open-nomad/scheduler/reconcile.go
Lang Martin d3c4700cd3
server: stop after client disconnect (#7939)
* jobspec, api: add stop_after_client_disconnect

* nomad/state/state_store: error message typo

* structs: alloc methods to support stop_after_client_disconnect

1. a global AllocStates to track status changes with timestamps. We
   need this to track the time at which the alloc became lost
   originally.

2. ShouldClientStop() and WaitClientStop() to actually do the math

* scheduler/reconcile_util: delayByStopAfterClientDisconnect

* scheduler/reconcile: use delayByStopAfterClientDisconnect

* scheduler/util: updateNonTerminalAllocsToLost comments

This was setup to only update allocs to lost if the DesiredStatus had
already been set by the scheduler. It seems like the intention was to
update the status from any non-terminal state, and not all lost allocs
have been marked stop or evict by now

* scheduler/testing: AssertEvalStatus just use require

* scheduler/generic_sched: don't create a blocked eval if delayed

* scheduler/generic_sched_test: several scheduling cases
2020-05-13 16:39:04 -04:00

915 lines
30 KiB
Go

package scheduler
import (
"fmt"
"time"
"sort"
log "github.com/hashicorp/go-hclog"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// batchedFailedAllocWindowSize is the window size used
// to batch up failed allocations before creating an eval
batchedFailedAllocWindowSize = 5 * time.Second
// rescheduleWindowSize is the window size relative to
// current time within which reschedulable allocations are placed.
// This helps protect against small clock drifts between servers
rescheduleWindowSize = 1 * time.Second
)
// allocUpdateType takes an existing allocation and a new job definition and
// returns whether the allocation can ignore the change, requires a destructive
// update, or can be inplace updated. If it can be inplace updated, an updated
// allocation that has the new resources and alloc metrics attached will be
// returned.
type allocUpdateType func(existing *structs.Allocation, newJob *structs.Job,
newTG *structs.TaskGroup) (ignore, destructive bool, updated *structs.Allocation)
// allocReconciler is used to determine the set of allocations that require
// placement, inplace updating or stopping given the job specification and
// existing cluster state. The reconciler should only be used for batch and
// service jobs.
type allocReconciler struct {
// logger is used to log debug information. Logging should be kept at a
// minimal here
logger log.Logger
// canInplace is used to check if the allocation can be inplace upgraded
allocUpdateFn allocUpdateType
// batch marks whether the job is a batch job
batch bool
// job is the job being operated on, it may be nil if the job is being
// stopped via a purge
job *structs.Job
// jobID is the ID of the job being operated on. The job may be nil if it is
// being stopped so we require this separately.
jobID string
// oldDeployment is the last deployment for the job
oldDeployment *structs.Deployment
// deployment is the current deployment for the job
deployment *structs.Deployment
// deploymentPaused marks whether the deployment is paused
deploymentPaused bool
// deploymentFailed marks whether the deployment is failed
deploymentFailed bool
// taintedNodes contains a map of nodes that are tainted
taintedNodes map[string]*structs.Node
// existingAllocs is non-terminal existing allocations
existingAllocs []*structs.Allocation
// evalID is the ID of the evaluation that triggered the reconciler
evalID string
// now is the time used when determining rescheduling eligibility
// defaults to time.Now, and overidden in unit tests
now time.Time
// result is the results of the reconcile. During computation it can be
// used to store intermediate state
result *reconcileResults
}
// reconcileResults contains the results of the reconciliation and should be
// applied by the scheduler.
type reconcileResults struct {
// deployment is the deployment that should be created or updated as a
// result of scheduling
deployment *structs.Deployment
// deploymentUpdates contains a set of deployment updates that should be
// applied as a result of scheduling
deploymentUpdates []*structs.DeploymentStatusUpdate
// place is the set of allocations to place by the scheduler
place []allocPlaceResult
// destructiveUpdate is the set of allocations to apply a destructive update to
destructiveUpdate []allocDestructiveResult
// inplaceUpdate is the set of allocations to apply an inplace update to
inplaceUpdate []*structs.Allocation
// stop is the set of allocations to stop
stop []allocStopResult
// attributeUpdates are updates to the allocation that are not from a
// jobspec change.
