open-nomad/api/allocations.go

605 lines
16 KiB
Go

package api
import (
"context"
"encoding/json"
"errors"
"fmt"
"io"
"net"
"sort"
"strconv"
"sync"
"time"
"github.com/gorilla/websocket"
)
var (
// NodeDownErr marks an operation as not able to complete since the node is
// down.
NodeDownErr = fmt.Errorf("node down")
)
const (
AllocDesiredStatusRun = "run" // Allocation should run
AllocDesiredStatusStop = "stop" // Allocation should stop
AllocDesiredStatusEvict = "evict" // Allocation should stop, and was evicted
)
const (
AllocClientStatusPending = "pending"
AllocClientStatusRunning = "running"
AllocClientStatusComplete = "complete"
AllocClientStatusFailed = "failed"
AllocClientStatusLost = "lost"
)
// Allocations is used to query the alloc-related endpoints.
type Allocations struct {
client *Client
}
// Allocations returns a handle on the allocs endpoints.
func (c *Client) Allocations() *Allocations {
return &Allocations{client: c}
}
// List returns a list of all of the allocations.
func (a *Allocations) List(q *QueryOptions) ([]*AllocationListStub, *QueryMeta, error) {
var resp []*AllocationListStub
qm, err := a.client.query("/v1/allocations", &resp, q)
if err != nil {
return nil, nil, err
}
sort.Sort(AllocIndexSort(resp))
return resp, qm, nil
}
func (a *Allocations) PrefixList(prefix string) ([]*AllocationListStub, *QueryMeta, error) {
return a.List(&QueryOptions{Prefix: prefix})
}
// Info is used to retrieve a single allocation.
func (a *Allocations) Info(allocID string, q *QueryOptions) (*Allocation, *QueryMeta, error) {
var resp Allocation
qm, err := a.client.query("/v1/allocation/"+allocID, &resp, q)
if err != nil {
return nil, nil, err
}
return &resp, qm, nil
}
// Exec is used to execute a command inside a running task. The command is to run inside
// the task environment.
//
// The parameters are:
// * ctx: context to set deadlines or timeout
// * allocation: the allocation to execute command inside
// * task: the task's name to execute command in
// * tty: indicates whether to start a pseudo-tty for the command
// * stdin, stdout, stderr: the std io to pass to command.
// If tty is true, then streams need to point to a tty that's alive for the whole process
// * terminalSizeCh: A channel to send new tty terminal sizes
//
// The call blocks until command terminates (or an error occurs), and returns the exit code.
func (a *Allocations) Exec(ctx context.Context,
alloc *Allocation, task string, tty bool, command []string,
stdin io.Reader, stdout, stderr io.Writer,
terminalSizeCh <-chan TerminalSize, q *QueryOptions) (exitCode int, err error) {
ctx, cancelFn := context.WithCancel(ctx)
defer cancelFn()
errCh := make(chan error, 4)
sender, output := a.execFrames(ctx, alloc, task, tty, command, errCh, q)
select {
case err := <-errCh:
return -2, err
default:
}
// Errors resulting from sending input (in goroutines) are silently dropped.
// To mitigate this, extra care is needed to distinguish between actual send errors
// and from send errors due to command terminating and our race to detect failures.
// If we have an actual network failure or send a bad input, we'd get an
// error in the reading side of websocket.
