1047 lines
29 KiB
Go
1047 lines
29 KiB
Go
package nomad
|
|
|
|
import (
|
|
"encoding/json"
|
|
"fmt"
|
|
"math"
|
|
"strings"
|
|
"time"
|
|
|
|
log "github.com/hashicorp/go-hclog"
|
|
memdb "github.com/hashicorp/go-memdb"
|
|
version "github.com/hashicorp/go-version"
|
|
"github.com/hashicorp/nomad/nomad/state"
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
"github.com/hashicorp/nomad/scheduler"
|
|
)
|
|
|
|
// CoreScheduler is a special "scheduler" that is registered
|
|
// as "_core". It is used to run various administrative work
|
|
// across the cluster.
|
|
type CoreScheduler struct {
|
|
srv *Server
|
|
snap *state.StateSnapshot
|
|
logger log.Logger
|
|
}
|
|
|
|
// NewCoreScheduler is used to return a new system scheduler instance
|
|
func NewCoreScheduler(srv *Server, snap *state.StateSnapshot) scheduler.Scheduler {
|
|
s := &CoreScheduler{
|
|
srv: srv,
|
|
snap: snap,
|
|
logger: srv.logger.ResetNamed("core.sched"),
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Process is used to implement the scheduler.Scheduler interface
|
|
func (c *CoreScheduler) Process(eval *structs.Evaluation) error {
|
|
job := strings.Split(eval.JobID, ":") // extra data can be smuggled in w/ JobID
|
|
switch job[0] {
|
|
case structs.CoreJobEvalGC:
|
|
return c.evalGC(eval)
|
|
case structs.CoreJobNodeGC:
|
|
return c.nodeGC(eval)
|
|
case structs.CoreJobJobGC:
|
|
return c.jobGC(eval)
|
|
case structs.CoreJobDeploymentGC:
|
|
return c.deploymentGC(eval)
|
|
case structs.CoreJobCSIVolumeClaimGC:
|
|
return c.csiVolumeClaimGC(eval)
|
|
case structs.CoreJobCSIPluginGC:
|
|
return c.csiPluginGC(eval)
|
|
case structs.CoreJobOneTimeTokenGC:
|
|
return c.expiredOneTimeTokenGC(eval)
|
|
case structs.CoreJobRootKeyRotateOrGC:
|
|
return c.rootKeyRotateOrGC(eval)
|
|
case structs.CoreJobSecureVariablesRekey:
|
|
return c.secureVariablesRekey(eval)
|
|
case structs.CoreJobForceGC:
|
|
return c.forceGC(eval)
|
|
default:
|
|
return fmt.Errorf("core scheduler cannot handle job '%s'", eval.JobID)
|
|
}
|
|
}
|
|
|
|
// forceGC is used to garbage collect all eligible objects.
|
|
func (c *CoreScheduler) forceGC(eval *structs.Evaluation) error {
|
|
if err := c.jobGC(eval); err != nil {
|
|
return err
|
|
}
|
|
if err := c.evalGC(eval); err != nil {
|
|
return err
|
|
}
|
|
if err := c.deploymentGC(eval); err != nil {
|
|
return err
|
|
}
|
|
if err := c.csiPluginGC(eval); err != nil {
|
|
return err
|
|
}
|
|
if err := c.csiVolumeClaimGC(eval); err != nil {
|
|
return err
|
|
}
|
|
if err := c.expiredOneTimeTokenGC(eval); err != nil {
|
|
return err
|
|
}
|
|
if err := c.rootKeyRotateOrGC(eval); err != nil {
|
|
return err
|
|
}
|
|
// Node GC must occur after the others to ensure the allocations are
|
|
// cleared.
|
|
return c.nodeGC(eval)
|
|
}
|
|
|
|
// jobGC is used to garbage collect eligible jobs.
|
|
func (c *CoreScheduler) jobGC(eval *structs.Evaluation) error {
|
|
// Get all the jobs eligible for garbage collection.
|
|
ws := memdb.NewWatchSet()
|
|
iter, err := c.snap.JobsByGC(ws, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
oldThreshold := c.getThreshold(eval, "job",
|
|
"job_gc_threshold", c.srv.config.JobGCThreshold)
|
|
|
|
// Collect the allocations, evaluations and jobs to GC
|
|
var gcAlloc, gcEval []string
|
|
var gcJob []*structs.Job
|
|
|
|
OUTER:
|
|
for i := iter.Next(); i != nil; i = iter.Next() {
|
|
job := i.(*structs.Job)
|
|
|
|
// Ignore new jobs.
