a8fc50cc1b
Revert plan_apply.go changes from #5411 Since non-Command Raft messages do not update the StateStore index, SnapshotAfter may unnecessarily block and needlessly fail in idle clusters where the last Raft message is a non-Command message. This is trivially reproducible with the dev agent and a job that has 2 tasks, 1 of which fails. The correct logic would be to SnapshotAfter the previous plan's index to ensure consistency. New clusters or newly elected leaders will not have a previous plan, so the index the leader was elected should be used instead.
622 lines
20 KiB
Go
622 lines
20 KiB
Go
package nomad
|
|
|
|
import (
|
|
"fmt"
|
|
"runtime"
|
|
"time"
|
|
|
|
metrics "github.com/armon/go-metrics"
|
|
log "github.com/hashicorp/go-hclog"
|
|
memdb "github.com/hashicorp/go-memdb"
|
|
multierror "github.com/hashicorp/go-multierror"
|
|
"github.com/hashicorp/nomad/helper/uuid"
|
|
"github.com/hashicorp/nomad/nomad/state"
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
"github.com/hashicorp/raft"
|
|
)
|
|
|
|
// planner is used to manage the submitted allocation plans that are waiting
|
|
// to be accessed by the leader
|
|
type planner struct {
|
|
*Server
|
|
log log.Logger
|
|
|
|
// planQueue is used to manage the submitted allocation
|
|
// plans that are waiting to be assessed by the leader
|
|
planQueue *PlanQueue
|
|
}
|
|
|
|
// newPlanner returns a new planner to be used for managing allocation plans.
|
|
func newPlanner(s *Server) (*planner, error) {
|
|
// Create a plan queue
|
|
planQueue, err := NewPlanQueue()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &planner{
|
|
Server: s,
|
|
log: s.logger.Named("planner"),
|
|
planQueue: planQueue,
|
|
}, nil
|
|
}
|
|
|
|
// planApply is a long lived goroutine that reads plan allocations from
|
|
// the plan queue, determines if they can be applied safely and applies
|
|
// them via Raft.
|
|
//
|
|
// Naively, we could simply dequeue a plan, verify, apply and then respond.
|
|
// However, the plan application is bounded by the Raft apply time and
|
|
// subject to some latency. This creates a stall condition, where we are
|
|
// not evaluating, but simply waiting for a transaction to apply.
|
|
//
|
|
// To avoid this, we overlap verification with apply. This means once
|
|
// we've verified plan N we attempt to apply it. However, while waiting
|
|
// for apply, we begin to verify plan N+1 under the assumption that plan
|
|
// N has succeeded.
|
|
//
|
|
// In this sense, we track two parallel versions of the world. One is
|
|
// the pessimistic one driven by the Raft log which is replicated. The
|
|
// other is optimistic and assumes our transactions will succeed. In the
|
|
// happy path, this lets us do productive work during the latency of
|
|
// apply.
|
|
//
|
|
// In the unhappy path (Raft transaction fails), effectively we only
|
|
// wasted work during a time we would have been waiting anyways. However,
|
|
// in anticipation of this case we cannot respond to the plan until
|
|
// the Raft log is updated. This means our schedulers will stall,
|
|
// but there are many of those and only a single plan verifier.
|
|
//
|
|
func (p *planner) planApply() {
|
|
// waitCh is used to track an outstanding application while snap
|
|
// holds an optimistic state which includes that plan application.
|
|
var waitCh chan struct{}
|
|
var snap *state.StateSnapshot
|
|
|
|
// Setup a worker pool with half the cores, with at least 1
|
|
poolSize := runtime.NumCPU() / 2
|
|
if poolSize == 0 {
|
|
poolSize = 1
|
|
}
|
|
pool := NewEvaluatePool(poolSize, workerPoolBufferSize)
|
|
defer pool.Shutdown()
|
|
|
|
for {
|
|
// Pull the next pending plan, exit if we are no longer leader
|
|
pending, err := p.planQueue.Dequeue(0)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Check if out last plan has completed
|
|
select {
|
|
case <-waitCh:
|
|
waitCh = nil
|
|
snap = nil
|
|
default:
|
|
}
|
|
|
|
// Snapshot the state so that we have a consistent view of the world
|
|
// if no snapshot is available
|
|
if waitCh == nil || snap == nil {
|
|
snap, err = p.fsm.State().Snapshot()
|
|
if err != nil {
|
|
p.logger.Error("failed to snapshot state", "error", err)
|
|
pending.respond(nil, err)
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Evaluate the plan
|
|
result, err := evaluatePlan(pool, snap, pending.plan, p.logger)
|
|
if err != nil {
|
|
p.logger.Error("failed to evaluate plan", "error", err)
|
|
pending.respond(nil, err)
|
|
continue
|
|
}
|
|
|
|
// Fast-path the response if there is nothing to do
|
|
if result.IsNoOp() {
|
|
pending.respond(result, nil)
|
|
continue
|
|
}
|
|
|
|
// Ensure any parallel apply is complete before starting the next one.