attributeUpdates map[string]*structs.Allocation
// desiredTGUpdates captures the desired set of changes to make for each
// task group.
desiredTGUpdates map[string]*structs.DesiredUpdates
// desiredFollowupEvals is the map of follow up evaluations to create per task group
// This is used to create a delayed evaluation for rescheduling failed allocations.
desiredFollowupEvals map[string][]*structs.Evaluation
}
// delayedRescheduleInfo contains the allocation id and a time when its eligible to be rescheduled.
// this is used to create follow up evaluations
type delayedRescheduleInfo struct {
// allocID is the ID of the allocation eligible to be rescheduled
allocID string
alloc *structs.Allocation
// rescheduleTime is the time to use in the delayed evaluation
rescheduleTime time.Time
}
func (r *reconcileResults) GoString() string {
base := fmt.Sprintf("Total changes: (place %d) (destructive %d) (inplace %d) (stop %d)",
len(r.place), len(r.destructiveUpdate), len(r.inplaceUpdate), len(r.stop))
if r.deployment != nil {
base += fmt.Sprintf("\nCreated Deployment: %q", r.deployment.ID)
}
for _, u := range r.deploymentUpdates {
base += fmt.Sprintf("\nDeployment Update for ID %q: Status %q; Description %q",
u.DeploymentID, u.Status, u.StatusDescription)
}
for tg, u := range r.desiredTGUpdates {
base += fmt.Sprintf("\nDesired Changes for %q: %#v", tg, u)
}
return base
}
// Changes returns the number of total changes
func (r *reconcileResults) Changes() int {
return len(r.place) + len(r.inplaceUpdate) + len(r.stop)
}
// NewAllocReconciler creates a new reconciler that should be used to determine
// the changes required to bring the cluster state inline with the declared jobspec
func NewAllocReconciler(logger log.Logger, allocUpdateFn allocUpdateType, batch bool,
jobID string, job *structs.Job, deployment *structs.Deployment,
existingAllocs []*structs.Allocation, taintedNodes map[string]*structs.Node, evalID string) *allocReconciler {
return &allocReconciler{
logger: logger.Named("reconciler"),
allocUpdateFn: allocUpdateFn,
batch: batch,
jobID: jobID,
job: job,
deployment: deployment.Copy(),
existingAllocs: existingAllocs,
taintedNodes: taintedNodes,
evalID: evalID,
now: time.Now(),
result: &reconcileResults{
desiredTGUpdates: make(map[string]*structs.DesiredUpdates),
desiredFollowupEvals: make(map[string][]*structs.Evaluation),
},
}
}
// Compute reconciles the existing cluster state and returns the set of changes
// required to converge the job spec and state
func (a *allocReconciler) Compute() *reconcileResults {
// Create the allocation matrix
m := newAllocMatrix(a.job, a.existingAllocs)
// Handle stopping unneeded deployments
a.cancelDeployments()
// If we are just stopping a job we do not need to do anything more than
// stopping all running allocs
if a.job.Stopped() {
a.handleStop(m)
return a.result
}
// Detect if the deployment is paused
if a.deployment != nil {
a.deploymentPaused = a.deployment.Status == structs.DeploymentStatusPaused
a.deploymentFailed = a.deployment.Status == structs.DeploymentStatusFailed
}
// Reconcile each group
complete := true
for group, as := range m {
groupComplete := a.computeGroup(group, as)
complete = complete && groupComplete
}
// Mark the deployment as complete if possible
if a.deployment != nil && complete {
a.result.deploymentUpdates = append(a.result.deploymentUpdates, &structs.DeploymentStatusUpdate{
DeploymentID: a.deployment.ID,
Status: structs.DeploymentStatusSuccessful,
StatusDescription: structs.DeploymentStatusDescriptionSuccessful,
})
}
// Set the description of a created deployment
if d := a.result.deployment; d != nil {
if d.RequiresPromotion() {
if d.HasAutoPromote() {
d.StatusDescription = structs.DeploymentStatusDescriptionRunningAutoPromotion
