566 lines
16 KiB
Go
566 lines
16 KiB
Go
package nomad
|
|
|
|
import (
|
|
"context"
|
|
"crypto/tls"
|
|
"crypto/x509"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math/rand"
|
|
"net"
|
|
"net/rpc"
|
|
"strings"
|
|
"time"
|
|
|
|
metrics "github.com/armon/go-metrics"
|
|
"github.com/hashicorp/consul/lib"
|
|
memdb "github.com/hashicorp/go-memdb"
|
|
"github.com/hashicorp/nomad/helper/pool"
|
|
"github.com/hashicorp/nomad/nomad/state"
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
"github.com/hashicorp/raft"
|
|
"github.com/hashicorp/yamux"
|
|
"github.com/ugorji/go/codec"
|
|
)
|
|
|
|
const (
|
|
// maxQueryTime is used to bound the limit of a blocking query
|
|
maxQueryTime = 300 * time.Second
|
|
|
|
// defaultQueryTime is the amount of time we block waiting for a change
|
|
// if no time is specified. Previously we would wait the maxQueryTime.
|
|
defaultQueryTime = 300 * time.Second
|
|
|
|
// Warn if the Raft command is larger than this.
|
|
// If it's over 1MB something is probably being abusive.
|
|
raftWarnSize = 1024 * 1024
|
|
|
|
// enqueueLimit caps how long we will wait to enqueue
|
|
// a new Raft command. Something is probably wrong if this
|
|
// value is ever reached. However, it prevents us from blocking
|
|
// the requesting goroutine forever.
|
|
enqueueLimit = 30 * time.Second
|
|
)
|
|
|
|
// RPCContext provides metadata about the RPC connection.
|
|
type RPCContext struct {
|
|
// Conn exposes the raw connection.
|
|
Conn net.Conn
|
|
|
|
// Session exposes the multiplexed connection session.
|
|
Session *yamux.Session
|
|
|
|
// TLS marks whether the RPC is over a TLS based connection
|
|
TLS bool
|
|
|
|
// VerifiedChains is is the Verified certificates presented by the incoming
|
|
// connection.
|
|
VerifiedChains [][]*x509.Certificate
|
|
|
|
// NodeID marks the NodeID that initiated the connection.
|
|
NodeID string
|
|
}
|
|
|
|
// listen is used to listen for incoming RPC connections
|
|
func (s *Server) listen(ctx context.Context) {
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
s.logger.Println("[INFO] nomad.rpc: Closing server RPC connection")
|
|
return
|
|
default:
|
|
}
|
|
|
|
// Accept a connection
|
|
conn, err := s.rpcListener.Accept()
|
|
if err != nil {
|
|
if s.shutdown {
|
|
return
|
|
}
|
|
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
default:
|
|
}
|
|
|
|
s.logger.Printf("[ERR] nomad.rpc: failed to accept RPC conn: %v", err)
|
|
continue
|
|
}
|
|
|
|
go s.handleConn(ctx, conn, &RPCContext{Conn: conn})
|
|
metrics.IncrCounter([]string{"nomad", "rpc", "accept_conn"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleConn is used to determine if this is a Raft or
|
|
// Nomad type RPC connection and invoke the correct handler
|
|
func (s *Server) handleConn(ctx context.Context, conn net.Conn, rpcCtx *RPCContext) {
|
|
// Read a single byte
|
|
buf := make([]byte, 1)
|
|
if _, err := conn.Read(buf); err != nil {
|
|
if err != io.EOF {
|
|
s.logger.Printf("[ERR] nomad.rpc: failed to read byte: %v", err)
|
|
}
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// Enforce TLS if EnableRPC is set
|
|
if s.config.TLSConfig.EnableRPC && !rpcCtx.TLS && pool.RPCType(buf[0]) != pool.RpcTLS {
|
|
if !s.config.TLSConfig.RPCUpgradeMode {
|
|
s.logger.Printf("[WARN] nomad.rpc: Non-TLS connection attempted from %s with RequireTLS set", conn.RemoteAddr().String())
|
|
conn.Close()
|
|
return
|
|
}
|
|
}
|
|
|
|
// Switch on the byte
|
|
switch pool.RPCType(buf[0]) {
|
|
case pool.RpcNomad:
|
|
// Create an RPC Server and handle the request
|
|
server := rpc.NewServer()
|
|
s.setupRpcServer(server, rpcCtx)
|
|
s.handleNomadConn(ctx, conn, server)
|
|
|
|
// Remove any potential mapping between a NodeID to this connection and
|
|
// close the underlying connection.