|
|
if job.CreateIndex > oldThreshold {
|
|
continue
|
|
}
|
|
|
|
ws := memdb.NewWatchSet()
|
|
evals, err := c.snap.EvalsByJob(ws, job.Namespace, job.ID)
|
|
if err != nil {
|
|
c.logger.Error("job GC failed to get evals for job", "job", job.ID, "error", err)
|
|
continue
|
|
}
|
|
|
|
allEvalsGC := true
|
|
var jobAlloc, jobEval []string
|
|
for _, eval := range evals {
|
|
gc, allocs, err := c.gcEval(eval, oldThreshold, true)
|
|
if err != nil {
|
|
continue OUTER
|
|
} else if gc {
|
|
jobEval = append(jobEval, eval.ID)
|
|
jobAlloc = append(jobAlloc, allocs...)
|
|
} else {
|
|
allEvalsGC = false
|
|
break
|
|
}
|
|
}
|
|
|
|
// Job is eligible for garbage collection
|
|
if allEvalsGC {
|
|
gcJob = append(gcJob, job)
|
|
gcAlloc = append(gcAlloc, jobAlloc...)
|
|
gcEval = append(gcEval, jobEval...)
|
|
}
|
|
|
|
}
|
|
|
|
// Fast-path the nothing case
|
|
if len(gcEval) == 0 && len(gcAlloc) == 0 && len(gcJob) == 0 {
|
|
return nil
|
|
}
|
|
|
|
c.logger.Debug("job GC found eligible objects",
|
|
"jobs", len(gcJob), "evals", len(gcEval), "allocs", len(gcAlloc))
|
|
|
|
// Reap the evals and allocs
|
|
if err := c.evalReap(gcEval, gcAlloc); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Reap the jobs
|
|
return c.jobReap(gcJob, eval.LeaderACL)
|
|
}
|
|
|
|
// jobReap contacts the leader and issues a reap on the passed jobs
|
|
func (c *CoreScheduler) jobReap(jobs []*structs.Job, leaderACL string) error {
|
|
// Call to the leader to issue the reap
|
|
for _, req := range c.partitionJobReap(jobs, leaderACL) {
|
|
var resp structs.JobBatchDeregisterResponse
|
|
if err := c.srv.RPC("Job.BatchDeregister", req, &resp); err != nil {
|
|
c.logger.Error("batch job reap failed", "error", err)
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// partitionJobReap returns a list of JobBatchDeregisterRequests to make,
|
|
// ensuring a single request does not contain too many jobs. This is necessary
|
|
// to ensure that the Raft transaction does not become too large.
|
|
func (c *CoreScheduler) partitionJobReap(jobs []*structs.Job, leaderACL string) []*structs.JobBatchDeregisterRequest {
|
|
option := &structs.JobDeregisterOptions{Purge: true}
|
|
var requests []*structs.JobBatchDeregisterRequest
|
|
submittedJobs := 0
|
|
for submittedJobs != len(jobs) {
|
|
req := &structs.JobBatchDeregisterRequest{
|
|
Jobs: make(map[structs.NamespacedID]*structs.JobDeregisterOptions),
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
AuthToken: leaderACL,
|
|
},
|
|
}
|
|
requests = append(requests, req)
|
|
available := structs.MaxUUIDsPerWriteRequest
|
|
|
|
if remaining := len(jobs) - submittedJobs; remaining > 0 {
|
|
if remaining <= available {
|
|
for _, job := range jobs[submittedJobs:] {
|
|
jns := structs.NamespacedID{ID: job.ID, Namespace: job.Namespace}
|
|
req.Jobs[jns] = option
|
|
}
|
|
submittedJobs += remaining
|
|
} else {
|
|
for _, job := range jobs[submittedJobs : submittedJobs+available] {
|
|
jns := structs.NamespacedID{ID: job.ID, Namespace: job.Namespace}
|
|
req.Jobs[jns] = option
|
|
}
|
|
submittedJobs += available
|
|
}
|
|
}
|
|
}
|
|
|
|
return requests
|
|
}
|
|
|
|
// evalGC is used to garbage collect old evaluations
|
|
func (c *CoreScheduler) evalGC(eval *structs.Evaluation) error {
|
|
// Iterate over the evaluations
|
|
ws := memdb.NewWatchSet()
|
|
iter, err := c.snap.Evals(ws, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
oldThreshold := c.getThreshold(eval, "eval",
|
|
"eval_gc_threshold", c.srv.config.EvalGCThreshold)
|
|
|
|
// Collect the allocations and evaluations to GC
|
|
var gcAlloc, gcEval []string
|
|
for raw := iter.Next(); raw != nil; raw = iter.Next() {
|
|
eval := raw.(*structs.Evaluation)
|
|
|
|
// The Evaluation GC should not handle batch jobs since those need to be
|
|
// garbage collected in one shot
|
|
gc, allocs, err := c.gcEval(eval, oldThreshold, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if gc {
|
|
gcEval = append(gcEval, eval.ID)
|
|
}
|
|
gcAlloc = append(gcAlloc, allocs...)