} else {
d.StatusDescription = structs.DeploymentStatusDescriptionRunningNeedsPromotion
}
}
}
return a.result
}
// cancelDeployments cancels any deployment that is not needed
func (a *allocReconciler) cancelDeployments() {
// If the job is stopped and there is a non-terminal deployment, cancel it
if a.job.Stopped() {
if a.deployment != nil && a.deployment.Active() {
a.result.deploymentUpdates = append(a.result.deploymentUpdates, &structs.DeploymentStatusUpdate{
DeploymentID: a.deployment.ID,
Status: structs.DeploymentStatusCancelled,
StatusDescription: structs.DeploymentStatusDescriptionStoppedJob,
})
}
// Nothing else to do
a.oldDeployment = a.deployment
a.deployment = nil
return
}
d := a.deployment
if d == nil {
return
}
// Check if the deployment is active and referencing an older job and cancel it
if d.JobCreateIndex != a.job.CreateIndex || d.JobVersion != a.job.Version {
if d.Active() {
a.result.deploymentUpdates = append(a.result.deploymentUpdates, &structs.DeploymentStatusUpdate{
DeploymentID: a.deployment.ID,
Status: structs.DeploymentStatusCancelled,
StatusDescription: structs.DeploymentStatusDescriptionNewerJob,
})
}
a.oldDeployment = d
a.deployment = nil
}
// Clear it as the current deployment if it is successful
if d.Status == structs.DeploymentStatusSuccessful {
a.oldDeployment = d
a.deployment = nil
}
}
// handleStop marks all allocations to be stopped, handling the lost case
func (a *allocReconciler) handleStop(m allocMatrix) {
for group, as := range m {
as = filterByTerminal(as)
untainted, migrate, lost := as.filterByTainted(a.taintedNodes)
a.markStop(untainted, "", allocNotNeeded)
a.markStop(migrate, "", allocNotNeeded)
a.markStop(lost, structs.AllocClientStatusLost, allocLost)
desiredChanges := new(structs.DesiredUpdates)
desiredChanges.Stop = uint64(len(as))
a.result.desiredTGUpdates[group] = desiredChanges
}
}
// markStop is a helper for marking a set of allocation for stop with a
// particular client status and description.
func (a *allocReconciler) markStop(allocs allocSet, clientStatus, statusDescription string) {
for _, alloc := range allocs {
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
clientStatus: clientStatus,
statusDescription: statusDescription,
})
}
}
// computeGroup reconciles state for a particular task group. It returns whether
// the deployment it is for is complete with regards to the task group.
func (a *allocReconciler) computeGroup(group string, all allocSet) bool {
// Create the desired update object for the group
desiredChanges := new(structs.DesiredUpdates)
a.result.desiredTGUpdates[group] = desiredChanges
// Get the task group. The task group may be nil if the job was updates such
// that the task group no longer exists
tg := a.job.LookupTaskGroup(group)
// If the task group is nil, then the task group has been removed so all we
// need to do is stop everything
if tg == nil {
untainted, migrate, lost := all.filterByTainted(a.taintedNodes)
a.markStop(untainted, "", allocNotNeeded)
a.markStop(migrate, "", allocNotNeeded)
a.markStop(lost, structs.AllocClientStatusLost, allocLost)
desiredChanges.Stop = uint64(len(untainted) + len(migrate) + len(lost))
return true
}
// Get the deployment state for the group
var dstate *structs.DeploymentState
existingDeployment := false
if a.deployment != nil {
dstate, existingDeployment = a.deployment.TaskGroups[group]
}
if !existingDeployment {
dstate = &structs.DeploymentState{}
if !tg.Update.IsEmpty() {
dstate.AutoRevert = tg.Update.AutoRevert
dstate.AutoPromote = tg.Update.AutoPromote
dstate.ProgressDeadline = tg.Update.ProgressDeadline
}
}
// Filter allocations that do not need to be considered because they are
// from an older job version and are terminal.
