
}
// reconcile is used to reconcile the differences between Serf
// membership and what is reflected in our strongly consistent store.
func (s *Server) reconcile() error {
defer metrics.MeasureSince([]string{"nomad", "leader", "reconcile"}, time.Now())
members := s.serf.Members()
for _, member := range members {
if err := s.reconcileMember(member); err != nil {
return err
}
}
return nil
}
// reconcileMember is used to do an async reconcile of a single serf member
func (s *Server) reconcileMember(member serf.Member) error {
// Check if this is a member we should handle
valid, parts := isNomadServer(member)
if !valid || parts.Region != s.config.Region {
return nil
}
defer metrics.MeasureSince([]string{"nomad", "leader", "reconcileMember"}, time.Now())
var err error
switch member.Status {
case serf.StatusAlive:
err = s.addRaftPeer(member, parts)
case serf.StatusLeft, StatusReap:
err = s.removeRaftPeer(member, parts)
}
if err != nil {
s.logger.Error("failed to reconcile member", "member", member, "error", err)
return err
}
return nil
}
// addRaftPeer is used to add a new Raft peer when a Nomad server joins
func (s *Server) addRaftPeer(m serf.Member, parts *serverParts) error {
// Check for possibility of multiple bootstrap nodes
members := s.serf.Members()
if parts.Bootstrap {
for _, member := range members {
valid, p := isNomadServer(member)
if valid && member.Name != m.Name && p.Bootstrap {
s.logger.Error("skipping adding Raft peer because an existing peer is in bootstrap mode and only one server should be in bootstrap mode",
"existing_peer", member.Name, "joining_peer", m.Name)
return nil
}
}
}
// Processing ourselves could result in trying to remove ourselves to
// fix up our address, which would make us step down. This is only
// safe to attempt if there are multiple servers available.
addr := (&net.TCPAddr{IP: m.Addr, Port: parts.Port}).String()
configFuture := s.raft.GetConfiguration()
if err := configFuture.Error(); err != nil {
s.logger.Error("failed to get raft configuration", "error", err)
return err
}
if m.Name == s.config.NodeName {
if l := len(configFuture.Configuration().Servers); l < 3 {
s.logger.Debug("skipping self join check for peer since the cluster is too small", "peer", m.Name)
return nil
}
}
// See if it's already in the configuration. It's harmless to re-add it
// but we want to avoid doing that if possible to prevent useless Raft
// log entries. If the address is the same but the ID changed, remove the
// old server before adding the new one.
minRaftProtocol, err := s.autopilot.MinRaftProtocol()
if err != nil {
return err
}
for _, server := range configFuture.Configuration().Servers {
// No-op if the raft version is too low
if server.Address == raft.ServerAddress(addr) && (minRaftProtocol < 2 || parts.RaftVersion < 3) {
return nil
}
// If the address or ID matches an existing server, see if we need to remove the old one first
if server.Address == raft.ServerAddress(addr) || server.ID == raft.ServerID(parts.ID) {
// Exit with no-op if this is being called on an existing server and both the ID and address match
if server.Address == raft.ServerAddress(addr) && server.ID == raft.ServerID(parts.ID) {
return nil
}
future := s.raft.RemoveServer(server.ID, 0, 0)
if server.Address == raft.ServerAddress(addr) {
if err := future.Error(); err != nil {
return fmt.Errorf("error removing server with duplicate address %q: %s", server.Address, err)
}
s.logger.Info("removed server with duplicate address", "address", server.Address)
} else {
if err := future.Error(); err != nil {
return fmt.Errorf("error removing server with duplicate ID %q: %s", server.ID, err)
}
s.logger.Info("removed server with duplicate ID", "id", server.ID)
}
}
}
// Attempt to add as a peer
switch {
case minRaftProtocol >= 3:
addFuture := s.raft.AddNonvoter(raft.ServerID(parts.ID), raft.ServerAddress(addr), 0, 0)
if err := addFuture.Error(); err != nil {
s.logger.Error("failed to add raft peer", "error", err)
return err
}
case minRaftProtocol == 2 && parts.RaftVersion >= 3:
addFuture := s.raft.AddVoter(raft.ServerID(parts.ID), raft.ServerAddress(addr), 0, 0)
if err := addFuture.Error(); err != nil {
s.logger.Error("failed to add raft peer", "error", err)
return err
}
default:
addFuture := s.raft.AddPeer(raft.ServerAddress(addr))
if err := addFuture.Error(); err != nil {
s.logger.Error("failed to add raft peer", "error", err)
return err
}
}
return nil
}
// removeRaftPeer is used to remove a Raft peer when a Nomad server leaves
// or is reaped
func (s *Server) removeRaftPeer(m serf.Member, parts *serverParts) error {
addr := (&net.TCPAddr{IP: m.Addr, Port: parts.Port}).String()
// See if it's already in the configuration. It's harmless to re-remove it
// but we want to avoid doing that if possible to prevent useless Raft
// log entries.