|
|
}
|
|
|
|
// Fast-path the nothing case
|
|
if len(gcEval) == 0 && len(gcAlloc) == 0 {
|
|
return nil
|
|
}
|
|
c.logger.Debug("eval GC found eligibile objects",
|
|
"evals", len(gcEval), "allocs", len(gcAlloc))
|
|
|
|
return c.evalReap(gcEval, gcAlloc)
|
|
}
|
|
|
|
// gcEval returns whether the eval should be garbage collected given a raft
|
|
// threshold index. The eval disqualifies for garbage collection if it or its
|
|
// allocs are not older than the threshold. If the eval should be garbage
|
|
// collected, the associated alloc ids that should also be removed are also
|
|
// returned
|
|
func (c *CoreScheduler) gcEval(eval *structs.Evaluation, thresholdIndex uint64, allowBatch bool) (
|
|
bool, []string, error) {
|
|
// Ignore non-terminal and new evaluations
|
|
if !eval.TerminalStatus() || eval.ModifyIndex > thresholdIndex {
|
|
return false, nil, nil
|
|
}
|
|
|
|
// Create a watchset
|
|
ws := memdb.NewWatchSet()
|
|
|
|
// Look up the job
|
|
job, err := c.snap.JobByID(ws, eval.Namespace, eval.JobID)
|
|
if err != nil {
|
|
return false, nil, err
|
|
}
|
|
|
|
// Get the allocations by eval
|
|
allocs, err := c.snap.AllocsByEval(ws, eval.ID)
|
|
if err != nil {
|
|
c.logger.Error("failed to get allocs for eval",
|
|
"eval_id", eval.ID, "error", err)
|
|
return false, nil, err
|
|
}
|
|
|
|
// If the eval is from a running "batch" job we don't want to garbage
|
|
// collect its allocations. If there is a long running batch job and its
|
|
// terminal allocations get GC'd the scheduler would re-run the
|
|
// allocations.
|
|
if eval.Type == structs.JobTypeBatch {
|
|
// Check if the job is running
|
|
|
|
// Can collect if:
|
|
// Job doesn't exist
|
|
// Job is Stopped and dead
|
|
// allowBatch and the job is dead
|
|
collect := false
|
|
if job == nil {
|
|
collect = true
|
|
} else if job.Status != structs.JobStatusDead {
|
|
collect = false
|
|
} else if job.Stop {
|
|
collect = true
|
|
} else if allowBatch {
|
|
collect = true
|
|
}
|
|
|
|
// We don't want to gc anything related to a job which is not dead
|
|
// If the batch job doesn't exist we can GC it regardless of allowBatch
|
|
if !collect {
|
|
// Find allocs associated with older (based on createindex) and GC them if terminal
|
|
oldAllocs := olderVersionTerminalAllocs(allocs, job)
|
|
return false, oldAllocs, nil
|
|
}
|
|
}
|
|
|
|
// Scan the allocations to ensure they are terminal and old
|
|
gcEval := true
|
|
var gcAllocIDs []string
|
|
for _, alloc := range allocs {
|
|
if !allocGCEligible(alloc, job, time.Now(), thresholdIndex) {
|
|
// Can't GC the evaluation since not all of the allocations are
|
|
// terminal
|
|
gcEval = false
|
|
} else {
|
|
// The allocation is eligible to be GC'd
|
|
gcAllocIDs = append(gcAllocIDs, alloc.ID)
|
|
}
|
|
}
|
|
|
|
return gcEval, gcAllocIDs, nil
|
|
}
|
|
|
|
// olderVersionTerminalAllocs returns terminal allocations whose job create index
|
|
// is older than the job's create index
|
|
func olderVersionTerminalAllocs(allocs []*structs.Allocation, job *structs.Job) []string {
|
|
var ret []string
|
|
for _, alloc := range allocs {
|
|
if alloc.Job != nil && alloc.Job.CreateIndex < job.CreateIndex && alloc.TerminalStatus() {
|
|
ret = append(ret, alloc.ID)
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// evalReap contacts the leader and issues a reap on the passed evals and
|
|
// allocs.
|
|
func (c *CoreScheduler) evalReap(evals, allocs []string) error {
|
|
// Call to the leader to issue the reap
|
|
for _, req := range c.partitionEvalReap(evals, allocs) {
|
|
var resp structs.GenericResponse
|
|
if err := c.srv.RPC("Eval.Reap", req, &resp); err != nil {
|
|
c.logger.Error("eval reap failed", "error", err)
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// partitionEvalReap returns a list of EvalReapRequest to make, ensuring a single
|
|
// request does not contain too many allocations and evaluations. This is
|
|
// necessary to ensure that the Raft transaction does not become too large.