|
|
// This also limits how out of date our snapshot can be.
|
|
if waitCh != nil {
|
|
<-waitCh
|
|
snap, err = p.fsm.State().Snapshot()
|
|
if err != nil {
|
|
p.logger.Error("failed to snapshot state", "error", err)
|
|
pending.respond(nil, err)
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Dispatch the Raft transaction for the plan
|
|
future, err := p.applyPlan(pending.plan, result, snap)
|
|
if err != nil {
|
|
p.logger.Error("failed to submit plan", "error", err)
|
|
pending.respond(nil, err)
|
|
continue
|
|
}
|
|
|
|
// Respond to the plan in async
|
|
waitCh = make(chan struct{})
|
|
go p.asyncPlanWait(waitCh, future, result, pending)
|
|
}
|
|
}
|
|
|
|
// applyPlan is used to apply the plan result and to return the alloc index
|
|
func (p *planner) applyPlan(plan *structs.Plan, result *structs.PlanResult, snap *state.StateSnapshot) (raft.ApplyFuture, error) {
|
|
// Setup the update request
|
|
req := structs.ApplyPlanResultsRequest{
|
|
AllocUpdateRequest: structs.AllocUpdateRequest{
|
|
Job: plan.Job,
|
|
},
|
|
Deployment: result.Deployment,
|
|
DeploymentUpdates: result.DeploymentUpdates,
|
|
EvalID: plan.EvalID,
|
|
}
|
|
|
|
preemptedJobIDs := make(map[structs.NamespacedID]struct{})
|
|
now := time.Now().UTC().UnixNano()
|
|
|
|
if ServersMeetMinimumVersion(p.Members(), MinVersionPlanNormalization, true) {
|
|
// Initialize the allocs request using the new optimized log entry format.
|
|
// Determine the minimum number of updates, could be more if there
|
|
// are multiple updates per node
|
|
req.AllocsStopped = make([]*structs.AllocationDiff, 0, len(result.NodeUpdate))
|
|
req.AllocsUpdated = make([]*structs.Allocation, 0, len(result.NodeAllocation))
|
|
req.AllocsPreempted = make([]*structs.AllocationDiff, 0, len(result.NodePreemptions))
|
|
|
|
for _, updateList := range result.NodeUpdate {
|
|
for _, stoppedAlloc := range updateList {
|
|
req.AllocsStopped = append(req.AllocsStopped, normalizeStoppedAlloc(stoppedAlloc, now))
|
|
}
|
|
}
|
|
|
|
for _, allocList := range result.NodeAllocation {
|
|
req.AllocsUpdated = append(req.AllocsUpdated, allocList...)
|
|
}
|
|
|
|
// Set the time the alloc was applied for the first time. This can be used
|
|
// to approximate the scheduling time.
|
|
updateAllocTimestamps(req.AllocsUpdated, now)
|
|
|
|
for _, preemptions := range result.NodePreemptions {
|
|
for _, preemptedAlloc := range preemptions {
|
|
req.AllocsPreempted = append(req.AllocsPreempted, normalizePreemptedAlloc(preemptedAlloc, now))
|
|
|
|
// Gather jobids to create follow up evals
|
|
appendNamespacedJobID(preemptedJobIDs, preemptedAlloc)
|
|
}
|
|
}
|
|
} else {
|
|
// COMPAT 0.11: This branch is deprecated and will only be used to support
|
|
// application of older log entries. Expected to be removed in a future version.
|
|
|
|
// Determine the minimum number of updates, could be more if there
|
|
// are multiple updates per node
|
|
minUpdates := len(result.NodeUpdate)
|
|
minUpdates += len(result.NodeAllocation)
|
|
|
|
// Initialize using the older log entry format for Alloc and NodePreemptions
|
|
req.Alloc = make([]*structs.Allocation, 0, minUpdates)
|
|
req.NodePreemptions = make([]*structs.Allocation, 0, len(result.NodePreemptions))
|
|
|
|
for _, updateList := range result.NodeUpdate {
|
|
req.Alloc = append(req.Alloc, updateList...)