configFuture := s.raft.GetConfiguration()
if err := configFuture.Error(); err != nil {
s.logger.Error("failed to get raft configuration", "error", err)
return err
}
minRaftProtocol, err := s.autopilot.MinRaftProtocol()
if err != nil {
return err
}
// Pick which remove API to use based on how the server was added.
for _, server := range configFuture.Configuration().Servers {
// If we understand the new add/remove APIs and the server was added by ID, use the new remove API
if minRaftProtocol >= 2 && server.ID == raft.ServerID(parts.ID) {
s.logger.Info("removing server by ID", "id", server.ID)
future := s.raft.RemoveServer(raft.ServerID(parts.ID), 0, 0)
if err := future.Error(); err != nil {
s.logger.Error("failed to remove raft peer", "id", server.ID, "error", err)
return err
}
break
} else if server.Address == raft.ServerAddress(addr) {
// If not, use the old remove API
s.logger.Info("removing server by address", "address", server.Address)
future := s.raft.RemovePeer(raft.ServerAddress(addr))
if err := future.Error(); err != nil {
s.logger.Error("failed to remove raft peer", "address", addr, "error", err)
return err
}
break
}
}
return nil
}
// replicateACLPolicies is used to replicate ACL policies from
// the authoritative region to this region.
func (s *Server) replicateACLPolicies(stopCh chan struct{}) {
req := structs.ACLPolicyListRequest{
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AllowStale: true,
},
}
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting ACL policy replication from authoritative region", "authoritative_region", req.Region)
START:
for {
select {
case <-stopCh:
return
default:
// Rate limit how often we attempt replication
limiter.Wait(context.Background())
// Fetch the list of policies
var resp structs.ACLPolicyListResponse
req.AuthToken = s.ReplicationToken()
err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.ListPolicies", &req, &resp)
if err != nil {
s.logger.Error("failed to fetch policies from authoritative region", "error", err)
goto ERR_WAIT
}
// Perform a two-way diff
delete, update := diffACLPolicies(s.State(), req.MinQueryIndex, resp.Policies)
// Delete policies that should not exist
if len(delete) > 0 {
args := &structs.ACLPolicyDeleteRequest{
Names: delete,
}
_, _, err := s.raftApply(structs.ACLPolicyDeleteRequestType, args)
if err != nil {
s.logger.Error("failed to delete policies", "error", err)
goto ERR_WAIT
}
}
// Fetch any outdated policies
var fetched []*structs.ACLPolicy
if len(update) > 0 {
req := structs.ACLPolicySetRequest{
Names: update,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.ACLPolicySetResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.GetPolicies", &req, &reply); err != nil {
s.logger.Error("failed to fetch policies from authoritative region", "error", err)
goto ERR_WAIT
}
for _, policy := range reply.Policies {
fetched = append(fetched, policy)
}
}
// Update local policies
if len(fetched) > 0 {
args := &structs.ACLPolicyUpsertRequest{
Policies: fetched,
}
_, _, err := s.raftApply(structs.ACLPolicyUpsertRequestType, args)
if err != nil {
s.logger.Error("failed to update policies", "error", err)
goto ERR_WAIT
}
}
// Update the minimum query index, blocks until there
// is a change.
