open-nomad/nomad/plan_apply.go

362 lines
11 KiB
Go

package nomad
import (
"fmt"
"runtime"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/raft"
)
// planApply is a long lived goroutine that reads plan allocations from
// the plan queue, determines if they can be applied safely and applies
// them via Raft.
//
// Naively, we could simply dequeue a plan, verify, apply and then respond.
// However, the plan application is bounded by the Raft apply time and
// subject to some latency. This creates a stall condition, where we are
// not evaluating, but simply waiting for a transaction to apply.
//
// To avoid this, we overlap verification with apply. This means once
// we've verified plan N we attempt to apply it. However, while waiting
// for apply, we begin to verify plan N+1 under the assumption that plan
// N has succeeded.
//
// In this sense, we track two parallel versions of the world. One is
// the pessimistic one driven by the Raft log which is replicated. The
// other is optimistic and assumes our transactions will succeed. In the
// happy path, this lets us do productive work during the latency of
// apply.
//
// In the unhappy path (Raft transaction fails), effectively we only
// wasted work during a time we would have been waiting anyways. However,
// in anticipation of this case we cannot respond to the plan until
// the Raft log is updated. This means our schedulers will stall,
// but there are many of those and only a single plan verifier.
//
func (s *Server) planApply() {
// waitCh is used to track an outstanding application while snap
// holds an optimistic state which includes that plan application.
var waitCh chan struct{}
var snap *state.StateSnapshot
// Setup a worker pool with half the cores, with at least 1
poolSize := runtime.NumCPU() / 2
if poolSize == 0 {
poolSize = 1
}
pool := NewEvaluatePool(poolSize, workerPoolBufferSize)
defer pool.Shutdown()
for {
// Pull the next pending plan, exit if we are no longer leader
pending, err := s.planQueue.Dequeue(0)
if err != nil {
return
}
// Check if out last plan has completed
select {
case <-waitCh:
waitCh = nil
snap = nil
default:
}
// Snapshot the state so that we have a consistent view of the world
// if no snapshot is available
if waitCh == nil || snap == nil {
snap, err = s.fsm.State().Snapshot()
if err != nil {
s.logger.Printf("[ERR] nomad: failed to snapshot state: %v", err)
pending.respond(nil, err)
continue
}
}
// Evaluate the plan
result, err := evaluatePlan(pool, snap, pending.plan)
if err != nil {
s.logger.Printf("[ERR] nomad: failed to evaluate plan: %v", err)
pending.respond(nil, err)
continue
}
// Fast-path the response if there is nothing to do
if result.IsNoOp() {
pending.respond(result, nil)
continue
}
// Ensure any parallel apply is complete before starting the next one.
// This also limits how out of date our snapshot can be.
if waitCh != nil {
<-waitCh
snap, err = s.fsm.State().Snapshot()
if err != nil {
s.logger.Printf("[ERR] nomad: failed to snapshot state: %v", err)
pending.respond(nil, err)
continue
}
}
// Dispatch the Raft transaction for the plan
future, err := s.applyPlan(pending.plan.Job, result, snap)
if err != nil {
s.logger.Printf("[ERR] nomad: failed to submit plan: %v", err)
pending.respond(nil, err)
continue
}
// Respond to the plan in async
waitCh = make(chan struct{})
go s.asyncPlanWait(waitCh, future, result, pending)
}
}
// applyPlan is used to apply the plan result and to return the alloc index
func (s *Server) applyPlan(job *structs.Job, result *structs.PlanResult, snap *state.StateSnapshot) (raft.ApplyFuture, error) {
// Determine the miniumum number of updates, could be more if there
// are multiple updates per node
minUpdates := len(result.NodeUpdate)
minUpdates += len(result.NodeAllocation)
// Setup the update request
req := structs.AllocUpdateRequest{
Job: job,
Alloc: make([]*structs.Allocation, 0, minUpdates),
}
for _, updateList := range result.NodeUpdate {
req.Alloc = append(req.Alloc, updateList...)
}
for _, allocList := range result.NodeAllocation {
req.Alloc = append(req.Alloc, allocList...)
}
// Set the time the alloc was applied for the first time. This can be used
// to approximate the scheduling time.
now := time.Now().UTC().UnixNano()
for _, alloc := range req.Alloc {
if alloc.CreateTime == 0 {
alloc.CreateTime = now
}
}
// Dispatch the Raft transaction
future, err := s.raftApplyFuture(structs.AllocUpdateRequestType, &req)
if err != nil {
return nil, err
}
// Optimistically apply to our state view
if snap != nil {
nextIdx := s.raft.AppliedIndex() + 1
if err := snap.UpsertAllocs(nextIdx, req.Alloc); err != nil {
return future, err
}
}
return future, nil
}
// asyncPlanWait is used to apply and respond to a plan async
func (s *Server) asyncPlanWait(waitCh chan struct{}, future raft.ApplyFuture,
result *structs.PlanResult, pending *pendingPlan) {
defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now())
defer close(waitCh)
// Wait for the plan to apply
if err := future.Error(); err != nil {
s.logger.Printf("[ERR] nomad: failed to apply plan: %v", err)
pending.respond(nil, err)
return
}
// Respond to the plan
result.AllocIndex = future.Index()
// If this is a partial plan application, we need to ensure the scheduler
// at least has visibility into any placements it made to avoid double placement.