|
|
}
|
|
for _, allocList := range result.NodeAllocation {
|
|
req.Alloc = append(req.Alloc, allocList...)
|
|
}
|
|
|
|
for _, preemptions := range result.NodePreemptions {
|
|
req.NodePreemptions = append(req.NodePreemptions, preemptions...)
|
|
}
|
|
|
|
// Set the time the alloc was applied for the first time. This can be used
|
|
// to approximate the scheduling time.
|
|
updateAllocTimestamps(req.Alloc, now)
|
|
|
|
// Set modify time for preempted allocs if any
|
|
// Also gather jobids to create follow up evals
|
|
for _, alloc := range req.NodePreemptions {
|
|
alloc.ModifyTime = now
|
|
appendNamespacedJobID(preemptedJobIDs, alloc)
|
|
}
|
|
}
|
|
|
|
var evals []*structs.Evaluation
|
|
for preemptedJobID := range preemptedJobIDs {
|
|
job, _ := p.State().JobByID(nil, preemptedJobID.Namespace, preemptedJobID.ID)
|
|
if job != nil {
|
|
eval := &structs.Evaluation{
|
|
ID: uuid.Generate(),
|
|
Namespace: job.Namespace,
|
|
TriggeredBy: structs.EvalTriggerPreemption,
|
|
JobID: job.ID,
|
|
Type: job.Type,
|
|
Priority: job.Priority,
|
|
Status: structs.EvalStatusPending,
|
|
}
|
|
evals = append(evals, eval)
|
|
}
|
|
}
|
|
req.PreemptionEvals = evals
|
|
|
|
// Dispatch the Raft transaction
|
|
future, err := p.raftApplyFuture(structs.ApplyPlanResultsRequestType, &req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Optimistically apply to our state view
|
|
if snap != nil {
|
|
nextIdx := p.raft.AppliedIndex() + 1
|
|
if err := snap.UpsertPlanResults(nextIdx, &req); err != nil {
|
|
return future, err
|
|
}
|
|
}
|
|
return future, nil
|
|
}
|
|
|
|
// normalizePreemptedAlloc removes redundant fields from a preempted allocation and
|
|
// returns AllocationDiff. Since a preempted allocation is always an existing allocation,
|
|
// the struct returned by this method contains only the differential, which can be
|
|
// applied to an existing allocation, to yield the updated struct
|
|
func normalizePreemptedAlloc(preemptedAlloc *structs.Allocation, now int64) *structs.AllocationDiff {
|
|
return &structs.AllocationDiff{
|
|
ID: preemptedAlloc.ID,
|
|
PreemptedByAllocation: preemptedAlloc.PreemptedByAllocation,
|
|
ModifyTime: now,
|
|
}
|
|
}
|
|
|
|
// normalizeStoppedAlloc removes redundant fields from a stopped allocation and
|
|
// returns AllocationDiff. Since a stopped allocation is always an existing allocation,
|
|
// the struct returned by this method contains only the differential, which can be
|
|
// applied to an existing allocation, to yield the updated struct
|
|
func normalizeStoppedAlloc(stoppedAlloc *structs.Allocation, now int64) *structs.AllocationDiff {
|
|
return &structs.AllocationDiff{
|
|
ID: stoppedAlloc.ID,
|
|
DesiredDescription: stoppedAlloc.DesiredDescription,
|
|
ClientStatus: stoppedAlloc.ClientStatus,
|
|
ModifyTime: now,
|
|
}
|
|
}
|
|
|
|
// appendNamespacedJobID appends the namespaced Job ID for the alloc to the jobIDs set
|
|
func appendNamespacedJobID(jobIDs map[structs.NamespacedID]struct{}, alloc *structs.Allocation) {
|
|
id := structs.NamespacedID{Namespace: alloc.Namespace, ID: alloc.JobID}
|
|
if _, ok := jobIDs[id]; !ok {
|
|
jobIDs[id] = struct{}{}
|
|
}
|
|
}
|
|
|
|
// updateAllocTimestamps sets the CreateTime and ModifyTime for the allocations
|
|
// to the timestamp provided
|
|
func updateAllocTimestamps(allocations []*structs.Allocation, timestamp int64) {
|
|
for _, alloc := range allocations {
|
|
if alloc.CreateTime == 0 {
|
|
alloc.CreateTime = timestamp
|
|
}
|
|
alloc.ModifyTime = timestamp
|
|
}
|
|
}
|
|
|
|
// asyncPlanWait is used to apply and respond to a plan async
|
|
func (p *planner) asyncPlanWait(waitCh chan struct{}, future raft.ApplyFuture,
|
|
result *structs.PlanResult, pending *pendingPlan) {
|
|
defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now())
|
|
defer close(waitCh)
|
|
|
|
// Wait for the plan to apply
|
|
if err := future.Error(); err != nil {
|
|
p.logger.Error("failed to apply plan", "error", err)
|
|
pending.respond(nil, err)
|
|
return
|
|
}
|
|
|
|
// Respond to the plan
|
|
result.AllocIndex = future.Index()
|
|
|
|
// If this is a partial plan application, we need to ensure the scheduler
|
|
// at least has visibility into any placements it made to avoid double placement.