all, ignore := a.filterOldTerminalAllocs(all)
desiredChanges.Ignore += uint64(len(ignore))
// canaries is the set of canaries for the current deployment and all is all
// allocs including the canaries
canaries, all := a.handleGroupCanaries(all, desiredChanges)
// Determine what set of allocations are on tainted nodes
untainted, migrate, lost := all.filterByTainted(a.taintedNodes)
// Determine what set of terminal allocations need to be rescheduled
untainted, rescheduleNow, rescheduleLater := untainted.filterByRescheduleable(a.batch, a.now, a.evalID, a.deployment)
// Find delays for any lost allocs that have stop_after_client_disconnect
lostLater := lost.delayByStopAfterClientDisconnect()
rescheduleLater = append(rescheduleLater, lostLater...)
// Create batched follow up evaluations for allocations that are
// reschedulable later and mark the allocations for in place updating
a.handleDelayedReschedules(rescheduleLater, all, tg.Name)
// Allocs that are lost and delayed have an attributeUpdate that correctly links to
// the eval, but incorrectly has the current (running) status
for _, d := range lostLater {
a.result.attributeUpdates[d.allocID].SetStop(structs.AllocClientStatusLost, structs.AllocClientStatusLost)
}
// Create a structure for choosing names. Seed with the taken names which is
// the union of untainted and migrating nodes (includes canaries)
nameIndex := newAllocNameIndex(a.jobID, group, tg.Count, untainted.union(migrate, rescheduleNow))
// Stop any unneeded allocations and update the untainted set to not
// included stopped allocations.
canaryState := dstate != nil && dstate.DesiredCanaries != 0 && !dstate.Promoted
stop := a.computeStop(tg, nameIndex, untainted, migrate, lost, canaries, canaryState)
desiredChanges.Stop += uint64(len(stop))
untainted = untainted.difference(stop)
// Do inplace upgrades where possible and capture the set of upgrades that
// need to be done destructively.
ignore, inplace, destructive := a.computeUpdates(tg, untainted)
desiredChanges.Ignore += uint64(len(ignore))
desiredChanges.InPlaceUpdate += uint64(len(inplace))
if !existingDeployment {
dstate.DesiredTotal += len(destructive) + len(inplace)
}
// Remove the canaries now that we have handled rescheduling so that we do
// not consider them when making placement decisions.
if canaryState {
untainted = untainted.difference(canaries)
}
// The fact that we have destructive updates and have less canaries than is
// desired means we need to create canaries
numDestructive := len(destructive)
strategy := tg.Update
canariesPromoted := dstate != nil && dstate.Promoted
requireCanary := numDestructive != 0 && strategy != nil && len(canaries) < strategy.Canary && !canariesPromoted
if requireCanary && !a.deploymentPaused && !a.deploymentFailed {
number := strategy.Canary - len(canaries)
desiredChanges.Canary += uint64(number)
if !existingDeployment {
dstate.DesiredCanaries = strategy.Canary
}
for _, name := range nameIndex.NextCanaries(uint(number), canaries, destructive) {
a.result.place = append(a.result.place, allocPlaceResult{
name: name,
canary: true,
taskGroup: tg,
})
}
}
// Determine how many we can place
canaryState = dstate != nil && dstate.DesiredCanaries != 0 && !dstate.Promoted
limit := a.computeLimit(tg, untainted, destructive, migrate, canaryState)
// Place if:
// * The deployment is not paused or failed
// * Not placing any canaries
// * If there are any canaries that they have been promoted
// * There is no delayed stop_after_client_disconnect alloc
var place []allocPlaceResult
if len(lostLater) == 0 {
place = a.computePlacements(tg, nameIndex, untainted, migrate, rescheduleNow)
if !existingDeployment {
dstate.DesiredTotal += len(place)
}
}
// deploymentPlaceReady tracks whether the deployment is in a state where
// placements can be made without any other consideration.