go func() {
bytes := make([]byte, 2048)
for {
if ctx.Err() != nil {
return
}
input := ExecStreamingInput{Stdin: &ExecStreamingIOOperation{}}
n, err := stdin.Read(bytes)
// always send data if we read some
if n != 0 {
input.Stdin.Data = bytes[:n]
sender(&input)
}
// then handle error
if err == io.EOF {
// if n != 0, send data and we'll get n = 0 on next read
if n == 0 {
input.Stdin.Close = true
sender(&input)
return
}
} else if err != nil {
errCh <- err
return
}
}
}()
// forwarding terminal size
go func() {
for {
resizeInput := ExecStreamingInput{}
select {
case <-ctx.Done():
return
case size, ok := <-terminalSizeCh:
if !ok {
return
}
resizeInput.TTYSize = &size
sender(&resizeInput)
}
}
}()
// send a heartbeat every 10 seconds
go func() {
for {
select {
case <-ctx.Done():
return
// heartbeat message
case <-time.After(10 * time.Second):
sender(&execStreamingInputHeartbeat)
}
}
}()
for {
select {
case err := <-errCh:
// drop websocket code, not relevant to user
if wsErr, ok := err.(*websocket.CloseError); ok && wsErr.Text != "" {
return -2, errors.New(wsErr.Text)
}
return -2, err
case <-ctx.Done():
return -2, ctx.Err()
case frame, ok := <-output:
if !ok {
return -2, errors.New("disconnected without receiving the exit code")
}
switch {
case frame.Stdout != nil:
if len(frame.Stdout.Data) != 0 {
stdout.Write(frame.Stdout.Data)
}
// don't really do anything if stdout is closing
case frame.Stderr != nil:
if len(frame.Stderr.Data) != 0 {
stderr.Write(frame.Stderr.Data)
}
// don't really do anything if stderr is closing
case frame.Exited && frame.Result != nil:
return frame.Result.ExitCode, nil
default:
// noop - heartbeat
}
}
}
}
func (a *Allocations) execFrames(ctx context.Context, alloc *Allocation, task string, tty bool, command []string,
errCh chan<- error, q *QueryOptions) (sendFn func(*ExecStreamingInput) error, output <-chan *ExecStreamingOutput) {
nodeClient, err := a.client.GetNodeClientWithTimeout(alloc.NodeID, ClientConnTimeout, q)
if err != nil {
errCh <- err
return nil, nil
}
if q == nil {
q = &QueryOptions{}
}
if q.Params == nil {
q.Params = make(map[string]string)
}
commandBytes, err := json.Marshal(command)
if err != nil {
errCh <- fmt.Errorf("failed to marshal command: %s", err)
return nil, nil
}
q.Params["tty"] = strconv.FormatBool(tty)
q.Params["task"] = task
q.Params["command"] = string(commandBytes)
reqPath := fmt.Sprintf("/v1/client/allocation/%s/exec", alloc.ID)
conn, _, err := nodeClient.websocket(reqPath, q)
if err != nil {
// There was an error talking directly to the client. Non-network
// errors are fatal, but network errors can attempt to route via RPC.
if _, ok := err.(net.Error); !ok {
errCh <- err
return nil, nil
}
conn, _, err = a.client.websocket(reqPath, q)
if err != nil {
errCh <- err
return nil, nil
}
}
// Create the output channel
frames := make(chan *ExecStreamingOutput, 10)
go func() {
defer conn.Close()
for ctx.Err() == nil {
// Decode the next frame
var frame ExecStreamingOutput
err := conn.ReadJSON(&frame)
if websocket.IsCloseError(err, websocket.CloseNormalClosure) {
close(frames)
return
} else if err != nil {
errCh <- err
return
}
frames <- &frame
}
}()
var sendLock sync.Mutex
send := func(v *ExecStreamingInput) error {
sendLock.Lock()
defer sendLock.Unlock()
return conn.WriteJSON(v)
}
return send, frames
}
func (a *Allocations) Stats(alloc *Allocation, q *QueryOptions) (*AllocResourceUsage, error) {
var resp AllocResourceUsage
path := fmt.Sprintf("/v1/client/allocation/%s/stats", alloc.ID)
_, err := a.client.query(path, &resp, q)
return &resp, err
}
func (a *Allocations) GC(alloc *Allocation, q *QueryOptions) error {
nodeClient, err := a.client.GetNodeClient(alloc.NodeID, q)
if err != nil {
return err
}
var resp struct{}
_, err = nodeClient.query("/v1/client/allocation/"+alloc.ID+"/gc", &resp, nil)
return err
}
func (a *Allocations) Restart(alloc *Allocation, taskName string, q *QueryOptions) error {
req := AllocationRestartRequest{
TaskName: taskName,
}
var resp struct{}
_, err := a.client.putQuery("/v1/client/allocation/"+alloc.ID+"/restart", &req, &resp, q)
return err
}
func (a *Allocations) Stop(alloc *Allocation, q *QueryOptions) (*AllocStopResponse, error) {
var resp AllocStopResponse
_, err := a.client.putQuery("/v1/allocation/"+alloc.ID+"/stop", nil, &resp, q)
return &resp, err
}
// AllocStopResponse is the response to an `AllocStopRequest`
type AllocStopResponse struct {
// EvalID is the id of the follow up evalution for the rescheduled alloc.
