d71a90c8a4
* Throw away result of multierror.Append When given a *multierror.Error, it is mutated, therefore the return value is not needed. * Simplify MergeMultierrorWarnings, use StringBuilder * Hash.Write() never returns an error * Remove error that was always nil * Remove error from Resources.Add signature When this was originally written it could return an error, but that was refactored away, and callers of it as of today never handle the error. * Throw away results of io.Copy during Bridge * Handle errors when computing node class in test
474 lines
12 KiB
Go
474 lines
12 KiB
Go
package structs
|
|
|
|
import (
|
|
"crypto/subtle"
|
|
"encoding/base64"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"math"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
|
|
multierror "github.com/hashicorp/go-multierror"
|
|
lru "github.com/hashicorp/golang-lru"
|
|
"github.com/hashicorp/nomad/acl"
|
|
"golang.org/x/crypto/blake2b"
|
|
)
|
|
|
|
// MergeMultierrorWarnings takes job warnings and canonicalize warnings and
|
|
// merges them into a returnable string. Both the errors may be nil.
|
|
func MergeMultierrorWarnings(errs ...error) string {
|
|
if len(errs) == 0 {
|
|
return ""
|
|
}
|
|
|
|
var mErr multierror.Error
|
|
_ = multierror.Append(&mErr, errs...)
|
|
mErr.ErrorFormat = warningsFormatter
|
|
|
|
return mErr.Error()
|
|
}
|
|
|
|
// warningsFormatter is used to format job warnings
|
|
func warningsFormatter(es []error) string {
|
|
sb := strings.Builder{}
|
|
sb.WriteString(fmt.Sprintf("%d warning(s):\n", len(es)))
|
|
|
|
for i := range es {
|
|
sb.WriteString(fmt.Sprintf("\n* %s", es[i]))
|
|
}
|
|
|
|
return sb.String()
|
|
}
|
|
|
|
// RemoveAllocs is used to remove any allocs with the given IDs
|
|
// from the list of allocations
|
|
func RemoveAllocs(alloc []*Allocation, remove []*Allocation) []*Allocation {
|
|
// Convert remove into a set
|
|
removeSet := make(map[string]struct{})
|
|
for _, remove := range remove {
|
|
removeSet[remove.ID] = struct{}{}
|
|
}
|
|
|
|
n := len(alloc)
|
|
for i := 0; i < n; i++ {
|
|
if _, ok := removeSet[alloc[i].ID]; ok {
|
|
alloc[i], alloc[n-1] = alloc[n-1], nil
|
|
i--
|
|
n--
|
|
}
|
|
}
|
|
|
|
alloc = alloc[:n]
|
|
return alloc
|
|
}
|
|
|
|
// FilterTerminalAllocs filters out all allocations in a terminal state and
|
|
// returns the latest terminal allocations
|
|
func FilterTerminalAllocs(allocs []*Allocation) ([]*Allocation, map[string]*Allocation) {
|
|
terminalAllocsByName := make(map[string]*Allocation)
|
|
n := len(allocs)
|
|
for i := 0; i < n; i++ {
|
|
if allocs[i].TerminalStatus() {
|
|
|
|
// Add the allocation to the terminal allocs map if it's not already
|
|
// added or has a higher create index than the one which is
|
|
// currently present.
|
|
alloc, ok := terminalAllocsByName[allocs[i].Name]
|
|
if !ok || alloc.CreateIndex < allocs[i].CreateIndex {
|
|
terminalAllocsByName[allocs[i].Name] = allocs[i]
|
|
}
|
|
|
|
// Remove the allocation
|
|
allocs[i], allocs[n-1] = allocs[n-1], nil
|
|
i--
|
|
n--
|
|
}
|
|
}
|
|
return allocs[:n], terminalAllocsByName
|
|
}
|
|
|
|
// AllocsFit checks if a given set of allocations will fit on a node.
|
|
// The netIdx can optionally be provided if its already been computed.
|
|
// If the netIdx is provided, it is assumed that the client has already
|
|
// ensured there are no collisions. If checkDevices is set to true, we check if
|
|
// there is a device oversubscription.