deploymentPlaceReady := !a.deploymentPaused && !a.deploymentFailed && !canaryState
if deploymentPlaceReady {
desiredChanges.Place += uint64(len(place))
for _, p := range place {
a.result.place = append(a.result.place, p)
}
a.markStop(rescheduleNow, "", allocRescheduled)
desiredChanges.Stop += uint64(len(rescheduleNow))
min := helper.IntMin(len(place), limit)
limit -= min
} else if !deploymentPlaceReady {
// We do not want to place additional allocations but in the case we
// have lost allocations or allocations that require rescheduling now,
// we do so regardless to avoid odd user experiences.
if len(lost) != 0 {
allowed := helper.IntMin(len(lost), len(place))
desiredChanges.Place += uint64(allowed)
for _, p := range place[:allowed] {
a.result.place = append(a.result.place, p)
}
}
// Handle rescheduling of failed allocations even if the deployment is
// failed. We do not reschedule if the allocation is part of the failed
// deployment.
if now := len(rescheduleNow); now != 0 {
for _, p := range place {
prev := p.PreviousAllocation()
if p.IsRescheduling() && !(a.deploymentFailed && prev != nil && a.deployment.ID == prev.DeploymentID) {
a.result.place = append(a.result.place, p)
desiredChanges.Place++
a.result.stop = append(a.result.stop, allocStopResult{
alloc: prev,
statusDescription: allocRescheduled,
})
desiredChanges.Stop++
}
}
}
}
if deploymentPlaceReady {
// Do all destructive updates
min := helper.IntMin(len(destructive), limit)
desiredChanges.DestructiveUpdate += uint64(min)
desiredChanges.Ignore += uint64(len(destructive) - min)
for _, alloc := range destructive.nameOrder()[:min] {
a.result.destructiveUpdate = append(a.result.destructiveUpdate, allocDestructiveResult{
placeName: alloc.Name,
placeTaskGroup: tg,
stopAlloc: alloc,
stopStatusDescription: allocUpdating,
})
}
} else {
desiredChanges.Ignore += uint64(len(destructive))
}
// Migrate all the allocations
desiredChanges.Migrate += uint64(len(migrate))
for _, alloc := range migrate.nameOrder() {
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
statusDescription: allocMigrating,
})
a.result.place = append(a.result.place, allocPlaceResult{
name: alloc.Name,
canary: false,
taskGroup: tg,
previousAlloc: alloc,
})
}
// Create new deployment if:
// 1. Updating a job specification
// 2. No running allocations (first time running a job)
updatingSpec := len(destructive) != 0 || len(a.result.inplaceUpdate) != 0
hadRunning := false
for _, alloc := range all {
if alloc.Job.Version == a.job.Version && alloc.Job.CreateIndex == a.job.CreateIndex {
hadRunning = true
break
}
}
// Create a new deployment if necessary
if !existingDeployment && !strategy.IsEmpty() && dstate.DesiredTotal != 0 && (!hadRunning || updatingSpec) {
// A previous group may have made the deployment already
if a.deployment == nil {
a.deployment = structs.NewDeployment(a.job)
a.result.deployment = a.deployment
}
// Attach the groups deployment state to the deployment
a.deployment.TaskGroups[group] = dstate
}
// deploymentComplete is whether the deployment is complete which largely
// means that no placements were made or desired to be made
deploymentComplete := len(destructive)+len(inplace)+len(place)+len(migrate)+len(rescheduleNow)+len(rescheduleLater) == 0 && !requireCanary
// Final check to see if the deployment is complete is to ensure everything
// is healthy
if deploymentComplete && a.deployment != nil {
if dstate, ok := a.deployment.TaskGroups[group]; ok {
if dstate.HealthyAllocs < helper.IntMax(dstate.DesiredTotal, dstate.DesiredCanaries) || // Make sure we have enough healthy allocs
(dstate.DesiredCanaries > 0 && !dstate.Promoted) { // Make sure we are promoted if we have canaries
deploymentComplete = false
}
}
}
return deploymentComplete
}
// filterOldTerminalAllocs filters allocations that should be ignored since they
// are allocations that are terminal from a previous job version.
