444 lines
14 KiB
Go
444 lines
14 KiB
Go
package scheduler
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/hashicorp/go-multierror"
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
)
|
|
|
|
const (
|
|
// maxServiceScheduleAttempts is used to limit the number of times
|
|
// we will attempt to schedule if we continue to hit conflicts for services.
|
|
maxServiceScheduleAttempts = 5
|
|
|
|
// maxBatchScheduleAttempts is used to limit the number of times
|
|
// we will attempt to schedule if we continue to hit conflicts for batch.
|
|
maxBatchScheduleAttempts = 2
|
|
|
|
// allocNotNeeded is the status used when a job no longer requires an allocation
|
|
allocNotNeeded = "alloc not needed due to job update"
|
|
|
|
// allocMigrating is the status used when we must migrate an allocation
|
|
allocMigrating = "alloc is being migrated"
|
|
|
|
// allocUpdating is the status used when a job requires an update
|
|
allocUpdating = "alloc is being updated due to job update"
|
|
|
|
// allocInPlace is the status used when speculating on an in-place update
|
|
allocInPlace = "alloc updating in-place"
|
|
|
|
// blockedEvalMaxPlanDesc is the description used for blocked evals that are
|
|
// a result of hitting the max number of plan attempts
|
|
blockedEvalMaxPlanDesc = "created due to placement conflicts"
|
|
|
|
// blockedEvalFailedPlacements is the description used for blocked evals
|
|
// that are a result of failing to place all allocations.
|
|
blockedEvalFailedPlacements = "created to place remaining allocations"
|
|
)
|
|
|
|
// SetStatusError is used to set the status of the evaluation to the given error
|
|
type SetStatusError struct {
|
|
Err error
|
|
EvalStatus string
|
|
}
|
|
|
|
func (s *SetStatusError) Error() string {
|
|
return s.Err.Error()
|
|
}
|
|
|
|
// GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
|
|
// designed for long-lived services, and as such spends more time attemping
|
|
// to make a high quality placement. This is the primary scheduler for
|
|
// most workloads. It also supports a 'batch' mode to optimize for fast decision
|
|
// making at the cost of quality.
|
|
type GenericScheduler struct {
|
|
logger *log.Logger
|
|
state State
|
|
planner Planner
|
|
batch bool
|
|
|
|
eval *structs.Evaluation
|
|
job *structs.Job
|
|
plan *structs.Plan
|
|
planResult *structs.PlanResult
|
|
ctx *EvalContext
|
|
stack *GenericStack
|
|
|
|
limitReached bool
|
|
nextEval *structs.Evaluation
|
|
|
|
blocked *structs.Evaluation
|
|
failedTGAllocs map[string]*structs.AllocMetric
|
|
}
|
|
|
|
// NewServiceScheduler is a factory function to instantiate a new service scheduler
|
|
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
|
|
s := &GenericScheduler{
|
|
logger: logger,
|
|
state: state,
|
|
planner: planner,
|
|
batch: false,
|
|
}
|
|
return s
|
|
}
|
|
|
|
// NewBatchScheduler is a factory function to instantiate a new batch scheduler
|
|
func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
|
|
s := &GenericScheduler{
|
|
logger: logger,
|
|
state: state,
|
|
planner: planner,
|
|
batch: true,
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Process is used to handle a single evaluation
|
|
func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
|
|
// Store the evaluation
|
|
s.eval = eval
|
|
|
|
// Verify the evaluation trigger reason is understood
|
|
switch eval.TriggeredBy {
|
|
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
|
|
structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate,
|
|
structs.EvalTriggerPeriodicJob, structs.EvalTriggerMaxPlans:
|
|
default:
|
|
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
|
|
eval.TriggeredBy)
|
|
return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked,
|
|
s.failedTGAllocs, structs.EvalStatusFailed, desc)
|
|
}
|
|
|
|
// Retry up to the maxScheduleAttempts and reset if progress is made.
|
|
progress := func() bool { return progressMade(s.planResult) }
|
|
limit := maxServiceScheduleAttempts
|
|
if s.batch {
|
|
limit = maxBatchScheduleAttempts
|
|
}
|
|
if err := retryMax(limit, s.process, progress); err != nil {
|
|
if statusErr, ok := err.(*SetStatusError); ok {
|
|
// Scheduling was tried but made no forward progress so create a
|
|
// blocked eval to retry once resources become available.