EvalID string
WriteMeta
}
func (a *Allocations) Signal(alloc *Allocation, q *QueryOptions, task, signal string) error {
nodeClient, err := a.client.GetNodeClient(alloc.NodeID, q)
if err != nil {
return err
}
req := AllocSignalRequest{
Signal: signal,
Task: task,
}
var resp GenericResponse
_, err = nodeClient.putQuery("/v1/client/allocation/"+alloc.ID+"/signal", &req, &resp, q)
return err
}
// Allocation is used for serialization of allocations.
type Allocation struct {
ID string
Namespace string
EvalID string
Name string
NodeID string
NodeName string
JobID string
Job *Job
TaskGroup string
Resources *Resources
TaskResources map[string]*Resources
AllocatedResources *AllocatedResources
Services map[string]string
Metrics *AllocationMetric
DesiredStatus string
DesiredDescription string
DesiredTransition DesiredTransition
ClientStatus string
ClientDescription string
TaskStates map[string]*TaskState
DeploymentID string
DeploymentStatus *AllocDeploymentStatus
FollowupEvalID string
PreviousAllocation string
NextAllocation string
RescheduleTracker *RescheduleTracker
PreemptedAllocations []string
PreemptedByAllocation string
CreateIndex uint64
ModifyIndex uint64
AllocModifyIndex uint64
CreateTime int64
ModifyTime int64
}
// AllocationMetric is used to deserialize allocation metrics.
type AllocationMetric struct {
NodesEvaluated int
NodesFiltered int
NodesAvailable map[string]int
ClassFiltered map[string]int
ConstraintFiltered map[string]int
NodesExhausted int
ClassExhausted map[string]int
DimensionExhausted map[string]int
QuotaExhausted []string
// Deprecated, replaced with ScoreMetaData
Scores map[string]float64
AllocationTime time.Duration
CoalescedFailures int
ScoreMetaData []*NodeScoreMeta
}
// NodeScoreMeta is used to serialize node scoring metadata
// displayed in the CLI during verbose mode
type NodeScoreMeta struct {
NodeID string
Scores map[string]float64
NormScore float64
}
// AllocationListStub is used to return a subset of an allocation
// during list operations.
type AllocationListStub struct {
ID string
EvalID string
Name string
Namespace string
NodeID string
NodeName string
JobID string
JobType string
JobVersion uint64
TaskGroup string
DesiredStatus string
DesiredDescription string
ClientStatus string
ClientDescription string
TaskStates map[string]*TaskState
DeploymentStatus *AllocDeploymentStatus
FollowupEvalID string
RescheduleTracker *RescheduleTracker
PreemptedAllocations []string
PreemptedByAllocation string
CreateIndex uint64
ModifyIndex uint64
CreateTime int64
ModifyTime int64
}
// AllocDeploymentStatus captures the status of the allocation as part of the
// deployment. This can include things like if the allocation has been marked as
// healthy.
type AllocDeploymentStatus struct {
Healthy *bool
Timestamp time.Time
Canary bool
ModifyIndex uint64
}
type AllocatedResources struct {
Tasks map[string]*AllocatedTaskResources
Shared AllocatedSharedResources
}
type AllocatedTaskResources struct {
Cpu AllocatedCpuResources
Memory AllocatedMemoryResources
Networks []*NetworkResource
}
type AllocatedSharedResources struct {
DiskMB int64
Networks []*NetworkResource
}
type AllocatedCpuResources struct {
CpuShares int64
}
type AllocatedMemoryResources struct {
MemoryMB int64
}
// AllocIndexSort reverse sorts allocs by CreateIndex.