|
|
// The RefreshIndex computed by evaluatePlan may be stale due to evaluation
|
|
// against an optimistic copy of the state.
|
|
if result.RefreshIndex != 0 {
|
|
result.RefreshIndex = maxUint64(result.RefreshIndex, result.AllocIndex)
|
|
}
|
|
pending.respond(result, nil)
|
|
}
|
|
|
|
// evaluatePlan is used to determine what portions of a plan
|
|
// can be applied if any. Returns if there should be a plan application
|
|
// which may be partial or if there was an error
|
|
func evaluatePlan(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan, logger log.Logger) (*structs.PlanResult, error) {
|
|
defer metrics.MeasureSince([]string{"nomad", "plan", "evaluate"}, time.Now())
|
|
|
|
// Denormalize without the job
|
|
err := snap.DenormalizeAllocationsMap(plan.NodeUpdate, nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Denormalize without the job
|
|
err = snap.DenormalizeAllocationsMap(plan.NodePreemptions, nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Check if the plan exceeds quota
|
|
overQuota, err := evaluatePlanQuota(snap, plan)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Reject the plan and force the scheduler to refresh
|
|
if overQuota {
|
|
index, err := refreshIndex(snap)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
logger.Debug("plan for evaluation exceeds quota limit. Forcing state refresh", "eval_id", plan.EvalID, "refresh_index", index)
|
|
return &structs.PlanResult{RefreshIndex: index}, nil
|
|
}
|
|
|
|
return evaluatePlanPlacements(pool, snap, plan, logger)
|
|
}
|
|
|
|
// evaluatePlanPlacements is used to determine what portions of a plan can be
|
|
// applied if any, looking for node over commitment. Returns if there should be
|
|
// a plan application which may be partial or if there was an error
|
|
func evaluatePlanPlacements(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan, logger log.Logger) (*structs.PlanResult, error) {
|
|
// Create a result holder for the plan
|
|
result := &structs.PlanResult{
|
|
NodeUpdate: make(map[string][]*structs.Allocation),
|
|
NodeAllocation: make(map[string][]*structs.Allocation),
|
|
Deployment: plan.Deployment.Copy(),
|
|
DeploymentUpdates: plan.DeploymentUpdates,
|
|
NodePreemptions: make(map[string][]*structs.Allocation),
|
|
}
|
|
|
|
// Collect all the nodeIDs
|
|
nodeIDs := make(map[string]struct{})
|
|
nodeIDList := make([]string, 0, len(plan.NodeUpdate)+len(plan.NodeAllocation))
|
|
for nodeID := range plan.NodeUpdate {
|
|
if _, ok := nodeIDs[nodeID]; !ok {
|
|
nodeIDs[nodeID] = struct{}{}
|
|
nodeIDList = append(nodeIDList, nodeID)
|
|
}
|
|
}
|
|
for nodeID := range plan.NodeAllocation {
|
|
if _, ok := nodeIDs[nodeID]; !ok {
|
|
nodeIDs[nodeID] = struct{}{}
|
|
nodeIDList = append(nodeIDList, nodeID)
|
|
}
|
|
}
|
|
|
|
// Setup a multierror to handle potentially getting many
|
|
// errors since we are processing in parallel.
