open-nomad/client/executor/exec_linux.go

382 lines
10 KiB
Go

package executor
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"os"
"os/exec"
"os/user"
"strconv"
"strings"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/command"
"github.com/hashicorp/nomad/helper/discover"
"github.com/hashicorp/nomad/nomad/structs"
cgroupFs "github.com/opencontainers/runc/libcontainer/cgroups/fs"
cgroupConfig "github.com/opencontainers/runc/libcontainer/configs"
)
const (
cgroupMount = "/sys/fs/cgroup"
)
func NewExecutor() Executor {
e := LinuxExecutor{}
// TODO: In a follow-up PR make it so this only happens once per client.
// Fingerprinting shouldn't happen per task.
// Check that cgroups are available.
if _, err := os.Stat(cgroupMount); err == nil {
e.cgroupEnabled = true
}
return &e
}
// Linux executor is designed to run on linux kernel 2.8+.
type LinuxExecutor struct {
cmd
user *user.User
// Finger print capabilities.
cgroupEnabled bool
// Isolation configurations.
groups *cgroupConfig.Cgroup
// Tracking of child process.
spawnChild exec.Cmd
spawnOutputWriter *os.File
spawnOutputReader *os.File
}
func (e *LinuxExecutor) Limit(resources *structs.Resources) error {
if resources == nil {
return nil
}
if e.cgroupEnabled {
e.configureCgroups(resources)
}
return nil
}
func (e *LinuxExecutor) configureCgroups(resources *structs.Resources) {
if !e.cgroupEnabled {
return
}
e.groups = &cgroupConfig.Cgroup{}
// Groups will be created in a heiarchy according to the resource being
// constrained, current session, and then this unique name. Restraints are
// then placed in the corresponding files.
// Ex: restricting a process to 2048Mhz CPU and 2MB of memory:
// $ cat /sys/fs/cgroup/cpu/user/1000.user/4.session/<uuid>/cpu.shares
// 2028
// $ cat /sys/fs/cgroup/memory/user/1000.user/4.session/<uuid>/memory.limit_in_bytes
// 2097152
e.groups.Name = structs.GenerateUUID()
// TODO: verify this is needed for things like network access
e.groups.AllowAllDevices = true
if resources.MemoryMB > 0 {
// Total amount of memory allowed to consume
e.groups.Memory = int64(resources.MemoryMB * 1024 * 1024)
// Disable swap to avoid issues on the machine
e.groups.MemorySwap = int64(-1)
}
if resources.CPU > 0.0 {
// Set the relative CPU shares for this cgroup.
// The simplest scale is 1 share to 1 MHz so 1024 = 1GHz. This means any
// given process will have at least that amount of resources, but likely
// more since it is (probably) rare that the machine will run at 100%
// CPU. This scale will cease to work if a node is overprovisioned.
e.groups.CpuShares = int64(resources.CPU)
}
if resources.IOPS > 0 {
e.groups.BlkioThrottleReadIOpsDevice = strconv.FormatInt(int64(resources.IOPS), 10)
e.groups.BlkioThrottleWriteIOpsDevice = strconv.FormatInt(int64(resources.IOPS), 10)
}
}
func (e *LinuxExecutor) runAs(userid string) error {
errs := new(multierror.Error)
// First, try to lookup the user by uid
u, err := user.LookupId(userid)
if err == nil {
e.user = u
return nil
} else {
errs = multierror.Append(errs, err)
}
// Lookup failed, so try by username instead
u, err = user.Lookup(userid)
if err == nil {
e.user = u
return nil
} else {
errs = multierror.Append(errs, err)
}
// If we got here we failed to lookup based on id and username, so we'll
// return those errors.
return fmt.Errorf("Failed to identify user to run as: %s", errs)
}
func (e *LinuxExecutor) Start() error {
// Try to run as "nobody" user so we don't leak root privilege to the
// spawned process. Note that we will only do this if we can call SetUID.
// Otherwise we'll just run the other process as our current (non-root)
// user. This means we aren't forced to run nomad as root.
if err := e.runAs("nobody"); err == nil && e.user != nil {
e.cmd.SetUID(e.user.Uid)
e.cmd.SetGID(e.user.Gid)
}
return e.spawnDaemon()
}
// spawnDaemon executes a double fork to start the user command with proper
// isolation. Stores the child process for use in Wait.
func (e *LinuxExecutor) spawnDaemon() error {
bin, err := discover.NomadExecutable()
if err != nil {
return fmt.Errorf("Failed to determine the nomad executable: %v", err)
}
// Serialize the cmd and the cgroup configuration so it can be passed to the
// sub-process.
var buffer bytes.Buffer
enc := json.NewEncoder(&buffer)
// TODO: Do the stdout file handles once there is alloc and task directories
// set up.
c := command.DaemonConfig{
Cmd: e.cmd.Cmd,
Groups: e.groups,
StdoutFile: "/dev/null",
StderrFile: "/dev/null",
StdinFile: "/dev/null",
}
if err := enc.Encode(c); err != nil {
return fmt.Errorf("Failed to serialize daemon configuration: %v", err)
}
// Create a pipe to capture Stdout.
pr, pw, err := os.Pipe()
if err != nil {
return err
}
e.spawnOutputWriter = pw
e.spawnOutputReader = pr
// Call ourselves using a hidden flag. The new instance of nomad will join
// the passed cgroup, forkExec the cmd, and output status codes through
// Stdout.
escaped := strconv.Quote(buffer.String())
spawn := exec.Command(bin, "spawn-daemon", escaped)
spawn.Stdout = e.spawnOutputWriter
if err := spawn.Start(); err != nil {
fmt.Errorf("Failed to call spawn-daemon on nomad executable: %v", err)
}
// Parse the response.