|
|
s.removeNodeConn(rpcCtx)
|
|
|
|
case pool.RpcRaft:
|
|
metrics.IncrCounter([]string{"nomad", "rpc", "raft_handoff"}, 1)
|
|
s.raftLayer.Handoff(ctx, conn)
|
|
|
|
case pool.RpcMultiplex:
|
|
s.handleMultiplex(ctx, conn, rpcCtx)
|
|
|
|
case pool.RpcTLS:
|
|
if s.rpcTLS == nil {
|
|
s.logger.Printf("[WARN] nomad.rpc: TLS connection attempted, server not configured for TLS")
|
|
conn.Close()
|
|
return
|
|
}
|
|
conn = tls.Server(conn, s.rpcTLS)
|
|
|
|
// Force a handshake so we can get information about the TLS connection
|
|
// state.
|
|
tlsConn, ok := conn.(*tls.Conn)
|
|
if !ok {
|
|
s.logger.Printf("[ERR] nomad.rpc: expected TLS connection but got %T", conn)
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
if err := tlsConn.Handshake(); err != nil {
|
|
s.logger.Printf("[WARN] nomad.rpc: failed TLS handshake from connection from %v: %v", tlsConn.RemoteAddr(), err)
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// Update the connection context with the fact that the connection is
|
|
// using TLS
|
|
rpcCtx.TLS = true
|
|
|
|
// Store the verified chains so they can be inspected later.
|
|
state := tlsConn.ConnectionState()
|
|
rpcCtx.VerifiedChains = state.VerifiedChains
|
|
|
|
s.handleConn(ctx, conn, rpcCtx)
|
|
|
|
case pool.RpcStreaming:
|
|
s.handleStreamingConn(conn)
|
|
|
|
case pool.RpcMultiplexV2:
|
|
s.handleMultiplexV2(conn, ctx)
|
|
|
|
default:
|
|
s.logger.Printf("[ERR] nomad.rpc: unrecognized RPC byte: %v", buf[0])
|
|
conn.Close()
|
|
return
|
|
}
|
|
}
|
|
|
|
// handleMultiplex is used to multiplex a single incoming connection
|
|
// using the Yamux multiplexer
|
|
func (s *Server) handleMultiplex(ctx context.Context, conn net.Conn, rpcCtx *RPCContext) {
|
|
defer func() {
|
|
// Remove any potential mapping between a NodeID to this connection and
|
|
// close the underlying connection.
|
|
s.removeNodeConn(rpcCtx)
|
|
conn.Close()
|
|
}()
|
|
|
|
conf := yamux.DefaultConfig()
|
|
conf.LogOutput = s.config.LogOutput
|
|
server, _ := yamux.Server(conn, conf)
|
|
|
|
// Update the context to store the yamux session
|
|
rpcCtx.Session = server
|
|
|
|
// Create the RPC server for this connection
|
|
rpcServer := rpc.NewServer()
|
|
s.setupRpcServer(rpcServer, rpcCtx)
|
|
|
|
for {
|
|
sub, err := server.Accept()
|
|
if err != nil {
|
|
if err != io.EOF {
|
|
s.logger.Printf("[ERR] nomad.rpc: multiplex conn accept failed: %v", err)
|
|
}
|
|
return
|
|
}
|
|
go s.handleNomadConn(ctx, sub, rpcServer)
|
|
}
|
|
}
|
|
|
|
// handleNomadConn is used to service a single Nomad RPC connection
|
|
func (s *Server) handleNomadConn(ctx context.Context, conn net.Conn, server *rpc.Server) {
|
|
defer conn.Close()
|
|
rpcCodec := pool.NewServerCodec(conn)
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
s.logger.Println("[INFO] nomad.rpc: Closing server RPC connection")
|
|
return
|
|
case <-s.shutdownCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
if err := server.ServeRequest(rpcCodec); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.logger.Printf("[ERR] nomad.rpc: RPC error: %v (%v)", err, conn)
|
|
metrics.IncrCounter([]string{"nomad", "rpc", "request_error"}, 1)
|
|
}
|
|
return
|
|
}
|
|
metrics.IncrCounter([]string{"nomad", "rpc", "request"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleStreamingConn is used to handle a single Streaming Nomad RPC connection.