req.MinQueryIndex = resp.Index
}
}
ERR_WAIT:
select {
case <-time.After(s.config.ReplicationBackoff):
goto START
case <-stopCh:
return
}
}
// diffACLPolicies is used to perform a two-way diff between the local
// policies and the remote policies to determine which policies need to
// be deleted or updated.
func diffACLPolicies(state *state.StateStore, minIndex uint64, remoteList []*structs.ACLPolicyListStub) (delete []string, update []string) {
// Construct a set of the local and remote policies
local := make(map[string][]byte)
remote := make(map[string]struct{})
// Add all the local policies
iter, err := state.ACLPolicies(nil)
if err != nil {
panic("failed to iterate local policies")
}
for {
raw := iter.Next()
if raw == nil {
break
}
policy := raw.(*structs.ACLPolicy)
local[policy.Name] = policy.Hash
}
// Iterate over the remote policies
for _, rp := range remoteList {
remote[rp.Name] = struct{}{}
// Check if the policy is missing locally
if localHash, ok := local[rp.Name]; !ok {
update = append(update, rp.Name)
// Check if policy is newer remotely and there is a hash mis-match.
} else if rp.ModifyIndex > minIndex && !bytes.Equal(localHash, rp.Hash) {
update = append(update, rp.Name)
}
}
// Check if policy should be deleted
for lp := range local {
if _, ok := remote[lp]; !ok {
delete = append(delete, lp)
}
}
return
}
// replicateACLTokens is used to replicate global ACL tokens from
// the authoritative region to this region.
func (s *Server) replicateACLTokens(stopCh chan struct{}) {
req := structs.ACLTokenListRequest{
GlobalOnly: true,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AllowStale: true,
},
}
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting ACL token replication from authoritative region", "authoritative_region", req.Region)
START:
for {
select {
case <-stopCh:
return
default:
// Rate limit how often we attempt replication
limiter.Wait(context.Background())
// Fetch the list of tokens
var resp structs.ACLTokenListResponse
req.AuthToken = s.ReplicationToken()
err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.ListTokens", &req, &resp)
if err != nil {
s.logger.Error("failed to fetch tokens from authoritative region", "error", err)
goto ERR_WAIT
}
// Perform a two-way diff
delete, update := diffACLTokens(s.State(), req.MinQueryIndex, resp.Tokens)
// Delete tokens that should not exist
if len(delete) > 0 {
args := &structs.ACLTokenDeleteRequest{
AccessorIDs: delete,
}
_, _, err := s.raftApply(structs.ACLTokenDeleteRequestType, args)
if err != nil {
s.logger.Error("failed to delete tokens", "error", err)
goto ERR_WAIT
}
}
// Fetch any outdated policies.
var fetched []*structs.ACLToken
if len(update) > 0 {
req := structs.ACLTokenSetRequest{
AccessorIDS: update,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.ACLTokenSetResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.GetTokens", &req, &reply); err != nil {
s.logger.Error("failed to fetch tokens from authoritative region", "error", err)
goto ERR_WAIT
}
for _, token := range reply.Tokens {
fetched = append(fetched, token)
}
}
// Update local tokens
if len(fetched) > 0 {
args := &structs.ACLTokenUpsertRequest{
Tokens: fetched,
}
_, _, err := s.raftApply(structs.ACLTokenUpsertRequestType, args)
if err != nil {
s.logger.Error("failed to update tokens", "error", err)
goto ERR_WAIT
}
}
// Update the minimum query index, blocks until there
// is a change.
req.MinQueryIndex = resp.Index
}
}
ERR_WAIT:
select {
case <-time.After(s.config.ReplicationBackoff):
goto START
case <-stopCh:
return
}
}
// diffACLTokens is used to perform a two-way diff between the local
// tokens and the remote tokens to determine which tokens need to
// be deleted or updated.