dec := json.NewDecoder(e.spawnOutputReader)
var resp command.SpawnStartStatus
if err := dec.Decode(&resp); err != nil {
return fmt.Errorf("Failed to parse spawn-daemon start response: %v", err)
}
if resp.ErrorMsg != "" {
return fmt.Errorf("Failed to execute user command: %s", resp.ErrorMsg)
}
e.spawnChild = *spawn
return nil
}
// Open's behavior is to kill all processes associated with the id and return an
// error. This is done because it is not possible to re-attach to the
// spawn-daemon's stdout to retrieve status messages.
func (e *LinuxExecutor) Open(id string) error {
parts := strings.SplitN(id, ":", 2)
if len(parts) != 2 {
return fmt.Errorf("Invalid id: %v", id)
}
switch parts[0] {
case "PID":
pid, err := strconv.Atoi(parts[1])
if err != nil {
return fmt.Errorf("Invalid id: failed to parse pid %v", parts[1])
}
process, err := os.FindProcess(pid)
if err != nil {
return fmt.Errorf("Failed to find Pid %v: %v", pid, err)
}
if err := process.Kill(); err != nil {
return fmt.Errorf("Failed to kill Pid %v: %v", pid, err)
}
case "CGROUP":
if !e.cgroupEnabled {
return errors.New("Passed a a cgroup identifier, but cgroups are disabled")
}
// De-serialize the cgroup configuration.
dec := json.NewDecoder(strings.NewReader(parts[1]))
var groups cgroupConfig.Cgroup
if err := dec.Decode(&groups); err != nil {
return fmt.Errorf("Failed to parse cgroup configuration: %v", err)
}
e.groups = &groups
if err := e.destroyCgroup(); err != nil {
return err
}
default:
return fmt.Errorf("Invalid id type: %v", parts[0])
}
return errors.New("Could not re-open to id")
}
func (e *LinuxExecutor) Wait() error {
if e.spawnChild.Process == nil {
return errors.New("Can not find child to wait on")
}
defer e.spawnOutputWriter.Close()
defer e.spawnOutputReader.Close()
err := e.spawnChild.Wait()
if err != nil {
return fmt.Errorf("Wait failed on pid %v: %v", e.spawnChild.Process.Pid, err)
}
// Read the exit status of the spawned process.
dec := json.NewDecoder(e.spawnOutputReader)
var resp command.SpawnExitStatus
if err := dec.Decode(&resp); err != nil {
return fmt.Errorf("Failed to parse spawn-daemon exit response: %v", err)
}
if !resp.Success {
return errors.New("Task exited with error")
}
// If they fork/exec and then exit, wait will return but they will be still
// running processes so we need to kill the full cgroup.
if e.cgroupEnabled {
return e.destroyCgroup()
}
return nil
}
// If cgroups are used, the ID is the cgroup structurue. Otherwise, it is the
// PID of the spawn-daemon process. An error is returned if the process was
// never started.
func (e *LinuxExecutor) ID() (string, error) {
if e.spawnChild.Process != nil {
if e.cgroupEnabled && e.groups != nil {
// Serialize the cgroup structure so it can be undone on suabsequent
// opens.
var buffer bytes.Buffer
enc := json.NewEncoder(&buffer)
if err := enc.Encode(e.groups); err != nil {
return "", fmt.Errorf("Failed to serialize daemon configuration: %v", err)
}
return fmt.Sprintf("CGROUP:%v", buffer.String()), nil
}
return fmt.Sprintf("PID:%d", e.spawnChild.Process.Pid), nil
}
return "", fmt.Errorf("Process has finished or was never started")
}
func (e *LinuxExecutor) Shutdown() error {
return e.ForceStop()
}
func (e *LinuxExecutor) ForceStop() error {
if e.spawnOutputReader != nil {
e.spawnOutputReader.Close()
}
if e.spawnOutputWriter != nil {
e.spawnOutputWriter.Close()
}
// If the task is not running inside a cgroup then just the spawn-daemon child is killed.
// TODO: Find a good way to kill the children of the spawn-daemon.
if !e.cgroupEnabled {
if err := e.spawnChild.Process.Kill(); err != nil {
return fmt.Errorf("Failed to kill child (%v): %v", e.spawnChild.Process.Pid, err)
}
return nil
}
return e.destroyCgroup()
}
func (e *LinuxExecutor) destroyCgroup() error {
if e.groups == nil {
return errors.New("Can't destroy: cgroup configuration empty")
}
manager := cgroupFs.Manager{}
manager.Cgroups = e.groups
pids, err := manager.GetPids()
if err != nil {
return fmt.Errorf("Failed to get pids in the cgroup %v: %v", e.groups.Name, err)
}
errs := new(multierror.Error)
for _, pid := range pids {
process, err := os.FindProcess(pid)
if err != nil {
multierror.Append(errs, fmt.Errorf("Failed to find Pid %v: %v", pid, err))
continue
}
if err := process.Kill(); err != nil {
multierror.Append(errs, fmt.Errorf("Failed to kill Pid %v: %v", pid, err))
continue
}
}
// Remove the cgroup.
if err := manager.Destroy(); err != nil {
multierror.Append(errs, fmt.Errorf("Failed to delete the cgroup directories: %v", err))
}
if len(errs.Errors) != 0 {
return fmt.Errorf("Failed to destroy cgroup: %v", errs)
}
return nil
}
func (e *LinuxExecutor) Command() *cmd {
return &e.cmd
}