open-nomad/nomad/drain.go

706 lines
20 KiB
Go

package nomad
import (
"context"
"log"
"strings"
"sync"
"time"
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
)
// jobKey is a tuple of namespace+jobid for use as a map key by job
type jobKey struct {
ns string
jobid string
}
// drainingJob contains the Job and allocations for that job meant to be used
// when collecting all allocations for a job with at least one allocation on a
// draining node.
//
// This allows the MaxParallel calculation to take the entire job's allocation
// state into account. FIXME is that even useful?
type drainingJob struct {
job *structs.Job
allocs []*structs.Allocation
}
// drainingAlloc contains a conservative deadline an alloc has to be healthy by
// before it should stopped being watched and replaced.
type drainingAlloc struct {
// LastModified+MigrateStrategy.HealthyDeadline
deadline time.Time
// Task Group key
tgKey string
}
func newDrainingAlloc(a *structs.Allocation, deadline time.Time) drainingAlloc {
return drainingAlloc{
deadline: deadline,
tgKey: makeTaskGroupKey(a),
}
}
// makeTaskGroupKey returns a unique key for an allocation's task group
func makeTaskGroupKey(a *structs.Allocation) string {
return strings.Join([]string{a.Namespace, a.JobID, a.TaskGroup}, "-")
}
// stopAllocs tracks allocs to drain by a unique TG key
type stopAllocs struct {
allocBatch map[string]*structs.DesiredTransition
// namespace+jobid -> Job
jobBatch map[jobKey]*structs.Job
}
func (s *stopAllocs) add(j *structs.Job, a *structs.Allocation) {
// Add the desired migration transition to the batch
s.allocBatch[a.ID] = &structs.DesiredTransition{
Migrate: helper.BoolToPtr(true),
}
// Add job to the job batch
s.jobBatch[jobKey{a.Namespace, a.JobID}] = j
}
// startNodeDrainer should be called in establishLeadership by the leader.
func (s *Server) startNodeDrainer(stopCh chan struct{}) {
state := s.fsm.State()
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go func() {
select {
case <-stopCh:
cancel()
case <-ctx.Done():
}
}()
nodes, nodesIndex, drainingJobs, allocsIndex := initDrainer(s.logger, state)
// Wait for a node's drain deadline to expire
var nextDeadline time.Time
for _, node := range nodes {
if nextDeadline.IsZero() {
nextDeadline = node.DrainStrategy.DeadlineTime()
continue
}
if deadline := node.DrainStrategy.DeadlineTime(); deadline.Before(nextDeadline) {
nextDeadline = deadline
}
}
deadlineTimer := time.NewTimer(time.Until(nextDeadline))
// Watch for nodes to start or stop draining
nodeWatcher := newNodeWatcher(s.logger, nodes, nodesIndex, state)
go nodeWatcher.run(ctx)
// Watch for drained allocations to be replaced
// Watch for changes in allocs for jobs with allocs on draining nodes
jobWatcher := newJobWatcher(s.logger, drainingJobs, allocsIndex, state)
go jobWatcher.run(ctx)
for {
//TODO this method of async node updates means we could make
//migration decisions on out of date information. the worst
//possible outcome of this is that an allocation could be
//stopped on a node that recently had its drain cancelled which
//doesn't seem like that bad of a pathological case
s.logger.Printf("[TRACE] nomad.drain: LOOP next deadline: %s (%s)", nextDeadline, time.Until(nextDeadline))
select {
case nodes = <-nodeWatcher.nodesCh:
// update draining nodes
s.logger.Printf("[TRACE] nomad.drain: running due to node change (%d nodes draining)", len(nodes))
// update deadline timer
changed := false
for _, n := range nodes {
if nextDeadline.IsZero() {
nextDeadline = n.DrainStrategy.DeadlineTime()
changed = true
continue
}
if deadline := n.DrainStrategy.DeadlineTime(); deadline.Before(nextDeadline) {
nextDeadline = deadline
changed = true
}
}
// if changed reset the timer
if changed {
s.logger.Printf("[TRACE] nomad.drain: new node deadline: %s", nextDeadline)
if !deadlineTimer.Stop() {
// timer may have been recv'd in a
// previous loop, so don't block
select {
case <-deadlineTimer.C:
default:
}
}
deadlineTimer.Reset(time.Until(nextDeadline))
}
case jobs := <-jobWatcher.WaitCh():
s.logger.Printf("[TRACE] nomad.drain: running due to alloc change (%d jobs updated)", len(jobs))
case when := <-deadlineTimer.C:
// deadline for a node was reached
s.logger.Printf("[TRACE] nomad.drain: running due to deadline reached (at %s)", when)
case <-ctx.Done():
// exit
return
}
// Tracks nodes that are done draining
doneNodes := map[string]*structs.Node{}
//TODO work from a state snapshot? perhaps from a last update
//index? I can't think of why this would be beneficial as this
//entire process runs asynchronously with the fsm/scheduler/etc
snapshot, err := state.Snapshot()
if err != nil {
//FIXME
panic(err)
}
now := time.Now() // for determing deadlines in a consistent way
// job key -> {job, allocs}
// Collect all allocs for all jobs with at least one
// alloc on a draining node.