func (a *allocReconciler) filterOldTerminalAllocs(all allocSet) (filtered, ignore allocSet) {
if !a.batch {
return all, nil
}
filtered = filtered.union(all)
ignored := make(map[string]*structs.Allocation)
// Ignore terminal batch jobs from older versions
for id, alloc := range filtered {
older := alloc.Job.Version < a.job.Version || alloc.Job.CreateIndex < a.job.CreateIndex
if older && alloc.TerminalStatus() {
delete(filtered, id)
ignored[id] = alloc
}
}
return filtered, ignored
}
// handleGroupCanaries handles the canaries for the group by stopping the
// unneeded ones and returning the current set of canaries and the updated total
// set of allocs for the group
func (a *allocReconciler) handleGroupCanaries(all allocSet, desiredChanges *structs.DesiredUpdates) (canaries, newAll allocSet) {
// Stop any canary from an older deployment or from a failed one
var stop []string
// Cancel any non-promoted canaries from the older deployment
if a.oldDeployment != nil {
for _, s := range a.oldDeployment.TaskGroups {
if !s.Promoted {
stop = append(stop, s.PlacedCanaries...)
}
}
}
// Cancel any non-promoted canaries from a failed deployment
if a.deployment != nil && a.deployment.Status == structs.DeploymentStatusFailed {
for _, s := range a.deployment.TaskGroups {
if !s.Promoted {
stop = append(stop, s.PlacedCanaries...)
}
}
}
// stopSet is the allocSet that contains the canaries we desire to stop from
// above.
stopSet := all.fromKeys(stop)
a.markStop(stopSet, "", allocNotNeeded)
desiredChanges.Stop += uint64(len(stopSet))
all = all.difference(stopSet)
// Capture our current set of canaries and handle any migrations that are
// needed by just stopping them.
if a.deployment != nil {
var canaryIDs []string
for _, s := range a.deployment.TaskGroups {
canaryIDs = append(canaryIDs, s.PlacedCanaries...)
}
canaries = all.fromKeys(canaryIDs)
untainted, migrate, lost := canaries.filterByTainted(a.taintedNodes)
a.markStop(migrate, "", allocMigrating)
a.markStop(lost, structs.AllocClientStatusLost, allocLost)
canaries = untainted
all = all.difference(migrate, lost)
}
return canaries, all
}
// computeLimit returns the placement limit for a particular group. The inputs
// are the group definition, the untainted, destructive, and migrate allocation
// set and whether we are in a canary state.
func (a *allocReconciler) computeLimit(group *structs.TaskGroup, untainted, destructive, migrate allocSet, canaryState bool) int {
// If there is no update strategy or deployment for the group we can deploy
// as many as the group has
if group.Update.IsEmpty() || len(destructive)+len(migrate) == 0 {
return group.Count
} else if a.deploymentPaused || a.deploymentFailed {
// If the deployment is paused or failed, do not create anything else
return 0
}
// If we have canaries and they have not been promoted the limit is 0
if canaryState {
return 0
}
// If we have been promoted or there are no canaries, the limit is the
// configured MaxParallel minus any outstanding non-healthy alloc for the
// deployment
limit := group.Update.MaxParallel
if a.deployment != nil {
partOf, _ := untainted.filterByDeployment(a.deployment.ID)
for _, alloc := range partOf {
// An unhealthy allocation means nothing else should be happen.