|
|
var mErr multierror.Error
|
|
if err := s.createBlockedEval(true); err != nil {
|
|
mErr.Errors = append(mErr.Errors, err)
|
|
}
|
|
if err := setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked,
|
|
s.failedTGAllocs, statusErr.EvalStatus, err.Error()); err != nil {
|
|
mErr.Errors = append(mErr.Errors, err)
|
|
}
|
|
return mErr.ErrorOrNil()
|
|
}
|
|
return err
|
|
}
|
|
|
|
// If the current evaluation is a blocked evaluation and we didn't place
|
|
// everything, do not update the status to complete.
|
|
if s.eval.Status == structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 {
|
|
e := s.ctx.Eligibility()
|
|
newEval := s.eval.Copy()
|
|
newEval.EscapedComputedClass = e.HasEscaped()
|
|
newEval.ClassEligibility = e.GetClasses()
|
|
return s.planner.ReblockEval(newEval)
|
|
}
|
|
|
|
// Update the status to complete
|
|
return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked,
|
|
s.failedTGAllocs, structs.EvalStatusComplete, "")
|
|
}
|
|
|
|
// createBlockedEval creates a blocked eval and submits it to the planner. If
|
|
// failure is set to true, the eval's trigger reason reflects that.
|
|
func (s *GenericScheduler) createBlockedEval(planFailure bool) error {
|
|
e := s.ctx.Eligibility()
|
|
escaped := e.HasEscaped()
|
|
|
|
// Only store the eligible classes if the eval hasn't escaped.
|
|
var classEligibility map[string]bool
|
|
if !escaped {
|
|
classEligibility = e.GetClasses()
|
|
}
|
|
|
|
s.blocked = s.eval.CreateBlockedEval(classEligibility, escaped)
|
|
if planFailure {
|
|
s.blocked.TriggeredBy = structs.EvalTriggerMaxPlans
|
|
s.blocked.StatusDescription = blockedEvalMaxPlanDesc
|
|
} else {
|
|
s.blocked.StatusDescription = blockedEvalFailedPlacements
|
|
}
|
|
|
|
return s.planner.CreateEval(s.blocked)
|
|
}
|
|
|
|
// process is wrapped in retryMax to iteratively run the handler until we have no
|
|
// further work or we've made the maximum number of attempts.
|
|
func (s *GenericScheduler) process() (bool, error) {
|
|
// Lookup the Job by ID
|
|
var err error
|
|
s.job, err = s.state.JobByID(s.eval.JobID)
|
|
if err != nil {
|
|
return false, fmt.Errorf("failed to get job '%s': %v",
|
|
s.eval.JobID, err)
|
|
}
|
|
|
|
// Create a plan
|
|
s.plan = s.eval.MakePlan(s.job)
|
|
|
|
// Reset the failed allocations
|
|
s.failedTGAllocs = nil
|
|
|
|
// Create an evaluation context
|
|
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
|
|
|
|
// Construct the placement stack
|
|
s.stack = NewGenericStack(s.batch, s.ctx)
|
|
if s.job != nil {
|
|
s.stack.SetJob(s.job)
|
|
}
|
|
|
|
// Compute the target job allocations
|
|
if err := s.computeJobAllocs(); err != nil {
|
|
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
|
|
return false, err
|
|
}
|
|
|
|
// If there are failed allocations, we need to create a blocked evaluation
|
|
// to place the failed allocations when resources become available. If the
|
|
// current evaluation is already a blocked eval, we reuse it.
|
|
if s.eval.Status != structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 && s.blocked == nil {
|
|
if err := s.createBlockedEval(false); err != nil {
|
|
s.logger.Printf("[ERR] sched: %#v failed to make blocked eval: %v", s.eval, err)
|
|
return false, err
|
|
}
|
|
s.logger.Printf("[DEBUG] sched: %#v: failed to place all allocations, blocked eval '%s' created", s.eval, s.blocked.ID)
|
|
}
|
|
|
|
// If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan
|
|
// anyways to get the annotations.