func diffACLTokens(state *state.StateStore, minIndex uint64, remoteList []*structs.ACLTokenListStub) (delete []string, update []string) {
// Construct a set of the local and remote policies
local := make(map[string][]byte)
remote := make(map[string]struct{})
// Add all the local global tokens
iter, err := state.ACLTokensByGlobal(nil, true)
if err != nil {
panic("failed to iterate local tokens")
}
for {
raw := iter.Next()
if raw == nil {
break
}
token := raw.(*structs.ACLToken)
local[token.AccessorID] = token.Hash
}
// Iterate over the remote tokens
for _, rp := range remoteList {
remote[rp.AccessorID] = struct{}{}
// Check if the token is missing locally
if localHash, ok := local[rp.AccessorID]; !ok {
update = append(update, rp.AccessorID)
// Check if policy is newer remotely and there is a hash mis-match.
} else if rp.ModifyIndex > minIndex && !bytes.Equal(localHash, rp.Hash) {
update = append(update, rp.AccessorID)
}
}
// Check if local token should be deleted
for lp := range local {
if _, ok := remote[lp]; !ok {
delete = append(delete, lp)
}
}
return
}
// getOrCreateAutopilotConfig is used to get the autopilot config, initializing it if necessary
func (s *Server) getOrCreateAutopilotConfig() *structs.AutopilotConfig {
state := s.fsm.State()
_, config, err := state.AutopilotConfig()
if err != nil {
s.logger.Named("autopilot").Error("failed to get autopilot config", "error", err)
return nil
}
if config != nil {
return config
}
if !ServersMeetMinimumVersion(s.Members(), minAutopilotVersion, false) {
s.logger.Named("autopilot").Warn("can't initialize until all servers are above minimum version", "min_version", minAutopilotVersion)
return nil
}
config = s.config.AutopilotConfig
req := structs.AutopilotSetConfigRequest{Config: *config}
if _, _, err = s.raftApply(structs.AutopilotRequestType, req); err != nil {
s.logger.Named("autopilot").Error("failed to initialize config", "error", err)
return nil
}
return config
}
// getOrCreateSchedulerConfig is used to get the scheduler config. We create a default
// config if it doesn't already exist for bootstrapping an empty cluster
func (s *Server) getOrCreateSchedulerConfig() *structs.SchedulerConfiguration {
state := s.fsm.State()
_, config, err := state.SchedulerConfig()
if err != nil {
s.logger.Named("core").Error("failed to get scheduler config", "error", err)
return nil
}
if config != nil {
return config
}
if !ServersMeetMinimumVersion(s.Members(), minSchedulerConfigVersion, false) {
s.logger.Named("core").Warn("can't initialize scheduler config until all servers are above minimum version", "min_version", minSchedulerConfigVersion)
return nil
}
req := structs.SchedulerSetConfigRequest{Config: s.config.DefaultSchedulerConfig}
if _, _, err = s.raftApply(structs.SchedulerConfigRequestType, req); err != nil {
s.logger.Named("core").Error("failed to initialize config", "error", err)
return nil
}
return config
}
func (s *Server) generateClusterID() (string, error) {
if !ServersMeetMinimumVersion(s.Members(), minClusterIDVersion, false) {
s.logger.Named("core").Warn("cannot initialize cluster ID until all servers are above minimum version", "min_version", minClusterIDVersion)
return "", errors.Errorf("cluster ID cannot be created until all servers are above minimum version %s", minClusterIDVersion)
}
newMeta := structs.ClusterMetadata{ClusterID: uuid.Generate(), CreateTime: time.Now().UnixNano()}
if _, _, err := s.raftApply(structs.ClusterMetadataRequestType, newMeta); err != nil {
s.logger.Named("core").Error("failed to create cluster ID", "error", err)
return "", errors.Wrap(err, "failed to create cluster ID")
}
s.logger.Named("core").Info("established cluster id", "cluster_id", newMeta.ClusterID, "create_time", newMeta.CreateTime)
return newMeta.ClusterID, nil
}