// Invariants:
// - No system jobs
// - No batch jobs unless their node's deadline is reached
// - No entries with 0 allocs
//TODO could this be a helper method on prevAllocWatcher
drainable := map[jobKey]*drainingJob{}
// track jobs we've looked up before and know we shouldn't
// consider for draining eg system jobs
skipJob := map[jobKey]struct{}{}
// track number of "up" allocs per task group (not terminal and
// have a deployment status)
upPerTG := map[string]int{}
// Collect all drainable jobs
for nodeID, node := range nodes {
allocs, err := snapshot.AllocsByNode(nil, nodeID)
if err != nil {
//FIXME
panic(err)
}
// track number of allocs left on this node to be drained
allocsLeft := false
deadlineReached := node.DrainStrategy.DeadlineTime().Before(now)
for _, alloc := range allocs {
jobkey := jobKey{alloc.Namespace, alloc.JobID}
if _, ok := drainable[jobkey]; ok {
// already found
continue
}
if _, ok := skipJob[jobkey]; ok {
// already looked up and skipped
continue
}
// job does not found yet
job, err := snapshot.JobByID(nil, alloc.Namespace, alloc.JobID)
if err != nil {
//FIXME
panic(err)
}
// If alloc isn't yet terminal this node has
// allocs left to be drained
if !alloc.TerminalStatus() {
if !allocsLeft {
s.logger.Printf("[TRACE] nomad.drain: node %s has allocs left to drain", nodeID[:6])
allocsLeft = true
}
}
// Don't bother collecting system/batch jobs for nodes that haven't hit their deadline
if job.Type != structs.JobTypeService && !deadlineReached {
s.logger.Printf("[TRACE] nomad.drain: not draining %s job %s because deadline isn't for %s",
job.Type, job.Name, node.DrainStrategy.DeadlineTime().Sub(now))
skipJob[jobkey] = struct{}{}
continue
}
jobAllocs, err := snapshot.AllocsByJob(nil, alloc.Namespace, alloc.JobID, true)
if err != nil {
//FIXME
panic(err)
}
// Count the number of down (terminal or nil deployment status) per task group
if job.Type == structs.JobTypeService {
n := 0
for _, a := range jobAllocs {
if !a.TerminalStatus() && a.DeploymentStatus != nil {
upPerTG[makeTaskGroupKey(a)]++
n++
}
}
s.logger.Printf("[TRACE] nomad.drain: job %s has %d task groups running", job.Name, n)
}
drainable[jobkey] = &drainingJob{
job: job,
allocs: jobAllocs,
}
jobWatcher.watch(jobkey, nodeID)
}
// if node has no allocs or has hit its deadline, it's done draining!
if !allocsLeft || deadlineReached {
s.logger.Printf("[TRACE] nomad.drain: node %s has no more allocs left to drain or has reached deadline", nodeID)
jobWatcher.nodeDone(nodeID)
doneNodes[nodeID] = node
}
}
// stoplist are the allocations to migrate and their jobs to emit
// evaluations for
stoplist := &stopAllocs{
allocBatch: make(map[string]*structs.DesiredTransition),
jobBatch: make(map[jobKey]*structs.Job),
}
// build drain list considering deadline & max_parallel
for _, drainingJob := range drainable {
for _, alloc := range drainingJob.allocs {
// Already draining/dead allocs don't need to be drained
if alloc.TerminalStatus() {
continue
}
node, ok := nodes[alloc.NodeID]
if !ok {
// Alloc's node is not draining so not elligible for draining!