|
|
var mErr multierror.Error
|
|
partialCommit := false
|
|
|
|
// handleResult is used to process the result of evaluateNodePlan
|
|
handleResult := func(nodeID string, fit bool, reason string, err error) (cancel bool) {
|
|
// Evaluate the plan for this node
|
|
if err != nil {
|
|
mErr.Errors = append(mErr.Errors, err)
|
|
return true
|
|
}
|
|
if !fit {
|
|
// Log the reason why the node's allocations could not be made
|
|
if reason != "" {
|
|
logger.Debug("plan for node rejected", "node_id", nodeID, "reason", reason)
|
|
}
|
|
// Set that this is a partial commit
|
|
partialCommit = true
|
|
|
|
// If we require all-at-once scheduling, there is no point
|
|
// to continue the evaluation, as we've already failed.
|
|
if plan.AllAtOnce {
|
|
result.NodeUpdate = nil
|
|
result.NodeAllocation = nil
|
|
result.DeploymentUpdates = nil
|
|
result.Deployment = nil
|
|
result.NodePreemptions = nil
|
|
return true
|
|
}
|
|
|
|
// Skip this node, since it cannot be used.
|
|
return
|
|
}
|
|
|
|
// Add this to the plan result
|
|
if nodeUpdate := plan.NodeUpdate[nodeID]; len(nodeUpdate) > 0 {
|
|
result.NodeUpdate[nodeID] = nodeUpdate
|
|
}
|
|
if nodeAlloc := plan.NodeAllocation[nodeID]; len(nodeAlloc) > 0 {
|
|
result.NodeAllocation[nodeID] = nodeAlloc
|
|
}
|
|
|
|
if nodePreemptions := plan.NodePreemptions[nodeID]; nodePreemptions != nil {
|
|
|
|
// Do a pass over preempted allocs in the plan to check
|
|
// whether the alloc is already in a terminal state
|
|
var filteredNodePreemptions []*structs.Allocation
|
|
for _, preemptedAlloc := range nodePreemptions {
|
|
alloc, err := snap.AllocByID(nil, preemptedAlloc.ID)
|
|
if err != nil {
|
|
mErr.Errors = append(mErr.Errors, err)
|
|
continue
|
|
}
|
|
if alloc != nil && !alloc.TerminalStatus() {
|
|
filteredNodePreemptions = append(filteredNodePreemptions, preemptedAlloc)
|
|
}
|
|
}
|
|
|
|
result.NodePreemptions[nodeID] = filteredNodePreemptions
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Get the pool channels
|
|
req := pool.RequestCh()
|
|
resp := pool.ResultCh()
|
|
outstanding := 0
|
|
didCancel := false
|
|
|
|
// Evaluate each node in the plan, handling results as they are ready to
|
|
// avoid blocking.
|
|
OUTER:
|
|
for len(nodeIDList) > 0 {
|
|
nodeID := nodeIDList[0]
|
|
select {
|
|
case req <- evaluateRequest{snap, plan, nodeID}:
|
|
outstanding++
|
|
nodeIDList = nodeIDList[1:]
|
|
case r := <-resp:
|
|
outstanding--
|
|
|
|
// Handle a result that allows us to cancel evaluation,
|
|
// which may save time processing additional entries.
|
|
if cancel := handleResult(r.nodeID, r.fit, r.reason, r.err); cancel {
|
|
didCancel = true
|
|
break OUTER
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drain the remaining results
|
|
for outstanding > 0 {
|
|
r := <-resp
|
|
if !didCancel {
|
|
if cancel := handleResult(r.nodeID, r.fit, r.reason, r.err); cancel {
|
|
didCancel = true
|
|
}
|
|
}
|
|
outstanding--
|
|
}
|
|
|
|
// If the plan resulted in a partial commit, we need to determine
|
|
// a minimum refresh index to force the scheduler to work on a more
|
|
// up-to-date state to avoid the failures.
|
|
if partialCommit {
|
|
index, err := refreshIndex(snap)
|
|
if err != nil {
|
|
mErr.Errors = append(mErr.Errors, err)
|
|
}
|
|
result.RefreshIndex = index
|
|
|
|
if result.RefreshIndex == 0 {
|
|
err := fmt.Errorf("partialCommit with RefreshIndex of 0")
|
|
mErr.Errors = append(mErr.Errors, err)
|
|
}
|
|
|
|
// If there was a partial commit and we are operating within a
|
|
// deployment correct for any canary that may have been desired to be
|
|
// placed but wasn't actually placed
|
|
correctDeploymentCanaries(result)
|
|
}
|
|
return result, mErr.ErrorOrNil()
|
|
}
|
|
|
|
// correctDeploymentCanaries ensures that the deployment object doesn't list any
|
|
// canaries as placed if they didn't actually get placed. This could happen if
|
|
// the plan had a partial commit.
