open-nomad/scheduler/rank.go

303 lines
7.5 KiB
Go

package scheduler
import (
"fmt"
"github.com/hashicorp/nomad/nomad/structs"
)
// Rank is used to provide a score and various ranking metadata
// along with a node when iterating. This state can be modified as
// various rank methods are applied.
type RankedNode struct {
Node *structs.Node
Score float64
TaskResources map[string]*structs.Resources
// Allocs is used to cache the proposed allocations on the
// node. This can be shared between iterators that require it.
Proposed []*structs.Allocation
}
func (r *RankedNode) GoString() string {
return fmt.Sprintf("<Node: %s Score: %0.3f>", r.Node.ID, r.Score)
}
func (r *RankedNode) ProposedAllocs(ctx Context) ([]*structs.Allocation, error) {
if r.Proposed != nil {
return r.Proposed, nil
}
p, err := ctx.ProposedAllocs(r.Node.ID)
if err != nil {
return nil, err
}
r.Proposed = p
return p, nil
}
func (r *RankedNode) SetTaskResources(task *structs.Task,
resource *structs.Resources) {
if r.TaskResources == nil {
r.TaskResources = make(map[string]*structs.Resources)
}
r.TaskResources[task.Name] = resource
}
// RankFeasibleIterator is used to iteratively yield nodes along
// with ranking metadata. The iterators may manage some state for
// performance optimizations.
type RankIterator interface {
// Next yields a ranked option or nil if exhausted
Next() *RankedNode
// Reset is invoked when an allocation has been placed
// to reset any stale state.
Reset()
}
// FeasibleRankIterator is used to consume from a FeasibleIterator
// and return an unranked node with base ranking.
type FeasibleRankIterator struct {
ctx Context
source FeasibleIterator
}
// NewFeasibleRankIterator is used to return a new FeasibleRankIterator
// from a FeasibleIterator source.
func NewFeasibleRankIterator(ctx Context, source FeasibleIterator) *FeasibleRankIterator {
iter := &FeasibleRankIterator{
ctx: ctx,
source: source,
}
return iter
}
func (iter *FeasibleRankIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil {
return nil
}
ranked := &RankedNode{
Node: option,
}
return ranked
}
func (iter *FeasibleRankIterator) Reset() {
iter.source.Reset()
}
// StaticRankIterator is a RankIterator that returns a static set of results.
// This is largely only useful for testing.
type StaticRankIterator struct {
ctx Context
nodes []*RankedNode
offset int
seen int
}
// NewStaticRankIterator returns a new static rank iterator over the given nodes
func NewStaticRankIterator(ctx Context, nodes []*RankedNode) *StaticRankIterator {
iter := &StaticRankIterator{
ctx: ctx,
nodes: nodes,
}
return iter
}
func (iter *StaticRankIterator) Next() *RankedNode {
// Check if exhausted
n := len(iter.nodes)
if iter.offset == n || iter.seen == n {
if iter.seen != n {
iter.offset = 0
} else {
return nil
}
}
// Return the next offset
offset := iter.offset
iter.offset += 1
iter.seen += 1
return iter.nodes[offset]
}
func (iter *StaticRankIterator) Reset() {
iter.seen = 0
}
// BinPackIterator is a RankIterator that scores potential options
// based on a bin-packing algorithm.
type BinPackIterator struct {
ctx Context
source RankIterator
evict bool
priority int
tasks []*structs.Task
}
// NewBinPackIterator returns a BinPackIterator which tries to fit tasks
// potentially evicting other tasks based on a given priority.
func NewBinPackIterator(ctx Context, source RankIterator, evict bool, priority int) *BinPackIterator {
iter := &BinPackIterator{
ctx: ctx,
source: source,
evict: evict,
priority: priority,
}
return iter
}
func (iter *BinPackIterator) SetPriority(p int) {
iter.priority = p
}
func (iter *BinPackIterator) SetTasks(tasks []*structs.Task) {
iter.tasks = tasks
}
func (iter *BinPackIterator) Next() *RankedNode {
OUTER:
for {
// Get the next potential option
option := iter.source.Next()
if option == nil {
return nil
}
// Get the proposed allocations
proposed, err := option.ProposedAllocs(iter.ctx)
if err != nil {
iter.ctx.Logger().Printf(
"[ERR] sched.binpack: failed to get proposed allocations: %v",
err)
continue
}
// Index the existing network usage
netIdx := structs.NewNetworkIndex()
netIdx.SetNode(option.Node)
netIdx.AddAllocs(proposed)
// Assign the resources for each task
total := new(structs.Resources)
for _, task := range iter.tasks {
taskResources := task.Resources.Copy()
// Check if we need a network resource
if len(taskResources.Networks) > 0 {
ask := taskResources.Networks[0]
offer, err := netIdx.AssignNetwork(ask)
if offer == nil {
iter.ctx.Metrics().ExhaustedNode(option.Node,
fmt.Sprintf("network: %s", err))
continue OUTER
}
// Reserve this to prevent another task from colliding
netIdx.AddReserved(offer)
// Update the network ask to the offer
taskResources.Networks = []*structs.NetworkResource{offer}
}
// Store the task resource
option.SetTaskResources(task, taskResources)
// Accumulate the total resource requirement
total.Add(taskResources)
}
// Add the resources we are trying to fit
proposed = append(proposed, &structs.Allocation{Resources: total})
// Check if these allocations fit, if they do not, simply skip this node
fit, util, _ := structs.AllocsFit(option.Node, proposed, netIdx)
if !fit {
iter.ctx.Metrics().ExhaustedNode(option.Node, "resources")
continue
}
// XXX: For now we completely ignore evictions. We should use that flag
// to determine if its possible to evict other lower priority allocations
// to make room. This explodes the search space, so it must be done
// carefully.
// Score the fit normally otherwise
fitness := structs.ScoreFit(option.Node, util)
option.Score += fitness
iter.ctx.Metrics().ScoreNode(option.Node, "binpack", fitness)
return option
}
}
func (iter *BinPackIterator) Reset() {
iter.source.Reset()
}
// JobAntiAffinityIterator is used to apply an anti-affinity to allocating
// along side other allocations from this job. This is used to help distribute
// load across the cluster.
type JobAntiAffinityIterator struct {
ctx Context
source RankIterator
penalty float64
jobID string
}
// NewJobAntiAffinityIterator is used to create a JobAntiAffinityIterator that
// applies the given penalty for co-placement with allocs from this job.
func NewJobAntiAffinityIterator(ctx Context, source RankIterator, penalty float64, jobID string) *JobAntiAffinityIterator {
iter := &JobAntiAffinityIterator{
ctx: ctx,
source: source,
penalty: penalty,
jobID: jobID,
}
return iter
}
func (iter *JobAntiAffinityIterator) SetJob(jobID string) {
iter.jobID = jobID
}
func (iter *JobAntiAffinityIterator) Next() *RankedNode {
for {
option := iter.source.Next()
if option == nil {
return nil
}
// Get the proposed allocations
proposed, err := option.ProposedAllocs(iter.ctx)
if err != nil {
iter.ctx.Logger().Printf(
"[ERR] sched.job-anti-aff: failed to get proposed allocations: %v",
err)
continue
}
// Determine the number of collisions
collisions := 0
for _, alloc := range proposed {
if alloc.JobID == iter.jobID {
collisions += 1
}
}
// Apply a penalty if there are collisions
if collisions > 0 {
scorePenalty := float64(collisions) * iter.penalty
option.Score -= scorePenalty
iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", scorePenalty)
}
return option
}
}
func (iter *JobAntiAffinityIterator) Reset() {
iter.source.Reset()
}