continue
}
tgKey := makeTaskGroupKey(alloc)
if node.DrainStrategy.DeadlineTime().Before(now) {
s.logger.Printf("[TRACE] nomad.drain: draining job %s alloc %s from node %s due to node's drain deadline", drainingJob.job.Name, alloc.ID[:6], alloc.NodeID[:6])
// Alloc's Node has reached its deadline
stoplist.add(drainingJob.job, alloc)
upPerTG[tgKey]--
continue
}
// Batch/System jobs are only stopped when the
// node deadline is reached which has already
// been done.
if drainingJob.job.Type != structs.JobTypeService {
continue
}
// Stop allocs with count=1, max_parallel==0, or draining<max_parallel
tg := drainingJob.job.LookupTaskGroup(alloc.TaskGroup)
//FIXME tg==nil here?
// Only 1, drain
if tg.Count == 1 {
s.logger.Printf("[TRACE] nomad.drain: draining job %s alloc %s from node %s due to count=1", drainingJob.job.Name, alloc.ID[:6], alloc.NodeID[:6])
stoplist.add(drainingJob.job, alloc)
continue
}
// No migrate strategy or a max parallel of 0 mean force draining
if tg.Migrate == nil || tg.Migrate.MaxParallel == 0 {
s.logger.Printf("[TRACE] nomad.drain: draining job %s alloc %s from node %s due to force drain", drainingJob.job.Name, alloc.ID[:6], alloc.NodeID[:6])
stoplist.add(drainingJob.job, alloc)
continue
}
s.logger.Printf("[TRACE] nomad.drain: considering job %s alloc %s count %d maxp %d up %d",
drainingJob.job.Name, alloc.ID[:6], tg.Count, tg.Migrate.MaxParallel, upPerTG[tgKey])
// Count - MaxParalell = minimum number of allocations that must be "up"
minUp := (tg.Count - tg.Migrate.MaxParallel)
// If minimum is < the current number up it is safe to stop one.
if minUp < upPerTG[tgKey] {
s.logger.Printf("[TRACE] nomad.drain: draining job %s alloc %s from node %s due to max parallel", drainingJob.job.Name, alloc.ID[:6], alloc.NodeID[:6])
// More migrations are allowed, add to stoplist
stoplist.add(drainingJob.job, alloc)
upPerTG[tgKey]--
}
}
}
if len(stoplist.allocBatch) > 0 {
s.logger.Printf("[DEBUG] nomad.drain: stopping %d alloc(s) for %d job(s)", len(stoplist.allocBatch), len(stoplist.jobBatch))
// Reevaluate affected jobs
evals := make([]*structs.Evaluation, 0, len(stoplist.jobBatch))
for _, job := range stoplist.jobBatch {
evals = append(evals, &structs.Evaluation{
ID: uuid.Generate(),
Namespace: job.Namespace,
Priority: job.Priority,
Type: job.Type,
TriggeredBy: structs.EvalTriggerNodeDrain,
JobID: job.ID,
JobModifyIndex: job.ModifyIndex,
Status: structs.EvalStatusPending,
})
}
// Send raft request
batch := &structs.AllocUpdateDesiredTransitionRequest{
Allocs: stoplist.allocBatch,
Evals: evals,
WriteRequest: structs.WriteRequest{Region: s.config.Region},
}
// Commit this update via Raft
//TODO Not the right request
_, index, err := s.raftApply(structs.AllocUpdateDesiredTransitionRequestType, batch)
if err != nil {
//FIXME
panic(err)
}
//TODO i bet there's something useful to do with this index
_ = index
}
// Unset drain for nodes done draining
for nodeID, node := range doneNodes {
args := structs.NodeUpdateDrainRequest{
NodeID: nodeID,
Drain: false,
WriteRequest: structs.WriteRequest{Region: s.config.Region},
}
_, _, err := s.raftApply(structs.NodeUpdateDrainRequestType, &args)
if err != nil {
s.logger.Printf("[ERR] nomad.drain: failed to unset drain for: %v", err)
//FIXME
panic(err)
}
s.logger.Printf("[INFO] nomad.drain: node %s (%s) completed draining", nodeID, node.Name)
delete(nodes, nodeID)
}
}
}
// nodeWatcher watches for nodes to start or stop draining
type nodeWatcher struct {
index uint64
nodes map[string]*structs.Node
nodesCh chan map[string]*structs.Node
state *state.StateStore
logger *log.Logger
}
func newNodeWatcher(logger *log.Logger, nodes map[string]*structs.Node, index uint64, state *state.StateStore) *nodeWatcher {
return &nodeWatcher{
nodes: nodes,
nodesCh: make(chan map[string]*structs.Node),
index: index,
state: state,
logger: logger,
}
}
func (n *nodeWatcher) run(ctx context.Context) {
// Trigger an initial drain pass if there are already nodes draining
//FIXME this is unneccessary if a node has reached a deadline
n.logger.Printf("[TRACE] nomad.drain: initial draining nodes: %d", len(n.nodes))
if len(n.nodes) > 0 {
n.nodesCh <- n.nodes
}
for {
//FIXME it seems possible for this to return a nil error and a 0 index, what to do in that case?