|
|
func (s *Server) handleStreamingConn(conn net.Conn) {
|
|
defer conn.Close()
|
|
|
|
// Decode the header
|
|
var header structs.StreamingRpcHeader
|
|
decoder := codec.NewDecoder(conn, structs.MsgpackHandle)
|
|
if err := decoder.Decode(&header); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.logger.Printf("[ERR] nomad.rpc: Streaming RPC error: %v (%v)", err, conn)
|
|
metrics.IncrCounter([]string{"nomad", "streaming_rpc", "request_error"}, 1)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
handler, err := s.streamingRpcs.GetHandler(header.Method)
|
|
if err != nil {
|
|
s.logger.Printf("[ERR] nomad.rpc: Streaming RPC error: %v (%v)", err, conn)
|
|
metrics.IncrCounter([]string{"nomad", "streaming_rpc", "request_error"}, 1)
|
|
return
|
|
}
|
|
|
|
// Invoke the handler
|
|
metrics.IncrCounter([]string{"nomad", "streaming_rpc", "request"}, 1)
|
|
handler(conn)
|
|
}
|
|
|
|
// handleMultiplexV2 is used to multiplex a single incoming connection
|
|
// using the Yamux multiplexer. Version 2 handling allows a single connection to
|
|
// switch streams between regulars RPCs and Streaming RPCs.
|
|
func (s *Server) handleMultiplexV2(conn net.Conn, ctx *RPCContext) {
|
|
// TODO
|
|
}
|
|
|
|
// forward is used to forward to a remote region or to forward to the local leader
|
|
// Returns a bool of if forwarding was performed, as well as any error
|
|
func (s *Server) forward(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) {
|
|
var firstCheck time.Time
|
|
|
|
region := info.RequestRegion()
|
|
if region == "" {
|
|
return true, fmt.Errorf("missing target RPC")
|
|
}
|
|
|
|
// Handle region forwarding
|
|
if region != s.config.Region {
|
|
err := s.forwardRegion(region, method, args, reply)
|
|
return true, err
|
|
}
|
|
|
|
// Check if we can allow a stale read
|
|
if info.IsRead() && info.AllowStaleRead() {
|
|
return false, nil
|
|
}
|
|
|
|
CHECK_LEADER:
|
|
// Find the leader
|
|
isLeader, remoteServer := s.getLeader()
|
|
|
|
// Handle the case we are the leader
|
|
if isLeader {
|
|
return false, nil
|
|
}
|
|
|
|
// Handle the case of a known leader
|
|
if remoteServer != nil {
|
|
err := s.forwardLeader(remoteServer, method, args, reply)
|
|
return true, err
|
|
}
|
|
|
|
// Gate the request until there is a leader
|
|
if firstCheck.IsZero() {
|
|
firstCheck = time.Now()
|
|
}
|
|
if time.Now().Sub(firstCheck) < s.config.RPCHoldTimeout {
|
|
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / structs.JitterFraction)
|
|
select {
|
|
case <-time.After(jitter):
|
|
goto CHECK_LEADER
|
|
case <-s.shutdownCh:
|
|
}
|
|
}
|
|
|
|
// No leader found and hold time exceeded
|
|
return true, structs.ErrNoLeader
|
|
}
|
|
|
|
// getLeader returns if the current node is the leader, and if not
|
|
// then it returns the leader which is potentially nil if the cluster
|
|
// has not yet elected a leader.