|
|
if s.plan.IsNoOp() && !s.eval.AnnotatePlan {
|
|
return true, nil
|
|
}
|
|
|
|
// If the limit of placements was reached we need to create an evaluation
|
|
// to pickup from here after the stagger period.
|
|
if s.limitReached && s.nextEval == nil {
|
|
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
|
|
if err := s.planner.CreateEval(s.nextEval); err != nil {
|
|
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err)
|
|
return false, err
|
|
}
|
|
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
|
|
}
|
|
|
|
// Submit the plan and store the results.
|
|
result, newState, err := s.planner.SubmitPlan(s.plan)
|
|
s.planResult = result
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
// If we got a state refresh, try again since we have stale data
|
|
if newState != nil {
|
|
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
|
|
s.state = newState
|
|
return false, nil
|
|
}
|
|
|
|
// Try again if the plan was not fully committed, potential conflict
|
|
fullCommit, expected, actual := result.FullCommit(s.plan)
|
|
if !fullCommit {
|
|
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
|
|
s.eval, expected, actual)
|
|
if newState == nil {
|
|
return false, fmt.Errorf("missing state refresh after partial commit")
|
|
}
|
|
return false, nil
|
|
}
|
|
|
|
// Success!
|
|
return true, nil
|
|
}
|
|
|
|
// filterCompleteAllocs filters allocations that are terminal and should be
|
|
// re-placed.
|
|
func (s *GenericScheduler) filterCompleteAllocs(allocs []*structs.Allocation) []*structs.Allocation {
|
|
filter := func(a *structs.Allocation) bool {
|
|
if s.batch {
|
|
// Allocs from batch jobs should be filtered when the desired status
|
|
// is terminal and the client did not finish or when the client
|
|
// status is failed so that they will be replaced. If they are
|
|
// complete but not failed, they shouldn't be replaced.
|
|
switch a.DesiredStatus {
|
|
case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict:
|
|
return !a.RanSuccessfully()
|
|
default:
|
|
}
|
|
|
|
switch a.ClientStatus {
|
|
case structs.AllocClientStatusFailed:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Filter terminal, non batch allocations
|
|
return a.TerminalStatus()
|
|
}
|
|
|
|
n := len(allocs)
|
|
for i := 0; i < n; i++ {
|
|
if filter(allocs[i]) {
|
|
allocs[i], allocs[n-1] = allocs[n-1], nil
|
|
i--
|
|
n--
|
|
}
|
|
}
|
|
return allocs[:n]
|
|
}
|
|
|
|
// computeJobAllocs is used to reconcile differences between the job,
|
|
// existing allocations and node status to update the allocations.
|
|
func (s *GenericScheduler) computeJobAllocs() error {
|
|
// Materialize all the task groups, job could be missing if deregistered
|
|
var groups map[string]*structs.TaskGroup
|
|
if s.job != nil {
|
|
groups = materializeTaskGroups(s.job)
|
|
}
|
|
|
|
// Lookup the allocations by JobID
|
|
allocs, err := s.state.AllocsByJob(s.eval.JobID)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get allocs for job '%s': %v",
|
|
s.eval.JobID, err)
|
|
}
|
|
|
|
// Filter out the allocations in a terminal state
|
|
allocs = s.filterCompleteAllocs(allocs)
|
|
|
|
// Determine the tainted nodes containing job allocs
|
|
tainted, err := taintedNodes(s.state, allocs)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
|
|
s.eval.JobID, err)
|
|
}
|
|
|
|
// Diff the required and existing allocations
|
|
diff := diffAllocs(s.job, tainted, groups, allocs)
|
|
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
|
|
|
|
// XXX: For debugging purposes only. An issue was observed where a job had a
|
|
// task group with count > 0 that produced a diff where no action would be
|
|
// taken (every slice was empty). Below we dump debug information if this
|
|
// condition is hit.
|
|
diffSum := len(diff.stop) + len(diff.place) + len(diff.ignore) +
|
|
len(diff.update) + len(diff.migrate)
|
|
if diffSum == 0 && len(groups) != 0 {
|
|
s.logger.Printf("[ERR] sched: %d tasks to schedule but scheduler believes there is no work", len(groups))
|
|
|
|
// Get the original set of allocations for the job.