|
|
func AllocsFit(node *Node, allocs []*Allocation, netIdx *NetworkIndex, checkDevices bool) (bool, string, *ComparableResources, error) {
|
|
// Compute the allocs' utilization from zero
|
|
used := new(ComparableResources)
|
|
|
|
// For each alloc, add the resources
|
|
for _, alloc := range allocs {
|
|
// Do not consider the resource impact of terminal allocations
|
|
if alloc.TerminalStatus() {
|
|
continue
|
|
}
|
|
|
|
used.Add(alloc.ComparableResources())
|
|
}
|
|
|
|
// Check that the node resources (after subtracting reserved) are a
|
|
// super set of those that are being allocated
|
|
available := node.ComparableResources()
|
|
available.Subtract(node.ComparableReservedResources())
|
|
if superset, dimension := available.Superset(used); !superset {
|
|
return false, dimension, used, nil
|
|
}
|
|
|
|
// Create the network index if missing
|
|
if netIdx == nil {
|
|
netIdx = NewNetworkIndex()
|
|
defer netIdx.Release()
|
|
if netIdx.SetNode(node) || netIdx.AddAllocs(allocs) {
|
|
return false, "reserved port collision", used, nil
|
|
}
|
|
}
|
|
|
|
// Check if the network is overcommitted
|
|
if netIdx.Overcommitted() {
|
|
return false, "bandwidth exceeded", used, nil
|
|
}
|
|
|
|
// Check devices
|
|
if checkDevices {
|
|
accounter := NewDeviceAccounter(node)
|
|
if accounter.AddAllocs(allocs) {
|
|
return false, "device oversubscribed", used, nil
|
|
}
|
|
}
|
|
|
|
// Allocations fit!
|
|
return true, "", used, nil
|
|
}
|
|
|
|
func computeFreePercentage(node *Node, util *ComparableResources) (freePctCpu, freePctRam float64) {
|
|
// COMPAT(0.11): Remove in 0.11
|
|
reserved := node.ComparableReservedResources()
|
|
res := node.ComparableResources()
|
|
|
|
// Determine the node availability
|
|
nodeCpu := float64(res.Flattened.Cpu.CpuShares)
|
|
nodeMem := float64(res.Flattened.Memory.MemoryMB)
|
|
if reserved != nil {
|
|
nodeCpu -= float64(reserved.Flattened.Cpu.CpuShares)
|
|
nodeMem -= float64(reserved.Flattened.Memory.MemoryMB)
|
|
}
|
|
|
|
// Compute the free percentage
|
|
freePctCpu = 1 - (float64(util.Flattened.Cpu.CpuShares) / nodeCpu)
|
|
freePctRam = 1 - (float64(util.Flattened.Memory.MemoryMB) / nodeMem)
|
|
return freePctCpu, freePctRam
|
|
}
|
|
|
|
// ScoreFitBinPack computes a fit score to achieve pinbacking behavior.
|
|
// Score is in [0, 18]
|
|
//
|
|
// It's the BestFit v3 on the Google work published here:
|
|
// http://www.columbia.edu/~cs2035/courses/ieor4405.S13/datacenter_scheduling.ppt
|
|
func ScoreFitBinPack(node *Node, util *ComparableResources) float64 {
|
|
freePctCpu, freePctRam := computeFreePercentage(node, util)
|
|
|
|
// Total will be "maximized" the smaller the value is.
|
|
// At 100% utilization, the total is 2, while at 0% util it is 20.
|
|
total := math.Pow(10, freePctCpu) + math.Pow(10, freePctRam)
|
|
|
|
// Invert so that the "maximized" total represents a high-value
|
|
// score. Because the floor is 20, we simply use that as an anchor.
|
|
// This means at a perfect fit, we return 18 as the score.
|
|
score := 20.0 - total
|
|
|
|
// Bound the score, just in case
|
|
// If the score is over 18, that means we've overfit the node.
|
|
if score > 18.0 {
|
|
score = 18.0
|
|
} else if score < 0 {
|
|
score = 0
|
|
}
|
|
return score
|
|
}
|
|
|
|
// ScoreFitBinSpread computes a fit score to achieve spread behavior.