|
|
func (c *CoreScheduler) partitionEvalReap(evals, allocs []string) []*structs.EvalReapRequest {
|
|
var requests []*structs.EvalReapRequest
|
|
submittedEvals, submittedAllocs := 0, 0
|
|
for submittedEvals != len(evals) || submittedAllocs != len(allocs) {
|
|
req := &structs.EvalReapRequest{
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
},
|
|
}
|
|
requests = append(requests, req)
|
|
available := structs.MaxUUIDsPerWriteRequest
|
|
|
|
// Add the allocs first
|
|
if remaining := len(allocs) - submittedAllocs; remaining > 0 {
|
|
if remaining <= available {
|
|
req.Allocs = allocs[submittedAllocs:]
|
|
available -= remaining
|
|
submittedAllocs += remaining
|
|
} else {
|
|
req.Allocs = allocs[submittedAllocs : submittedAllocs+available]
|
|
submittedAllocs += available
|
|
|
|
// Exhausted space so skip adding evals
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Add the evals
|
|
if remaining := len(evals) - submittedEvals; remaining > 0 {
|
|
if remaining <= available {
|
|
req.Evals = evals[submittedEvals:]
|
|
submittedEvals += remaining
|
|
} else {
|
|
req.Evals = evals[submittedEvals : submittedEvals+available]
|
|
submittedEvals += available
|
|
}
|
|
}
|
|
}
|
|
|
|
return requests
|
|
}
|
|
|
|
// nodeGC is used to garbage collect old nodes
|
|
func (c *CoreScheduler) nodeGC(eval *structs.Evaluation) error {
|
|
// Iterate over the evaluations
|
|
ws := memdb.NewWatchSet()
|
|
iter, err := c.snap.Nodes(ws)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
oldThreshold := c.getThreshold(eval, "node",
|
|
"node_gc_threshold", c.srv.config.NodeGCThreshold)
|
|
|
|
// Collect the nodes to GC
|
|
var gcNode []string
|
|
OUTER:
|
|
for {
|
|
raw := iter.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
node := raw.(*structs.Node)
|
|
|
|
// Ignore non-terminal and new nodes
|
|
if !node.TerminalStatus() || node.ModifyIndex > oldThreshold {
|
|
continue
|
|
}
|
|
|
|
// Get the allocations by node
|
|
ws := memdb.NewWatchSet()
|
|
allocs, err := c.snap.AllocsByNode(ws, node.ID)
|
|
if err != nil {
|
|
c.logger.Error("failed to get allocs for node",
|
|
"node_id", node.ID, "error", err)
|
|
continue
|
|
}
|
|
|
|
// If there are any non-terminal allocations, skip the node. If the node
|
|
// is terminal and the allocations are not, the scheduler may not have
|
|
// run yet to transition the allocs on the node to terminal. We delay
|
|
// GC'ing until this happens.
|
|
for _, alloc := range allocs {
|
|
if !alloc.TerminalStatus() {
|
|
continue OUTER
|
|
}
|
|
}
|
|
|
|
// Node is eligible for garbage collection
|
|
gcNode = append(gcNode, node.ID)
|
|
}
|
|
|
|
// Fast-path the nothing case
|
|
if len(gcNode) == 0 {
|
|
return nil
|
|
}
|
|
c.logger.Debug("node GC found eligible nodes", "nodes", len(gcNode))
|
|
return c.nodeReap(eval, gcNode)
|
|
}
|
|
|
|
func (c *CoreScheduler) nodeReap(eval *structs.Evaluation, nodeIDs []string) error {
|
|
// For old clusters, send single deregistration messages COMPAT(0.11)
|
|
minVersionBatchNodeDeregister := version.Must(version.NewVersion("0.9.4"))
|
|
if !ServersMeetMinimumVersion(c.srv.Members(), minVersionBatchNodeDeregister, true) {
|
|
for _, id := range nodeIDs {
|
|
req := structs.NodeDeregisterRequest{
|
|
NodeID: id,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
AuthToken: eval.LeaderACL,
|
|
},
|
|
}
|
|
var resp structs.NodeUpdateResponse
|
|
if err := c.srv.RPC("Node.Deregister", &req, &resp); err != nil {
|
|
c.logger.Error("node reap failed", "node_id", id, "error", err)
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Call to the leader to issue the reap
|
|
for _, ids := range partitionAll(structs.MaxUUIDsPerWriteRequest, nodeIDs) {
|
|
req := structs.NodeBatchDeregisterRequest{
|
|
NodeIDs: ids,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
AuthToken: eval.LeaderACL,
|
|
},
|
|
}
|
|
var resp structs.NodeUpdateResponse
|
|
if err := c.srv.RPC("Node.BatchDeregister", &req, &resp); err != nil {
|
|
c.logger.Error("node reap failed", "node_ids", ids, "error", err)
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// deploymentGC is used to garbage collect old deployments
|
|
func (c *CoreScheduler) deploymentGC(eval *structs.Evaluation) error {
|
|
// Iterate over the deployments
|
|
ws := memdb.NewWatchSet()
|
|
iter, err := c.snap.Deployments(ws, state.SortDefault)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
oldThreshold := c.getThreshold(eval, "deployment",
|
|
"deployment_gc_threshold", c.srv.config.DeploymentGCThreshold)
|
|
|
|
// Collect the deployments to GC
|
|
var gcDeployment []string
|
|
|
|
OUTER:
|
|
for {
|
|
raw := iter.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
deploy := raw.(*structs.Deployment)
|
|
|
|
// Ignore non-terminal and new deployments
|
|
if deploy.Active() || deploy.ModifyIndex > oldThreshold {
|
|
continue
|
|
}
|
|
|
|
// Ensure there are no allocs referencing this deployment.