|
|
jobAllocs, err := s.state.AllocsByJob(s.eval.JobID)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get allocs for job '%s': %v", s.eval.JobID, err)
|
|
}
|
|
s.logger.Printf("[DEBUG] sched: job: %s", spew.Sdump(s.job))
|
|
s.logger.Printf("[DEBUG] sched: materializeTaskGroups() returned: %s", spew.Sdump(groups))
|
|
s.logger.Printf("[DEBUG] sched: AllocsByJob(%q) returned: %s", s.eval.JobID, spew.Sdump(jobAllocs))
|
|
s.logger.Printf("[DEBUG] sched: filterCompleteAllocs(): %s", spew.Sdump(allocs))
|
|
s.logger.Printf("[DEBUG] sched: taintedNodes(): %s", spew.Sdump(tainted))
|
|
}
|
|
|
|
// Add all the allocs to stop
|
|
for _, e := range diff.stop {
|
|
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded)
|
|
}
|
|
|
|
// Attempt to do the upgrades in place
|
|
destructiveUpdates, inplaceUpdates := inplaceUpdate(s.ctx, s.eval, s.job, s.stack, diff.update)
|
|
diff.update = destructiveUpdates
|
|
|
|
if s.eval.AnnotatePlan {
|
|
s.plan.Annotations = &structs.PlanAnnotations{
|
|
DesiredTGUpdates: desiredUpdates(diff, inplaceUpdates, destructiveUpdates),
|
|
}
|
|
}
|
|
|
|
// Check if a rolling upgrade strategy is being used
|
|
limit := len(diff.update) + len(diff.migrate)
|
|
if s.job != nil && s.job.Update.Rolling() {
|
|
limit = s.job.Update.MaxParallel
|
|
}
|
|
|
|
// Treat migrations as an eviction and a new placement.
|
|
s.limitReached = evictAndPlace(s.ctx, diff, diff.migrate, allocMigrating, &limit)
|
|
|
|
// Treat non in-place updates as an eviction and new placement.
|
|
s.limitReached = s.limitReached || evictAndPlace(s.ctx, diff, diff.update, allocUpdating, &limit)
|
|
|
|
// Nothing remaining to do if placement is not required
|
|
if len(diff.place) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// Compute the placements
|
|
return s.computePlacements(diff.place)
|
|
}
|
|
|
|
// computePlacements computes placements for allocations
|
|
func (s *GenericScheduler) computePlacements(place []allocTuple) error {
|
|
// Get the base nodes
|
|
nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Update the set of placement ndoes
|
|
s.stack.SetNodes(nodes)
|
|
|
|
for _, missing := range place {
|
|
// Check if this task group has already failed
|
|
if metric, ok := s.failedTGAllocs[missing.TaskGroup.Name]; ok {
|
|
metric.CoalescedFailures += 1
|
|
continue
|
|
}
|
|
|
|
// Attempt to match the task group
|
|
option, _ := s.stack.Select(missing.TaskGroup)
|
|
|
|
// Store the available nodes by datacenter
|
|
s.ctx.Metrics().NodesAvailable = byDC
|
|
|
|
// Set fields based on if we found an allocation option
|
|
if option != nil {
|
|
// Create an allocation for this
|
|
alloc := &structs.Allocation{
|
|
ID: structs.GenerateUUID(),
|
|
EvalID: s.eval.ID,
|
|
Name: missing.Name,
|
|
JobID: s.job.ID,
|
|
TaskGroup: missing.TaskGroup.Name,
|
|
Metrics: s.ctx.Metrics(),
|
|
NodeID: option.Node.ID,
|
|
TaskResources: option.TaskResources,
|
|
DesiredStatus: structs.AllocDesiredStatusRun,
|
|
ClientStatus: structs.AllocClientStatusPending,
|
|
}
|
|
|
|
s.plan.AppendAlloc(alloc)
|
|
} else {
|
|
// Lazy initialize the failed map
|
|
if s.failedTGAllocs == nil {
|
|
s.failedTGAllocs = make(map[string]*structs.AllocMetric)
|
|
}
|
|
|
|
s.failedTGAllocs[missing.TaskGroup.Name] = s.ctx.Metrics()
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|