type AllocIndexSort []*AllocationListStub
func (a AllocIndexSort) Len() int {
return len(a)
}
func (a AllocIndexSort) Less(i, j int) bool {
return a[i].CreateIndex > a[j].CreateIndex
}
func (a AllocIndexSort) Swap(i, j int) {
a[i], a[j] = a[j], a[i]
}
// RescheduleInfo is used to calculate remaining reschedule attempts
// according to the given time and the task groups reschedule policy
func (a Allocation) RescheduleInfo(t time.Time) (int, int) {
var reschedulePolicy *ReschedulePolicy
for _, tg := range a.Job.TaskGroups {
if *tg.Name == a.TaskGroup {
reschedulePolicy = tg.ReschedulePolicy
}
}
if reschedulePolicy == nil {
return 0, 0
}
availableAttempts := *reschedulePolicy.Attempts
interval := *reschedulePolicy.Interval
attempted := 0
// Loop over reschedule tracker to find attempts within the restart policy's interval
if a.RescheduleTracker != nil && availableAttempts > 0 && interval > 0 {
for j := len(a.RescheduleTracker.Events) - 1; j >= 0; j-- {
lastAttempt := a.RescheduleTracker.Events[j].RescheduleTime
timeDiff := t.UTC().UnixNano() - lastAttempt
if timeDiff < interval.Nanoseconds() {
attempted += 1
}
}
}
return attempted, availableAttempts
}
type AllocationRestartRequest struct {
TaskName string
}
type AllocSignalRequest struct {
Task string
Signal string
}
// GenericResponse is used to respond to a request where no
// specific response information is needed.
type GenericResponse struct {
WriteMeta
}
// RescheduleTracker encapsulates previous reschedule events
type RescheduleTracker struct {
Events []*RescheduleEvent
}
// RescheduleEvent is used to keep track of previous attempts at rescheduling an allocation
type RescheduleEvent struct {
// RescheduleTime is the timestamp of a reschedule attempt
RescheduleTime int64
// PrevAllocID is the ID of the previous allocation being restarted
PrevAllocID string
// PrevNodeID is the node ID of the previous allocation
PrevNodeID string
}
// DesiredTransition is used to mark an allocation as having a desired state
// transition. This information can be used by the scheduler to make the
// correct decision.
type DesiredTransition struct {
// Migrate is used to indicate that this allocation should be stopped and
// migrated to another node.
Migrate *bool
// Reschedule is used to indicate that this allocation is eligible to be
// rescheduled.
Reschedule *bool
}
// ShouldMigrate returns whether the transition object dictates a migration.
func (d DesiredTransition) ShouldMigrate() bool {
return d.Migrate != nil && *d.Migrate
}
// ExecStreamingIOOperation represents a stream write operation: either appending data or close (exclusively)
type ExecStreamingIOOperation struct {
Data []byte `json:"data,omitempty"`
Close bool `json:"close,omitempty"`
}
// TerminalSize represents the size of the terminal
type TerminalSize struct {
Height int `json:"height,omitempty"`
Width int `json:"width,omitempty"`
}
var execStreamingInputHeartbeat = ExecStreamingInput{}
// ExecStreamingInput represents user input to be sent to nomad exec handler.
//
// At most one field should be set.
type ExecStreamingInput struct {
Stdin *ExecStreamingIOOperation `json:"stdin,omitempty"`
TTYSize *TerminalSize `json:"tty_size,omitempty"`
}
// ExecStreamingExitResults captures the exit code of just completed nomad exec command
type ExecStreamingExitResult struct {
ExitCode int `json:"exit_code"`
}
// ExecStreamingInput represents an output streaming entity, e.g. stdout/stderr update or termination
//
// At most one of these fields should be set: `Stdout`, `Stderr`, or `Result`.
// If `Exited` is true, then `Result` is non-nil, and other fields are nil.
type ExecStreamingOutput struct {
Stdout *ExecStreamingIOOperation `json:"stdout,omitempty"`
Stderr *ExecStreamingIOOperation `json:"stderr,omitempty"`
Exited bool `json:"exited,omitempty"`
Result *ExecStreamingExitResult `json:"result,omitempty"`
}