|
|
// Score is in [0, 18]
|
|
//
|
|
// This is equivalent to Worst Fit of
|
|
// http://www.columbia.edu/~cs2035/courses/ieor4405.S13/datacenter_scheduling.ppt
|
|
func ScoreFitSpread(node *Node, util *ComparableResources) float64 {
|
|
freePctCpu, freePctRam := computeFreePercentage(node, util)
|
|
total := math.Pow(10, freePctCpu) + math.Pow(10, freePctRam)
|
|
score := total - 2
|
|
|
|
if score > 18.0 {
|
|
score = 18.0
|
|
} else if score < 0 {
|
|
score = 0
|
|
}
|
|
return score
|
|
}
|
|
|
|
func CopySliceConstraints(s []*Constraint) []*Constraint {
|
|
l := len(s)
|
|
if l == 0 {
|
|
return nil
|
|
}
|
|
|
|
c := make([]*Constraint, l)
|
|
for i, v := range s {
|
|
c[i] = v.Copy()
|
|
}
|
|
return c
|
|
}
|
|
|
|
func CopySliceAffinities(s []*Affinity) []*Affinity {
|
|
l := len(s)
|
|
if l == 0 {
|
|
return nil
|
|
}
|
|
|
|
c := make([]*Affinity, l)
|
|
for i, v := range s {
|
|
c[i] = v.Copy()
|
|
}
|
|
return c
|
|
}
|
|
|
|
func CopySliceSpreads(s []*Spread) []*Spread {
|
|
l := len(s)
|
|
if l == 0 {
|
|
return nil
|
|
}
|
|
|
|
c := make([]*Spread, l)
|
|
for i, v := range s {
|
|
c[i] = v.Copy()
|
|
}
|
|
return c
|
|
}
|
|
|
|
func CopySliceSpreadTarget(s []*SpreadTarget) []*SpreadTarget {
|
|
l := len(s)
|
|
if l == 0 {
|
|
return nil
|
|
}
|
|
|
|
c := make([]*SpreadTarget, l)
|
|
for i, v := range s {
|
|
c[i] = v.Copy()
|
|
}
|
|
return c
|
|
}
|
|
|
|
func CopySliceNodeScoreMeta(s []*NodeScoreMeta) []*NodeScoreMeta {
|
|
l := len(s)
|
|
if l == 0 {
|
|
return nil
|
|
}
|
|
|
|
c := make([]*NodeScoreMeta, l)
|
|
for i, v := range s {
|
|
c[i] = v.Copy()
|
|
}
|
|
return c
|
|
}
|
|
|
|
// VaultPoliciesSet takes the structure returned by VaultPolicies and returns
|
|
// the set of required policies
|
|
func VaultPoliciesSet(policies map[string]map[string]*Vault) []string {
|
|
set := make(map[string]struct{})
|
|
|
|
for _, tgp := range policies {
|
|
for _, tp := range tgp {
|
|
for _, p := range tp.Policies {
|
|
set[p] = struct{}{}
|
|
}
|
|
}
|
|
}
|
|
|
|
flattened := make([]string, 0, len(set))
|
|
for p := range set {
|
|
flattened = append(flattened, p)
|
|
}
|
|
return flattened
|
|
}
|
|
|
|
// VaultNaVaultNamespaceSet takes the structure returned by VaultPolicies and
|
|
// returns a set of required namespaces
|
|
func VaultNamespaceSet(policies map[string]map[string]*Vault) []string {
|
|
set := make(map[string]struct{})
|
|
|
|
for _, tgp := range policies {
|
|
for _, tp := range tgp {
|
|
if tp.Namespace != "" {
|
|
set[tp.Namespace] = struct{}{}
|
|
}
|
|
}
|
|
}
|
|
|
|
flattened := make([]string, 0, len(set))
|
|
for p := range set {
|
|
flattened = append(flattened, p)
|
|
}
|
|
return flattened
|
|
}
|
|
|
|
// DenormalizeAllocationJobs is used to attach a job to all allocations that are
|
|
// non-terminal and do not have a job already. This is useful in cases where the
|
|
// job is normalized.
|
|
func DenormalizeAllocationJobs(job *Job, allocs []*Allocation) {
|
|
if job != nil {
|
|
for _, alloc := range allocs {
|
|
if alloc.Job == nil && !alloc.TerminalStatus() {
|
|
alloc.Job = job
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// AllocName returns the name of the allocation given the input.
|
|
func AllocName(job, group string, idx uint) string {
|
|
return fmt.Sprintf("%s.%s[%d]", job, group, idx)
|
|
}
|
|
|
|
// ACLPolicyListHash returns a consistent hash for a set of policies.