resp, index, err := n.state.BlockingQuery(n.queryNodeDrain, n.index, ctx)
if err != nil {
if err == context.Canceled {
n.logger.Printf("[TRACE] nomad.drain: draining node watcher shutting down")
return
}
n.logger.Printf("[ERR] nomad.drain: error blocking on node updates at index %d: %v", n.index, err)
return
}
// update index for next run
n.index = index
changed := false
newNodes := resp.([]*structs.Node)
n.logger.Printf("[TRACE] nomad.drain: %d nodes to consider", len(newNodes)) //FIXME remove
for _, newNode := range newNodes {
if existingNode, ok := n.nodes[newNode.ID]; ok {
// Node was draining, see if it has changed
if !newNode.Drain {
// Node stopped draining
delete(n.nodes, newNode.ID)
changed = true
} else if !newNode.DrainStrategy.DeadlineTime().Equal(existingNode.DrainStrategy.DeadlineTime()) {
// Update deadline
n.nodes[newNode.ID] = newNode
changed = true
}
} else {
// Node was not draining
if newNode.Drain {
// Node started draining
n.nodes[newNode.ID] = newNode
changed = true
}
}
}
// Send a copy of the draining nodes if there were changes
if !changed {
continue
}
nodesCopy := make(map[string]*structs.Node, len(n.nodes))
for k, v := range n.nodes {
nodesCopy[k] = v
}
select {
case n.nodesCh <- nodesCopy:
case <-ctx.Done():
return
}
}
}
func (n *nodeWatcher) queryNodeDrain(ws memdb.WatchSet, state *state.StateStore) (interface{}, uint64, error) {
iter, err := state.Nodes(ws)
if err != nil {
return nil, 0, err
}
index, err := state.Index("nodes")
if err != nil {
return nil, 0, err
}
resp := make([]*structs.Node, 0, 8)
for {
raw := iter.Next()
if raw == nil {
break
}
node := raw.(*structs.Node)
resp = append(resp, node)
}
return resp, index, nil
}
type jobWatcher struct {
// allocsIndex to start watching from
allocsIndex uint64
// job -> node.ID
jobs map[jobKey]string
jobsMu sync.Mutex
jobsCh chan map[jobKey]struct{}
state *state.StateStore
logger *log.Logger
}
func newJobWatcher(logger *log.Logger, jobs map[jobKey]string, allocsIndex uint64, state *state.StateStore) *jobWatcher {
return &jobWatcher{
allocsIndex: allocsIndex,
logger: logger,
jobs: jobs,
jobsCh: make(chan map[jobKey]struct{}),
state: state,
}
}
func (j *jobWatcher) watch(k jobKey, nodeID string) {
j.logger.Printf("[TRACE] nomad.drain: watching job %s on draining node %s", k.jobid, nodeID[:6])
j.jobsMu.Lock()
j.jobs[k] = nodeID
j.jobsMu.Unlock()
}
func (j *jobWatcher) nodeDone(nodeID string) {
j.jobsMu.Lock()
defer j.jobsMu.Unlock()
for k, v := range j.jobs {
if v == nodeID {
j.logger.Printf("[TRACE] nomad.drain: UNwatching job %s on done draining node %s", k.jobid, nodeID[:6])
delete(j.jobs, k)
}
}
}
func (j *jobWatcher) WaitCh() <-chan map[jobKey]struct{} {
return j.jobsCh
}
func (j *jobWatcher) run(ctx context.Context) {
var resp interface{}
var err error
for {
//FIXME have watchAllocs create a closure and give it a copy of j.jobs to remove locking?