// The RefreshIndex computed by evaluatePlan may be stale due to evaluation
// against an optimistic copy of the state.
if result.RefreshIndex != 0 {
result.RefreshIndex = maxUint64(result.RefreshIndex, result.AllocIndex)
}
pending.respond(result, nil)
}
// evaluatePlan is used to determine what portions of a plan
// can be applied if any. Returns if there should be a plan application
// which may be partial or if there was an error
func evaluatePlan(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan) (*structs.PlanResult, error) {
defer metrics.MeasureSince([]string{"nomad", "plan", "evaluate"}, time.Now())
// Create a result holder for the plan
result := &structs.PlanResult{
NodeUpdate: make(map[string][]*structs.Allocation),
NodeAllocation: make(map[string][]*structs.Allocation),
}
// Collect all the nodeIDs
nodeIDs := make(map[string]struct{})
nodeIDList := make([]string, 0, len(plan.NodeUpdate)+len(plan.NodeAllocation))
for nodeID := range plan.NodeUpdate {
if _, ok := nodeIDs[nodeID]; !ok {
nodeIDs[nodeID] = struct{}{}
nodeIDList = append(nodeIDList, nodeID)
}
}
for nodeID := range plan.NodeAllocation {
if _, ok := nodeIDs[nodeID]; !ok {
nodeIDs[nodeID] = struct{}{}
nodeIDList = append(nodeIDList, nodeID)
}
}
// Setup a multierror to handle potentially getting many
// errors since we are processing in parallel.
var mErr multierror.Error
partialCommit := false
// handleResult is used to process the result of evaluateNodePlan
handleResult := func(nodeID string, fit bool, err error) (cancel bool) {
// Evaluate the plan for this node
if err != nil {
mErr.Errors = append(mErr.Errors, err)
return true
}
if !fit {
// Set that this is a partial commit
partialCommit = true
// If we require all-at-once scheduling, there is no point
// to continue the evaluation, as we've already failed.
if plan.AllAtOnce {
result.NodeUpdate = nil
result.NodeAllocation = nil
return true
}
// Skip this node, since it cannot be used.
return
}
// Add this to the plan result
if nodeUpdate := plan.NodeUpdate[nodeID]; len(nodeUpdate) > 0 {
result.NodeUpdate[nodeID] = nodeUpdate
}
if nodeAlloc := plan.NodeAllocation[nodeID]; len(nodeAlloc) > 0 {
result.NodeAllocation[nodeID] = nodeAlloc
}
return
}
// Get the pool channels
req := pool.RequestCh()
resp := pool.ResultCh()
outstanding := 0
didCancel := false
// Evalute each node in the plan, handling results as they are ready to
// avoid blocking.
for len(nodeIDList) > 0 {
nodeID := nodeIDList[0]
select {
case req <- evaluateRequest{snap, plan, nodeID}:
outstanding++
nodeIDList = nodeIDList[1:]
case r := <-resp:
outstanding--
// Handle a result that allows us to cancel evaluation,
// which may save time processing additional entries.
if cancel := handleResult(r.nodeID, r.fit, r.err); cancel {
didCancel = true
break
}
}
}
// Drain the remaining results
for outstanding > 0 {
r := <-resp
if !didCancel {
if cancel := handleResult(r.nodeID, r.fit, r.err); cancel {
didCancel = true
}
}
outstanding--
}
// If the plan resulted in a partial commit, we need to determine
// a minimum refresh index to force the scheduler to work on a more
// up-to-date state to avoid the failures.
if partialCommit {
allocIndex, err := snap.Index("allocs")
if err != nil {
mErr.Errors = append(mErr.Errors, err)
}
nodeIndex, err := snap.Index("nodes")
if err != nil {
mErr.Errors = append(mErr.Errors, err)
}
result.RefreshIndex = maxUint64(nodeIndex, allocIndex)
if result.RefreshIndex == 0 {
err := fmt.Errorf("partialCommit with RefreshIndex of 0 (%d node, %d alloc)", nodeIndex, allocIndex)
mErr.Errors = append(mErr.Errors, err)
}
}
return result, mErr.ErrorOrNil()
}
// evaluateNodePlan is used to evalute the plan for a single node,
// returning if the plan is valid or if an error is encountered
func evaluateNodePlan(snap *state.StateSnapshot, plan *structs.Plan, nodeID string) (bool, error) {
// If this is an evict-only plan, it always 'fits' since we are removing things.
if len(plan.NodeAllocation[nodeID]) == 0 {
return true, nil
}
// Get the node itself
node, err := snap.NodeByID(nodeID)
if err != nil {
return false, fmt.Errorf("failed to get node '%s': %v", nodeID, err)
}
// If the node does not exist or is not ready for schduling it is not fit
// XXX: There is a potential race between when we do this check and when
// the Raft commit happens.
if node == nil || node.Status != structs.NodeStatusReady || node.Drain {
return false, nil
}
// Get the existing allocations that are non-terminal
existingAlloc, err := snap.AllocsByNodeTerminal(nodeID, false)
if err != nil {
return false, fmt.Errorf("failed to get existing allocations for '%s': %v", nodeID, err)
}
// Determine the proposed allocation by first removing allocations
// that are planned evictions and adding the new allocations.
proposed := existingAlloc
var remove []*structs.Allocation
if update := plan.NodeUpdate[nodeID]; len(update) > 0 {
remove = append(remove, update...)
}
if updated := plan.NodeAllocation[nodeID]; len(updated) > 0 {
for _, alloc := range updated {
remove = append(remove, alloc)
}
}
proposed = structs.RemoveAllocs(existingAlloc, remove)
proposed = append(proposed, plan.NodeAllocation[nodeID]...)
// Check if these allocations fit
fit, _, _, err := structs.AllocsFit(node, proposed, nil)
return fit, err
}