open-nomad/scheduler/generic_sched.go
2015-09-06 20:56:38 -07:00

284 lines
8.2 KiB
Go

package scheduler
import (
"fmt"
"log"
"github.com/hashicorp/nomad/nomad/mock"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxServiceScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for services.
maxServiceScheduleAttempts = 5
// maxBatchScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for batch.
maxBatchScheduleAttempts = 2
// allocNotNeeded is the status used when a job no longer requires an allocation
allocNotNeeded = "alloc not needed due to job update"
// allocMigrating is the status used when we must migrate an allocation
allocMigrating = "alloc is being migrated"
// allocUpdating is the status used when a job requires an update
allocUpdating = "alloc is being updated due to job update"
)
// SetStatusError is used to set the status of the evaluation to the given error
type SetStatusError struct {
Err error
EvalStatus string
}
func (s *SetStatusError) Error() string {
return s.Err.Error()
}
// GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
// designed for long-lived services, and as such spends more time attemping
// to make a high quality placement. This is the primary scheduler for
// most workloads. It also supports a 'batch' mode to optimize for fast decision
// making at the cost of quality.
type GenericScheduler struct {
logger *log.Logger
state State
planner Planner
batch bool
eval *structs.Evaluation
plan *structs.Plan
}
// NewServiceScheduler is a factory function to instantiate a new service scheduler
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: false,
}
return s
}
// NewBatchScheduler is a factory function to instantiate a new batch scheduler
func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger,
state: state,
planner: planner,
batch: true,
}
return s
}
// setStatus is used to update the status of the evaluation
func (s *GenericScheduler) setStatus(status, desc string) error {
s.logger.Printf("[DEBUG] sched: %#v: setting status to %s (%s)", s.eval, status, desc)
newEval := s.eval.Copy()
newEval.Status = status
newEval.StatusDescription = desc
return s.planner.UpdateEval(newEval)
}
// Process is used to handle a single evaluation
func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerJobDeregister:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return s.setStatus(structs.EvalStatusFailed, desc)
}
// Store the evaluation
s.eval = eval
// Retry up to the maxScheduleAttempts
limit := maxServiceScheduleAttempts
if s.batch {
limit = maxBatchScheduleAttempts
}
if err := retryMax(limit, s.process); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
return s.setStatus(statusErr.EvalStatus, err.Error())
}
return err
}
// Update the status to complete
return s.setStatus(structs.EvalStatusComplete, "")
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *GenericScheduler) process() (bool, error) {
// Lookup the Job by ID
job, err := s.state.JobByID(s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job '%s': %v",
s.eval.JobID, err)
}
// Create a plan
s.plan = s.eval.MakePlan(job)
// Compute the target job allocations
if err := s.computeJobAllocs(job); err != nil {
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
return false, err
}
// If the plan is a no-op, we can bail
if s.plan.IsNoOp() {
return true, nil
}
// Submit the plan
result, newState, err := s.planner.SubmitPlan(s.plan)
if err != nil {
return false, err
}
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
s.eval, expected, actual)
return false, nil
}
// Success!
return true, nil
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *GenericScheduler) computeJobAllocs(job *structs.Job) error {
// Materialize all the task groups, job could be missing if deregistered
var groups map[string]*structs.TaskGroup
if job != nil {
groups = materializeTaskGroups(job)
}
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(s.eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Diff the required and existing allocations
diff := diffAllocs(job, tainted, groups, allocs)
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
// Add all the allocs to stop
for _, e := range diff.stop {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded)
}
// For simplicity, we treat all migrates as an evict + place.
// XXX: This could probably be done more intelligently?
for _, e := range diff.migrate {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocMigrating)
}
diff.place = append(diff.place, diff.migrate...)
// For simplicity, we treat all updates as an evict + place.
// XXX: This should be done with rolling in-place updates instead.
for _, e := range diff.update {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocUpdating)
}
diff.place = append(diff.place, diff.update...)
// Nothing remaining to do if placement is not required
if len(diff.place) == 0 {
return nil
}
// Compute the placements
return s.computePlacements(job, diff.place)
}
func (s *GenericScheduler) computePlacements(job *structs.Job, place []allocTuple) error {
// Create an evaluation context
ctx := NewEvalContext(s.state, s.plan, s.logger)
// Get the base nodes
nodes, err := readyNodesInDCs(s.state, job.Datacenters)
if err != nil {
return err
}
// Construct the placement stack
stack := NewGenericStack(s.batch, ctx, nodes)
// Track the failed task groups so that we can coalesce
// the failures together to avoid creating many failed allocs.
failedTG := make(map[*structs.TaskGroup]*structs.Allocation)
for _, missing := range place {
// Check if this task group has already failed
if alloc, ok := failedTG[missing.TaskGroup]; ok {
alloc.Metrics.CoalescedFailures += 1
continue
}
// Attempt to match the task group
option, size := stack.Select(missing.TaskGroup)
// Handle a placement failure
var nodeID, status, desc, clientStatus string
if option == nil {
status = structs.AllocDesiredStatusFailed
desc = "failed to find a node for placement"
clientStatus = structs.AllocClientStatusFailed
} else {
nodeID = option.Node.ID
status = structs.AllocDesiredStatusRun
clientStatus = structs.AllocClientStatusPending
}
// Create an allocation for this
alloc := &structs.Allocation{
ID: mock.GenerateUUID(),
EvalID: s.eval.ID,
Name: missing.Name,
NodeID: nodeID,
JobID: job.ID,
Job: job,
TaskGroup: missing.TaskGroup.Name,
Resources: size,
Metrics: ctx.Metrics(),
DesiredStatus: status,
DesiredDescription: desc,
ClientStatus: clientStatus,
}
if nodeID != "" {
s.plan.AppendAlloc(alloc)
} else {
s.plan.AppendFailed(alloc)
failedTG[missing.TaskGroup] = alloc
}
}
return nil
}