if alloc.DeploymentStatus.IsUnhealthy() {
return 0
}
if !alloc.DeploymentStatus.IsHealthy() {
limit--
}
}
}
// The limit can be less than zero in the case that the job was changed such
// that it required destructive changes and the count was scaled up.
if limit < 0 {
return 0
}
return limit
}
// computePlacement returns the set of allocations to place given the group
// definition, the set of untainted, migrating and reschedule allocations for the group.
func (a *allocReconciler) computePlacements(group *structs.TaskGroup,
nameIndex *allocNameIndex, untainted, migrate allocSet, reschedule allocSet) []allocPlaceResult {
// Add rescheduled placement results
var place []allocPlaceResult
for _, alloc := range reschedule {
place = append(place, allocPlaceResult{
name: alloc.Name,
taskGroup: group,
previousAlloc: alloc,
reschedule: true,
canary: alloc.DeploymentStatus.IsCanary(),
})
}
// Hot path the nothing to do case
existing := len(untainted) + len(migrate) + len(reschedule)
if existing >= group.Count {
return place
}
// Add remaining placement results
if existing < group.Count {
for _, name := range nameIndex.Next(uint(group.Count - existing)) {
place = append(place, allocPlaceResult{
name: name,
taskGroup: group,
})
}
}
return place
}
// computeStop returns the set of allocations that are marked for stopping given
// the group definition, the set of allocations in various states and whether we
// are canarying.
func (a *allocReconciler) computeStop(group *structs.TaskGroup, nameIndex *allocNameIndex,
untainted, migrate, lost, canaries allocSet, canaryState bool) allocSet {
// Mark all lost allocations for stop. Previous allocation doesn't matter
// here since it is on a lost node
var stop allocSet
stop = stop.union(lost)
a.markStop(lost, structs.AllocClientStatusLost, allocLost)
// If we are still deploying or creating canaries, don't stop them
if canaryState {
untainted = untainted.difference(canaries)
}
// Hot path the nothing to do case
remove := len(untainted) + len(migrate) - group.Count
if remove <= 0 {
return stop
}
// Filter out any terminal allocations from the untainted set
// This is so that we don't try to mark them as stopped redundantly
untainted = filterByTerminal(untainted)
// Prefer stopping any alloc that has the same name as the canaries if we
// are promoted
if !canaryState && len(canaries) != 0 {
canaryNames := canaries.nameSet()
for id, alloc := range untainted.difference(canaries) {
if _, match := canaryNames[alloc.Name]; match {
stop[id] = alloc
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
statusDescription: allocNotNeeded,
})
delete(untainted, id)
remove--
if remove == 0 {
return stop
}
}
}
}
// Prefer selecting from the migrating set before stopping existing allocs
if len(migrate) != 0 {
mNames := newAllocNameIndex(a.jobID, group.Name, group.Count, migrate)
removeNames := mNames.Highest(uint(remove))
for id, alloc := range migrate {
if _, match := removeNames[alloc.Name]; !match {
continue
}
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
statusDescription: allocNotNeeded,
})
delete(migrate, id)
stop[id] = alloc
nameIndex.UnsetIndex(alloc.Index())
remove--
if remove == 0 {
return stop
}
}
}
// Select the allocs with the highest count to remove
removeNames := nameIndex.Highest(uint(remove))
for id, alloc := range untainted {
if _, ok := removeNames[alloc.Name]; ok {
stop[id] = alloc
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
statusDescription: allocNotNeeded,
})
delete(untainted, id)
remove--
if remove == 0 {
return stop
}
}
}
// It is possible that we didn't stop as many as we should have if there
// were allocations with duplicate names.