|
|
func ACLPolicyListHash(policies []*ACLPolicy) string {
|
|
cacheKeyHash, err := blake2b.New256(nil)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
for _, policy := range policies {
|
|
_, _ = cacheKeyHash.Write([]byte(policy.Name))
|
|
_ = binary.Write(cacheKeyHash, binary.BigEndian, policy.ModifyIndex)
|
|
}
|
|
cacheKey := string(cacheKeyHash.Sum(nil))
|
|
return cacheKey
|
|
}
|
|
|
|
// CompileACLObject compiles a set of ACL policies into an ACL object with a cache
|
|
func CompileACLObject(cache *lru.TwoQueueCache, policies []*ACLPolicy) (*acl.ACL, error) {
|
|
// Sort the policies to ensure consistent ordering
|
|
sort.Slice(policies, func(i, j int) bool {
|
|
return policies[i].Name < policies[j].Name
|
|
})
|
|
|
|
// Determine the cache key
|
|
cacheKey := ACLPolicyListHash(policies)
|
|
aclRaw, ok := cache.Get(cacheKey)
|
|
if ok {
|
|
return aclRaw.(*acl.ACL), nil
|
|
}
|
|
|
|
// Parse the policies
|
|
parsed := make([]*acl.Policy, 0, len(policies))
|
|
for _, policy := range policies {
|
|
p, err := acl.Parse(policy.Rules)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed to parse %q: %v", policy.Name, err)
|
|
}
|
|
parsed = append(parsed, p)
|
|
}
|
|
|
|
// Create the ACL object
|
|
aclObj, err := acl.NewACL(false, parsed)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed to construct ACL: %v", err)
|
|
}
|
|
|
|
// Update the cache
|
|
cache.Add(cacheKey, aclObj)
|
|
return aclObj, nil
|
|
}
|
|
|
|
// GenerateMigrateToken will create a token for a client to access an
|
|
// authenticated volume of another client to migrate data for sticky volumes.
|
|
func GenerateMigrateToken(allocID, nodeSecretID string) (string, error) {
|
|
h, err := blake2b.New512([]byte(nodeSecretID))
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
_, _ = h.Write([]byte(allocID))
|
|
|
|
return base64.URLEncoding.EncodeToString(h.Sum(nil)), nil
|
|
}
|
|
|
|
// CompareMigrateToken returns true if two migration tokens can be computed and
|
|
// are equal.
|
|
func CompareMigrateToken(allocID, nodeSecretID, otherMigrateToken string) bool {
|
|
h, err := blake2b.New512([]byte(nodeSecretID))
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
_, _ = h.Write([]byte(allocID))
|
|
|
|
otherBytes, err := base64.URLEncoding.DecodeString(otherMigrateToken)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return subtle.ConstantTimeCompare(h.Sum(nil), otherBytes) == 1
|
|
}
|
|
|
|
// ParsePortRanges parses the passed port range string and returns a list of the
|
|
// ports. The specification is a comma separated list of either port numbers or
|
|
// port ranges. A port number is a single integer and a port range is two
|
|
// integers separated by a hyphen. As an example the following spec would
|
|
// convert to: ParsePortRanges("10,12-14,16") -> []uint64{10, 12, 13, 14, 16}
|
|
func ParsePortRanges(spec string) ([]uint64, error) {
|
|
parts := strings.Split(spec, ",")
|
|
|
|
// Hot path the empty case
|
|
if len(parts) == 1 && parts[0] == "" {
|
|
return nil, nil
|
|
}
|
|
|
|
ports := make(map[uint64]struct{})
|
|
for _, part := range parts {
|
|
part = strings.TrimSpace(part)
|
|
rangeParts := strings.Split(part, "-")
|
|
l := len(rangeParts)
|
|
switch l {
|
|
case 1:
|
|
if val := rangeParts[0]; val == "" {
|
|
return nil, fmt.Errorf("can't specify empty port")
|
|
} else {
|
|
port, err := strconv.ParseUint(val, 10, 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ports[port] = struct{}{}
|
|
}
|
|
case 2:
|
|
// We are parsing a range
|
|
start, err := strconv.ParseUint(rangeParts[0], 10, 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
end, err := strconv.ParseUint(rangeParts[1], 10, 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if end < start {
|
|
return nil, fmt.Errorf("invalid range: starting value (%v) less than ending (%v) value", end, start)
|
|
}
|
|
|
|
for i := start; i <= end; i++ {
|
|
ports[i] = struct{}{}
|
|
}
|
|
default:
|
|
return nil, fmt.Errorf("can only parse single port numbers or port ranges (ex. 80,100-120,150)")
|
|
}
|
|
}
|
|
|
|
var results []uint64
|
|
for port := range ports {
|
|
results = append(results, port)
|
|
}
|
|
|
|
sort.Slice(results, func(i, j int) bool {
|
|
return results[i] < results[j]
|
|
})
|
|
return results, nil
|
|
}
|