|
|
allocs, err := c.snap.AllocsByDeployment(ws, deploy.ID)
|
|
if err != nil {
|
|
c.logger.Error("failed to get allocs for deployment",
|
|
"deployment_id", deploy.ID, "error", err)
|
|
continue
|
|
}
|
|
|
|
// Ensure there is no allocation referencing the deployment.
|
|
for _, alloc := range allocs {
|
|
if !alloc.TerminalStatus() {
|
|
continue OUTER
|
|
}
|
|
}
|
|
|
|
// Deployment is eligible for garbage collection
|
|
gcDeployment = append(gcDeployment, deploy.ID)
|
|
}
|
|
|
|
// Fast-path the nothing case
|
|
if len(gcDeployment) == 0 {
|
|
return nil
|
|
}
|
|
c.logger.Debug("deployment GC found eligible deployments", "deployments", len(gcDeployment))
|
|
return c.deploymentReap(gcDeployment)
|
|
}
|
|
|
|
// deploymentReap contacts the leader and issues a reap on the passed
|
|
// deployments.
|
|
func (c *CoreScheduler) deploymentReap(deployments []string) error {
|
|
// Call to the leader to issue the reap
|
|
for _, req := range c.partitionDeploymentReap(deployments) {
|
|
var resp structs.GenericResponse
|
|
if err := c.srv.RPC("Deployment.Reap", req, &resp); err != nil {
|
|
c.logger.Error("deployment reap failed", "error", err)
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// partitionDeploymentReap returns a list of DeploymentDeleteRequest to make,
|
|
// ensuring a single request does not contain too many deployments. This is
|
|
// necessary to ensure that the Raft transaction does not become too large.
|
|
func (c *CoreScheduler) partitionDeploymentReap(deployments []string) []*structs.DeploymentDeleteRequest {
|
|
var requests []*structs.DeploymentDeleteRequest
|
|
submittedDeployments := 0
|
|
for submittedDeployments != len(deployments) {
|
|
req := &structs.DeploymentDeleteRequest{
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
},
|
|
}
|
|
requests = append(requests, req)
|
|
available := structs.MaxUUIDsPerWriteRequest
|
|
|
|
if remaining := len(deployments) - submittedDeployments; remaining > 0 {
|
|
if remaining <= available {
|
|
req.Deployments = deployments[submittedDeployments:]
|
|
submittedDeployments += remaining
|
|
} else {
|
|
req.Deployments = deployments[submittedDeployments : submittedDeployments+available]
|
|
submittedDeployments += available
|
|
}
|
|
}
|
|
}
|
|
|
|
return requests
|
|
}
|
|
|
|
// allocGCEligible returns if the allocation is eligible to be garbage collected
|
|
// according to its terminal status and its reschedule trackers
|
|
func allocGCEligible(a *structs.Allocation, job *structs.Job, gcTime time.Time, thresholdIndex uint64) bool {
|
|
// Not in a terminal status and old enough
|
|
if !a.TerminalStatus() || a.ModifyIndex > thresholdIndex {
|
|
return false
|
|
}
|
|
|
|
// If the allocation is still running on the client we can not garbage
|
|
// collect it.