|
|
func (s *Server) getLeader() (bool, *serverParts) {
|
|
// Check if we are the leader
|
|
if s.IsLeader() {
|
|
return true, nil
|
|
}
|
|
|
|
// Get the leader
|
|
leader := s.raft.Leader()
|
|
if leader == "" {
|
|
return false, nil
|
|
}
|
|
|
|
// Lookup the server
|
|
s.peerLock.RLock()
|
|
server := s.localPeers[leader]
|
|
s.peerLock.RUnlock()
|
|
|
|
// Server could be nil
|
|
return false, server
|
|
}
|
|
|
|
// forwardLeader is used to forward an RPC call to the leader, or fail if no leader
|
|
func (s *Server) forwardLeader(server *serverParts, method string, args interface{}, reply interface{}) error {
|
|
// Handle a missing server
|
|
if server == nil {
|
|
return structs.ErrNoLeader
|
|
}
|
|
return s.connPool.RPC(s.config.Region, server.Addr, server.MajorVersion, method, args, reply)
|
|
}
|
|
|
|
// forwardServer is used to forward an RPC call to a particular server
|
|
func (s *Server) forwardServer(server *serverParts, method string, args interface{}, reply interface{}) error {
|
|
// Handle a missing server
|
|
if server == nil {
|
|
return errors.New("must be given a valid server address")
|
|
}
|
|
return s.connPool.RPC(s.config.Region, server.Addr, server.MajorVersion, method, args, reply)
|
|
}
|
|
|
|
// forwardRegion is used to forward an RPC call to a remote region, or fail if no servers
|
|
func (s *Server) forwardRegion(region, method string, args interface{}, reply interface{}) error {
|
|
// Bail if we can't find any servers
|
|
s.peerLock.RLock()
|
|
servers := s.peers[region]
|
|
if len(servers) == 0 {
|
|
s.peerLock.RUnlock()
|
|
s.logger.Printf("[WARN] nomad.rpc: RPC request for region '%s', no path found",
|
|
region)
|
|
return structs.ErrNoRegionPath
|
|
}
|
|
|
|
// Select a random addr
|
|
offset := rand.Intn(len(servers))
|
|
server := servers[offset]
|
|
s.peerLock.RUnlock()
|
|
|
|
// Forward to remote Nomad
|
|
metrics.IncrCounter([]string{"nomad", "rpc", "cross-region", region}, 1)
|
|
return s.connPool.RPC(region, server.Addr, server.MajorVersion, method, args, reply)
|
|
}
|
|
|
|
// streamingRpc creates a connection to the given server and conducts the
|
|
// initial handshake, returning the connection or an error. It is the callers
|
|
// responsibility to close the connection if there is no returned error.
|
|
func (s *Server) streamingRpc(server *serverParts, method string) (net.Conn, error) {
|
|
// Try to dial the server
|
|
conn, err := net.DialTimeout("tcp", server.Addr.String(), 10*time.Second)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Cast to TCPConn
|
|
if tcp, ok := conn.(*net.TCPConn); ok {
|
|
tcp.SetKeepAlive(true)
|
|
tcp.SetNoDelay(true)
|
|
}
|
|
|
|
// TODO TLS
|
|
// Check if TLS is enabled
|
|
//if p.tlsWrap != nil {
|
|
//// Switch the connection into TLS mode
|
|
//if _, err := conn.Write([]byte{byte(RpcTLS)}); err != nil {
|
|
//conn.Close()
|
|
//return nil, err
|
|
//}
|
|
|
|
//// Wrap the connection in a TLS client
|
|
//tlsConn, err := p.tlsWrap(region, conn)
|
|
//if err != nil {
|
|
//conn.Close()
|
|
//return nil, err
|
|
//}
|
|
//conn = tlsConn
|
|
//}
|
|
|
|
// Write the multiplex byte to set the mode
|
|
if _, err := conn.Write([]byte{byte(pool.RpcStreaming)}); err != nil {
|
|
conn.Close()
|
|
return nil, err
|
|
}
|
|
|
|
// Send the header
|
|
encoder := codec.NewEncoder(conn, structs.MsgpackHandle)
|
|
header := structs.StreamingRpcHeader{
|
|
Method: method,
|
|
}
|
|
if err := encoder.Encode(header); err != nil {
|
|
conn.Close()
|
|
return nil, err
|
|
}
|
|
|
|
return conn, nil
|
|
}
|
|
|
|
// raftApplyFuture is used to encode a message, run it through raft, and return the Raft future.