|
|
func correctDeploymentCanaries(result *structs.PlanResult) {
|
|
// Hot path
|
|
if result.Deployment == nil || !result.Deployment.HasPlacedCanaries() {
|
|
return
|
|
}
|
|
|
|
// Build a set of all the allocations IDs that were placed
|
|
placedAllocs := make(map[string]struct{}, len(result.NodeAllocation))
|
|
for _, placed := range result.NodeAllocation {
|
|
for _, alloc := range placed {
|
|
placedAllocs[alloc.ID] = struct{}{}
|
|
}
|
|
}
|
|
|
|
// Go through all the canaries and ensure that the result list only contains
|
|
// those that have been placed
|
|
for _, group := range result.Deployment.TaskGroups {
|
|
canaries := group.PlacedCanaries
|
|
if len(canaries) == 0 {
|
|
continue
|
|
}
|
|
|
|
// Prune the canaries in place to avoid allocating an extra slice
|
|
i := 0
|
|
for _, canaryID := range canaries {
|
|
if _, ok := placedAllocs[canaryID]; ok {
|
|
canaries[i] = canaryID
|
|
i++
|
|
}
|
|
}
|
|
|
|
group.PlacedCanaries = canaries[:i]
|
|
}
|
|
}
|
|
|
|
// evaluateNodePlan is used to evaluate the plan for a single node,
|
|
// returning if the plan is valid or if an error is encountered
|
|
func evaluateNodePlan(snap *state.StateSnapshot, plan *structs.Plan, nodeID string) (bool, string, error) {
|
|
// If this is an evict-only plan, it always 'fits' since we are removing things.
|
|
if len(plan.NodeAllocation[nodeID]) == 0 {
|
|
return true, "", nil
|
|
}
|
|
|
|
// Get the node itself
|
|
ws := memdb.NewWatchSet()
|
|
node, err := snap.NodeByID(ws, nodeID)
|
|
if err != nil {
|
|
return false, "", fmt.Errorf("failed to get node '%s': %v", nodeID, err)
|
|
}
|
|
|
|
// If the node does not exist or is not ready for scheduling it is not fit
|
|
// XXX: There is a potential race between when we do this check and when
|
|
// the Raft commit happens.
|
|
if node == nil {
|
|
return false, "node does not exist", nil
|
|
} else if node.Status != structs.NodeStatusReady {
|
|
return false, "node is not ready for placements", nil
|
|
} else if node.SchedulingEligibility == structs.NodeSchedulingIneligible {
|
|
return false, "node is not eligible for draining", nil
|
|
} else if node.Drain {
|
|
// Deprecate in favor of scheduling eligibility and remove post-0.8
|
|
return false, "node is draining", nil
|
|
}
|
|
|
|
// Get the existing allocations that are non-terminal
|
|
existingAlloc, err := snap.AllocsByNodeTerminal(ws, nodeID, false)
|
|
if err != nil {
|
|
return false, "", fmt.Errorf("failed to get existing allocations for '%s': %v", nodeID, err)
|
|
}
|
|
|
|
// Determine the proposed allocation by first removing allocations
|
|
// that are planned evictions and adding the new allocations.
|
|
var remove []*structs.Allocation
|
|
if update := plan.NodeUpdate[nodeID]; len(update) > 0 {
|
|
remove = append(remove, update...)
|
|
}
|
|
|
|
// Remove any preempted allocs
|
|
if preempted := plan.NodePreemptions[nodeID]; len(preempted) > 0 {
|
|
remove = append(remove, preempted...)
|
|
}
|
|
|
|
if updated := plan.NodeAllocation[nodeID]; len(updated) > 0 {
|
|
remove = append(remove, updated...)
|
|
}
|
|
proposed := structs.RemoveAllocs(existingAlloc, remove)
|
|
proposed = append(proposed, plan.NodeAllocation[nodeID]...)
|
|
|
|
// Check if these allocations fit
|
|
fit, reason, _, err := structs.AllocsFit(node, proposed, nil, true)
|
|
return fit, reason, err
|
|
}
|