|
|
if a.ClientStatus == structs.AllocClientStatusRunning {
|
|
return false
|
|
}
|
|
|
|
// If the job is deleted, stopped or dead all allocs can be removed
|
|
if job == nil || job.Stop || job.Status == structs.JobStatusDead {
|
|
return true
|
|
}
|
|
|
|
// If the allocation's desired state is Stop, it can be GCed even if it
|
|
// has failed and hasn't been rescheduled. This can happen during job updates
|
|
if a.DesiredStatus == structs.AllocDesiredStatusStop {
|
|
return true
|
|
}
|
|
|
|
// If the alloc hasn't failed then we don't need to consider it for rescheduling
|
|
// Rescheduling needs to copy over information from the previous alloc so that it
|
|
// can enforce the reschedule policy
|
|
if a.ClientStatus != structs.AllocClientStatusFailed {
|
|
return true
|
|
}
|
|
|
|
var reschedulePolicy *structs.ReschedulePolicy
|
|
tg := job.LookupTaskGroup(a.TaskGroup)
|
|
|
|
if tg != nil {
|
|
reschedulePolicy = tg.ReschedulePolicy
|
|
}
|
|
// No reschedule policy or rescheduling is disabled
|
|
if reschedulePolicy == nil || (!reschedulePolicy.Unlimited && reschedulePolicy.Attempts == 0) {
|
|
return true
|
|
}
|
|
// Restart tracking information has been carried forward
|
|
if a.NextAllocation != "" {
|
|
return true
|
|
}
|
|
|
|
// This task has unlimited rescheduling and the alloc has not been replaced, so we can't GC it yet
|
|
if reschedulePolicy.Unlimited {
|
|
return false
|
|
}
|
|
|
|
// No restarts have been attempted yet
|
|
if a.RescheduleTracker == nil || len(a.RescheduleTracker.Events) == 0 {
|
|
return false
|
|
}
|
|
|
|
// Don't GC if most recent reschedule attempt is within time interval
|
|
interval := reschedulePolicy.Interval
|
|
lastIndex := len(a.RescheduleTracker.Events)
|
|
lastRescheduleEvent := a.RescheduleTracker.Events[lastIndex-1]
|
|
timeDiff := gcTime.UTC().UnixNano() - lastRescheduleEvent.RescheduleTime
|
|
|
|
return timeDiff > interval.Nanoseconds()
|
|
}
|
|
|
|
// csiVolumeClaimGC is used to garbage collect CSI volume claims
|
|
func (c *CoreScheduler) csiVolumeClaimGC(eval *structs.Evaluation) error {
|
|
|
|
gcClaims := func(ns, volID string) error {
|
|
req := &structs.CSIVolumeClaimRequest{
|
|
VolumeID: volID,
|
|
Claim: structs.CSIVolumeClaimGC,
|
|
State: structs.CSIVolumeClaimStateUnpublishing,
|
|
WriteRequest: structs.WriteRequest{
|
|
Namespace: ns,
|
|
Region: c.srv.Region(),
|
|
AuthToken: eval.LeaderACL,
|
|
},
|
|
}
|
|
err := c.srv.RPC("CSIVolume.Claim", req, &structs.CSIVolumeClaimResponse{})
|
|
return err
|
|
}
|
|
|
|
c.logger.Trace("garbage collecting unclaimed CSI volume claims", "eval.JobID", eval.JobID)
|
|
|
|
// Volume ID smuggled in with the eval's own JobID
|
|
evalVolID := strings.Split(eval.JobID, ":")
|
|
|
|
// COMPAT(1.0): 0.11.0 shipped with 3 fields. tighten this check to len == 2
|
|
if len(evalVolID) > 1 {
|
|
volID := evalVolID[1]
|
|
return gcClaims(eval.Namespace, volID)
|
|
}
|
|
|
|
ws := memdb.NewWatchSet()
|
|
|
|
iter, err := c.snap.CSIVolumes(ws)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
oldThreshold := c.getThreshold(eval, "CSI volume claim",
|
|
"csi_volume_claim_gc_threshold", c.srv.config.CSIVolumeClaimGCThreshold)
|
|
|
|
for i := iter.Next(); i != nil; i = iter.Next() {
|
|
vol := i.(*structs.CSIVolume)
|
|
|
|
// Ignore new volumes
|
|
if vol.CreateIndex > oldThreshold {
|
|
continue
|
|
}
|
|
|
|
// we only call the claim release RPC if the volume has claims
|
|
// that no longer have valid allocations. otherwise we'd send
|
|
// out a lot of do-nothing RPCs.