//FIXME it seems possible for this to return a nil error and a 0 index, what to do in that case?
var newIndex uint64
resp, newIndex, err = j.state.BlockingQuery(j.watchAllocs, j.allocsIndex, ctx)
if err != nil {
if err == context.Canceled {
j.logger.Printf("[TRACE] nomad.drain: job watcher shutting down")
return
}
j.logger.Printf("[ERR] nomad.drain: error blocking on alloc updates: %v", err)
return
}
j.logger.Printf("[TRACE] nomad.drain: job watcher old index: %d new index: %d", j.allocsIndex, newIndex)
j.allocsIndex = newIndex
changedJobs := resp.(map[jobKey]struct{})
if len(changedJobs) > 0 {
select {
case j.jobsCh <- changedJobs:
case <-ctx.Done():
return
}
}
}
}
func (j *jobWatcher) watchAllocs(ws memdb.WatchSet, state *state.StateStore) (interface{}, uint64, error) {
iter, err := state.Allocs(ws)
if err != nil {
return nil, 0, err
}
index, err := state.Index("allocs")
if err != nil {
return nil, 0, err
}
skipped := 0
// job ids
resp := map[jobKey]struct{}{}
for {
raw := iter.Next()
if raw == nil {
break
}
alloc := raw.(*structs.Allocation)
j.jobsMu.Lock()
_, ok := j.jobs[jobKey{alloc.Namespace, alloc.JobID}]
j.jobsMu.Unlock()
if !ok {
// alloc is not part of a draining job
skipped++
continue
}
// don't wake drain loop if alloc hasn't updated its health
if alloc.DeploymentStatus.IsHealthy() || alloc.DeploymentStatus.IsUnhealthy() {
j.logger.Printf("[TRACE] nomad.drain: job watcher found alloc %s - deployment status: %t", alloc.ID[:6], *alloc.DeploymentStatus.Healthy)
resp[jobKey{alloc.Namespace, alloc.JobID}] = struct{}{}
} else {
j.logger.Printf("[TRACE] nomad.drain: job watcher ignoring alloc %s - no deployment status", alloc.ID[:6])
}
}
j.logger.Printf("[TRACE] nomad.drain: job watcher ignoring %d allocs - not part of draining job at index %d", skipped, index)
return resp, index, nil
}
// initDrainer initializes the node drainer state and returns a list of
// draining nodes as well as allocs that are draining that should be watched
// for a replacement.
func initDrainer(logger *log.Logger, state *state.StateStore) (map[string]*structs.Node, uint64, map[jobKey]string, uint64) {
// StateStore.Snapshot never returns an error so don't bother checking it
snapshot, _ := state.Snapshot()
now := time.Now()
iter, err := snapshot.Nodes(nil)
if err != nil {
logger.Printf("[ERR] nomad.drain: error iterating nodes: %v", err)
panic(err) //FIXME
}
// map of draining nodes keyed by node ID
nodes := map[string]*structs.Node{}
// map of draining job IDs keyed by {namespace, job id} -> node.ID
jobs := map[jobKey]string{}
for {
raw := iter.Next()
if raw == nil {
break
}
// Filter on datacenter and status
node := raw.(*structs.Node)
if !node.Drain {
continue
}
// Track draining node
nodes[node.ID] = node
// No point in tracking draining allocs as the deadline has been reached
if node.DrainStrategy.DeadlineTime().Before(now) {
continue
}
allocs, err := snapshot.AllocsByNode(nil, node.ID)
if err != nil {
logger.Printf("[ERR] nomad.drain: error iterating allocs for node %q: %v", node.ID, err)
panic(err) //FIXME
}
for _, alloc := range allocs {
jobs[jobKey{alloc.Namespace, alloc.JobID}] = node.ID
}
}
nodesIndex, _ := snapshot.Index("nodes")
if nodesIndex == 0 {
nodesIndex = 1
}
allocsIndex, _ := snapshot.Index("allocs")
if allocsIndex == 0 {
allocsIndex = 1
}
return nodes, nodesIndex, jobs, allocsIndex
}