|
|
func (s *Server) raftApplyFuture(t structs.MessageType, msg interface{}) (raft.ApplyFuture, error) {
|
|
buf, err := structs.Encode(t, msg)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Failed to encode request: %v", err)
|
|
}
|
|
|
|
// Warn if the command is very large
|
|
if n := len(buf); n > raftWarnSize {
|
|
s.logger.Printf("[WARN] nomad: Attempting to apply large raft entry (type %d) (%d bytes)", t, n)
|
|
}
|
|
|
|
future := s.raft.Apply(buf, enqueueLimit)
|
|
return future, nil
|
|
}
|
|
|
|
// raftApplyFn is the function signature for applying a msg to Raft
|
|
type raftApplyFn func(t structs.MessageType, msg interface{}) (interface{}, uint64, error)
|
|
|
|
// raftApply is used to encode a message, run it through raft, and return
|
|
// the FSM response along with any errors
|
|
func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, uint64, error) {
|
|
future, err := s.raftApplyFuture(t, msg)
|
|
if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
if err := future.Error(); err != nil {
|
|
return nil, 0, err
|
|
}
|
|
return future.Response(), future.Index(), nil
|
|
}
|
|
|
|
// setQueryMeta is used to populate the QueryMeta data for an RPC call
|
|
func (s *Server) setQueryMeta(m *structs.QueryMeta) {
|
|
if s.IsLeader() {
|
|
m.LastContact = 0
|
|
m.KnownLeader = true
|
|
} else {
|
|
m.LastContact = time.Now().Sub(s.raft.LastContact())
|
|
m.KnownLeader = (s.raft.Leader() != "")
|
|
}
|
|
}
|
|
|
|
// queryFn is used to perform a query operation. If a re-query is needed, the
|
|
// passed-in watch set will be used to block for changes. The passed-in state
|
|
// store should be used (vs. calling fsm.State()) since the given state store
|
|
// will be correctly watched for changes if the state store is restored from
|
|
// a snapshot.
|
|
type queryFn func(memdb.WatchSet, *state.StateStore) error
|
|
|
|
// blockingOptions is used to parameterize blockingRPC
|
|
type blockingOptions struct {
|
|
queryOpts *structs.QueryOptions
|
|
queryMeta *structs.QueryMeta
|
|
run queryFn
|
|
}
|
|
|
|
// blockingRPC is used for queries that need to wait for a
|
|
// minimum index. This is used to block and wait for changes.
|
|
func (s *Server) blockingRPC(opts *blockingOptions) error {
|
|
ctx := context.Background()
|
|
var cancel context.CancelFunc
|
|
var state *state.StateStore
|
|
|
|
// Fast path non-blocking
|
|
if opts.queryOpts.MinQueryIndex == 0 {
|
|
goto RUN_QUERY
|
|
}
|
|
|
|
// Restrict the max query time, and ensure there is always one
|
|
if opts.queryOpts.MaxQueryTime > maxQueryTime {
|
|
opts.queryOpts.MaxQueryTime = maxQueryTime
|
|
} else if opts.queryOpts.MaxQueryTime <= 0 {
|
|
opts.queryOpts.MaxQueryTime = defaultQueryTime
|
|
}
|
|
|
|
// Apply a small amount of jitter to the request
|
|
opts.queryOpts.MaxQueryTime += lib.RandomStagger(opts.queryOpts.MaxQueryTime / structs.JitterFraction)
|
|
|
|
// Setup a query timeout
|
|
ctx, cancel = context.WithTimeout(context.Background(), opts.queryOpts.MaxQueryTime)
|
|
defer cancel()
|
|
|
|
RUN_QUERY:
|
|
// Update the query meta data
|
|
s.setQueryMeta(opts.queryMeta)
|
|
|
|
// Increment the rpc query counter
|
|
metrics.IncrCounter([]string{"nomad", "rpc", "query"}, 1)
|
|
|
|
// We capture the state store and its abandon channel but pass a snapshot to
|
|
// the blocking query function. We operate on the snapshot to allow separate
|
|
// calls to the state store not all wrapped within the same transaction.
|
|
state = s.fsm.State()
|
|
abandonCh := state.AbandonCh()
|
|
snap, _ := state.Snapshot()
|
|
stateSnap := &snap.StateStore
|
|
|
|
// We can skip all watch tracking if this isn't a blocking query.
|
|
var ws memdb.WatchSet
|
|
if opts.queryOpts.MinQueryIndex > 0 {
|
|
ws = memdb.NewWatchSet()
|
|
|
|
// This channel will be closed if a snapshot is restored and the
|
|
// whole state store is abandoned.
|
|
ws.Add(abandonCh)
|
|
}
|
|
|
|
// Block up to the timeout if we didn't see anything fresh.
|
|
err := opts.run(ws, stateSnap)
|
|
|
|
// Check for minimum query time
|
|
if err == nil && opts.queryOpts.MinQueryIndex > 0 && opts.queryMeta.Index <= opts.queryOpts.MinQueryIndex {
|
|
if err := ws.WatchCtx(ctx); err == nil {
|
|
goto RUN_QUERY
|
|
}
|
|
}
|
|
return err
|
|
}
|