|
|
vol, err := c.snap.CSIVolumeDenormalize(ws, vol)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if len(vol.PastClaims) > 0 {
|
|
err = gcClaims(vol.Namespace, vol.ID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
}
|
|
return nil
|
|
|
|
}
|
|
|
|
// csiPluginGC is used to garbage collect unused plugins
|
|
func (c *CoreScheduler) csiPluginGC(eval *structs.Evaluation) error {
|
|
|
|
ws := memdb.NewWatchSet()
|
|
|
|
iter, err := c.snap.CSIPlugins(ws)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
oldThreshold := c.getThreshold(eval, "CSI plugin",
|
|
"csi_plugin_gc_threshold", c.srv.config.CSIPluginGCThreshold)
|
|
|
|
for i := iter.Next(); i != nil; i = iter.Next() {
|
|
plugin := i.(*structs.CSIPlugin)
|
|
|
|
// Ignore new plugins
|
|
if plugin.CreateIndex > oldThreshold {
|
|
continue
|
|
}
|
|
|
|
req := &structs.CSIPluginDeleteRequest{ID: plugin.ID,
|
|
QueryOptions: structs.QueryOptions{
|
|
Region: c.srv.Region(),
|
|
AuthToken: eval.LeaderACL,
|
|
}}
|
|
err := c.srv.RPC("CSIPlugin.Delete", req, &structs.CSIPluginDeleteResponse{})
|
|
if err != nil {
|
|
if strings.Contains(err.Error(), "plugin in use") {
|
|
continue
|
|
}
|
|
c.logger.Error("failed to GC plugin", "plugin_id", plugin.ID, "error", err)
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (c *CoreScheduler) expiredOneTimeTokenGC(eval *structs.Evaluation) error {
|
|
req := &structs.OneTimeTokenExpireRequest{
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.Region(),
|
|
AuthToken: eval.LeaderACL,
|
|
},
|
|
}
|
|
return c.srv.RPC("ACL.ExpireOneTimeTokens", req, &structs.GenericResponse{})
|
|
}
|
|
|
|
// rootKeyRotateOrGC is used to rotate or garbage collect root keys
|
|
func (c *CoreScheduler) rootKeyRotateOrGC(eval *structs.Evaluation) error {
|
|
|
|
// a rotation will be sent to the leader so our view of state
|
|
// is no longer valid. we ack this core job and will pick up
|
|
// the GC work on the next interval
|
|
wasRotated, err := c.rootKeyRotation(eval)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if wasRotated {
|
|
return nil
|
|
}
|
|
|
|
// we can't GC any key older than the oldest live allocation
|
|
// because it might have signed that allocation's workload
|
|
// identity; this is conservative so that we don't have to iterate
|
|
// over all the allocations and find out which keys signed their
|
|
// identity, which will be expensive on large clusters
|
|
allocOldThreshold, err := c.getOldestAllocationIndex()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
oldThreshold := c.getThreshold(eval, "root key",
|
|
"root_key_gc_threshold", c.srv.config.RootKeyGCThreshold)
|
|
|
|
ws := memdb.NewWatchSet()
|
|
iter, err := c.snap.RootKeyMetas(ws)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for {
|
|
raw := iter.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
keyMeta := raw.(*structs.RootKeyMeta)
|
|
if keyMeta.Active() {
|
|
continue // never GC the active key
|
|
}
|
|
if keyMeta.CreateIndex > oldThreshold {
|
|
continue // don't GC recent keys
|
|
}
|
|
if keyMeta.CreateIndex > allocOldThreshold {
|
|
continue // don't GC keys possibly used to sign live allocations
|
|
}
|
|
varIter, err := c.snap.GetSecureVariablesByKeyID(ws, keyMeta.KeyID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if varIter.Next() != nil {
|
|
continue // key is still in use
|
|
}
|
|
|
|
req := &structs.KeyringDeleteRootKeyRequest{
|
|
KeyID: keyMeta.KeyID,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
AuthToken: eval.LeaderACL,
|
|
},
|
|
}
|
|
if err := c.srv.RPC("Keyring.Delete",
|
|
req, &structs.KeyringDeleteRootKeyResponse{}); err != nil {
|
|
c.logger.Error("root key delete failed", "error", err)
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// rootKeyRotation checks if the active key is old enough that we need
|
|
// to kick off a rotation. Returns true if the key was rotated.
|
|
func (c *CoreScheduler) rootKeyRotation(eval *structs.Evaluation) (bool, error) {
|
|
|
|
rotationThreshold := c.getThreshold(eval, "root key",
|
|
"root_key_rotation_threshold", c.srv.config.RootKeyRotationThreshold)
|
|
|
|
ws := memdb.NewWatchSet()
|
|
activeKey, err := c.snap.GetActiveRootKeyMeta(ws)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
if activeKey == nil {
|
|
return false, nil // no active key
|
|
}
|
|
if activeKey.CreateIndex >= rotationThreshold {
|
|
return false, nil // key is too new
|
|
}
|
|
|
|
req := &structs.KeyringRotateRootKeyRequest{
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
AuthToken: eval.LeaderACL,
|
|
},
|
|
}
|
|
if err := c.srv.RPC("Keyring.Rotate",
|
|
req, &structs.KeyringRotateRootKeyResponse{}); err != nil {
|
|
c.logger.Error("root key rotation failed", "error", err)
|
|
return false, err
|
|
}
|
|
|
|
return true, nil
|
|
}
|
|
|
|
// secureVariablesReKey is optionally run after rotating the active
|
|
// root key. It iterates over all the variables for the keys in the
|
|
// re-keying state, decrypts them, and re-encrypts them in batches
|
|
// with the currently active key. This job does not GC the keys, which
|
|
// is handled in the normal periodic GC job.