for id, alloc := range untainted {
stop[id] = alloc
a.result.stop = append(a.result.stop, allocStopResult{
alloc: alloc,
statusDescription: allocNotNeeded,
})
delete(untainted, id)
remove--
if remove == 0 {
return stop
}
}
return stop
}
// computeUpdates determines which allocations for the passed group require
// updates. Three groups are returned:
// 1. Those that require no upgrades
// 2. Those that can be upgraded in-place. These are added to the results
// automatically since the function contains the correct state to do so,
// 3. Those that require destructive updates
func (a *allocReconciler) computeUpdates(group *structs.TaskGroup, untainted allocSet) (ignore, inplace, destructive allocSet) {
// Determine the set of allocations that need to be updated
ignore = make(map[string]*structs.Allocation)
inplace = make(map[string]*structs.Allocation)
destructive = make(map[string]*structs.Allocation)
for _, alloc := range untainted {
ignoreChange, destructiveChange, inplaceAlloc := a.allocUpdateFn(alloc, a.job, group)
if ignoreChange {
ignore[alloc.ID] = alloc
} else if destructiveChange {
destructive[alloc.ID] = alloc
} else {
inplace[alloc.ID] = alloc
a.result.inplaceUpdate = append(a.result.inplaceUpdate, inplaceAlloc)
}
}
return
}
// handleDelayedReschedules creates batched followup evaluations with the WaitUntil field set
// for allocations that are eligible to be rescheduled later
func (a *allocReconciler) handleDelayedReschedules(rescheduleLater []*delayedRescheduleInfo, all allocSet, tgName string) {
if len(rescheduleLater) == 0 {
return
}
// Sort by time
sort.Slice(rescheduleLater, func(i, j int) bool {
return rescheduleLater[i].rescheduleTime.Before(rescheduleLater[j].rescheduleTime)
})
var evals []*structs.Evaluation
nextReschedTime := rescheduleLater[0].rescheduleTime
allocIDToFollowupEvalID := make(map[string]string, len(rescheduleLater))
// Create a new eval for the first batch
eval := &structs.Evaluation{
ID: uuid.Generate(),
Namespace: a.job.Namespace,
Priority: a.job.Priority,
Type: a.job.Type,
TriggeredBy: structs.EvalTriggerRetryFailedAlloc,
JobID: a.job.ID,
JobModifyIndex: a.job.ModifyIndex,
Status: structs.EvalStatusPending,
StatusDescription: reschedulingFollowupEvalDesc,
WaitUntil: nextReschedTime,
}
evals = append(evals, eval)
for _, allocReschedInfo := range rescheduleLater {
if allocReschedInfo.rescheduleTime.Sub(nextReschedTime) < batchedFailedAllocWindowSize {
allocIDToFollowupEvalID[allocReschedInfo.allocID] = eval.ID
} else {
// Start a new batch
nextReschedTime = allocReschedInfo.rescheduleTime
// Create a new eval for the new batch
eval = &structs.Evaluation{
ID: uuid.Generate(),
Namespace: a.job.Namespace,
Priority: a.job.Priority,
Type: a.job.Type,
TriggeredBy: structs.EvalTriggerRetryFailedAlloc,
JobID: a.job.ID,
JobModifyIndex: a.job.ModifyIndex,
Status: structs.EvalStatusPending,
WaitUntil: nextReschedTime,
}
evals = append(evals, eval)
// Set the evalID for the first alloc in this new batch
allocIDToFollowupEvalID[allocReschedInfo.allocID] = eval.ID
}
}
a.result.desiredFollowupEvals[tgName] = evals
// Initialize the annotations
if len(allocIDToFollowupEvalID) != 0 && a.result.attributeUpdates == nil {
a.result.attributeUpdates = make(map[string]*structs.Allocation)
}
// Create in-place updates for every alloc ID that needs to be updated with its follow up eval ID
for allocID, evalID := range allocIDToFollowupEvalID {
existingAlloc := all[allocID]
updatedAlloc := existingAlloc.Copy()
updatedAlloc.FollowupEvalID = evalID
a.result.attributeUpdates[updatedAlloc.ID] = updatedAlloc
}
}