|
|
func (c *CoreScheduler) secureVariablesRekey(eval *structs.Evaluation) error {
|
|
|
|
ws := memdb.NewWatchSet()
|
|
iter, err := c.snap.RootKeyMetas(ws)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for {
|
|
raw := iter.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
keyMeta := raw.(*structs.RootKeyMeta)
|
|
if !keyMeta.Rekeying() {
|
|
continue
|
|
}
|
|
varIter, err := c.snap.GetSecureVariablesByKeyID(ws, keyMeta.KeyID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
err = c.batchRotateVariables(varIter, eval)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// we've now rotated all this key's variables, so set its state
|
|
keyMeta = keyMeta.Copy()
|
|
keyMeta.SetDeprecated()
|
|
|
|
key, err := c.srv.encrypter.GetKey(keyMeta.KeyID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
req := &structs.KeyringUpdateRootKeyRequest{
|
|
RootKey: &structs.RootKey{
|
|
Meta: keyMeta,
|
|
Key: key,
|
|
},
|
|
Rekey: false,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
AuthToken: eval.LeaderACL},
|
|
}
|
|
if err := c.srv.RPC("Keyring.Update",
|
|
req, &structs.KeyringUpdateRootKeyResponse{}); err != nil {
|
|
c.logger.Error("root key update failed", "error", err)
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// rootKeyFullRotatePerKey runs over an iterator of secure variables
|
|
// and decrypts them, and then sends them back as batches to be
|
|
// re-encrypted with the currently active key.
|
|
func (c *CoreScheduler) batchRotateVariables(iter memdb.ResultIterator, eval *structs.Evaluation) error {
|
|
|
|
upsertFn := func(variables []*structs.SecureVariableDecrypted) error {
|
|
if len(variables) == 0 {
|
|
return nil
|
|
}
|
|
args := &structs.SecureVariablesUpsertRequest{
|
|
Data: variables,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: c.srv.config.Region,
|
|
AuthToken: eval.LeaderACL,
|
|
},
|
|
}
|
|
reply := &structs.SecureVariablesUpsertResponse{}
|
|
return c.srv.RPC("SecureVariables.Upsert", args, reply)
|
|
}
|
|
|
|
variables := []*structs.SecureVariableDecrypted{}
|
|
for {
|
|
raw := iter.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
ev := raw.(*structs.SecureVariableEncrypted)
|
|
cleartext, err := c.srv.encrypter.Decrypt(ev.Data, ev.KeyID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
dv := &structs.SecureVariableDecrypted{
|
|
SecureVariableMetadata: ev.SecureVariableMetadata,
|
|
}
|
|
dv.Items = make(map[string]string)
|
|
err = json.Unmarshal(cleartext, &dv.Items)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
variables = append(variables, dv)
|
|
if len(variables) == 20 {
|
|
err := upsertFn(variables)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
variables = []*structs.SecureVariableDecrypted{}
|
|
}
|
|
}
|
|
|
|
// ensure we submit any partial batch
|
|
return upsertFn(variables)
|
|
}
|
|
|
|
// getThreshold returns the index threshold for determining whether an
|
|
// object is old enough to GC
|
|
func (c *CoreScheduler) getThreshold(eval *structs.Evaluation, objectName, configName string, configThreshold time.Duration) uint64 {
|
|
var oldThreshold uint64
|
|
if eval.JobID == structs.CoreJobForceGC {
|
|
// The GC was forced, so set the threshold to its maximum so
|
|
// everything will GC.
|
|
oldThreshold = math.MaxUint64
|
|
c.logger.Debug(fmt.Sprintf("forced %s GC", objectName))
|
|
} else {
|
|
// Compute the old threshold limit for GC using the FSM
|
|
// time table. This is a rough mapping of a time to the
|
|
// Raft index it belongs to.
|
|
tt := c.srv.fsm.TimeTable()
|
|
cutoff := time.Now().UTC().Add(-1 * configThreshold)
|
|
oldThreshold = tt.NearestIndex(cutoff)
|
|
c.logger.Debug(
|
|
fmt.Sprintf("%s GC scanning before cutoff index", objectName),
|
|
"index", oldThreshold,
|
|
configName, configThreshold)
|
|
}
|
|
return oldThreshold
|
|
}
|
|
|
|
// getOldestAllocationIndex returns the CreateIndex of the oldest
|
|
// non-terminal allocation in the state store
|
|
func (c *CoreScheduler) getOldestAllocationIndex() (uint64, error) {
|
|
ws := memdb.NewWatchSet()
|
|
allocs, err := c.snap.Allocs(ws, state.SortDefault)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
for {
|
|
raw := allocs.Next()
|
|
if raw == nil {
|
|
break
|
|
}
|
|
alloc := raw.(*structs.Allocation)
|
|
if !alloc.TerminalStatus() {
|
|
return alloc.CreateIndex, nil
|
|
}
|
|
}
|
|
return 0, nil
|
|
}
|