308 lines
10 KiB
JavaScript
308 lines
10 KiB
JavaScript
import Component from '@glimmer/component';
|
|
import { tracked } from '@glimmer/tracking';
|
|
import { action, set } from '@ember/object';
|
|
import { inject as service } from '@ember/service';
|
|
import { run } from '@ember/runloop';
|
|
import { scaleLinear } from 'd3-scale';
|
|
import { extent, deviation, mean } from 'd3-array';
|
|
import { line, curveBasis } from 'd3-shape';
|
|
import styleStringProperty from '../utils/properties/style-string';
|
|
|
|
export default class TopoViz extends Component {
|
|
@service system;
|
|
|
|
@tracked element = null;
|
|
@tracked topology = { datacenters: [] };
|
|
|
|
@tracked activeNode = null;
|
|
@tracked activeAllocation = null;
|
|
@tracked activeEdges = [];
|
|
@tracked edgeOffset = { x: 0, y: 0 };
|
|
@tracked viewportColumns = 2;
|
|
|
|
@tracked highlightAllocation = null;
|
|
@tracked tooltipProps = {};
|
|
|
|
@styleStringProperty('tooltipProps') tooltipStyle;
|
|
|
|
get isSingleColumn() {
|
|
if (this.topology.datacenters.length <= 1 || this.viewportColumns === 1) return true;
|
|
|
|
// Compute the coefficient of variance to determine if it would be
|
|
// better to stack datacenters or place them in columns
|
|
const nodeCounts = this.topology.datacenters.map(datacenter => datacenter.nodes.length);
|
|
const variationCoefficient = deviation(nodeCounts) / mean(nodeCounts);
|
|
|
|
// The point at which the varation is too extreme for a two column layout
|
|
const threshold = 0.5;
|
|
if (variationCoefficient > threshold) return true;
|
|
return false;
|
|
}
|
|
|
|
get datacenterIsSingleColumn() {
|
|
// If there are enough nodes, use two columns of nodes within
|
|
// a single column layout of datacenters to increase density.
|
|
if (this.viewportColumns === 1) return true;
|
|
return !this.isSingleColumn || (this.isSingleColumn && this.args.nodes.length <= 20);
|
|
}
|
|
|
|
// Once a cluster is large enough, the exact details of a node are
|
|
// typically irrelevant and a waste of space.
|
|
get isDense() {
|
|
return this.args.nodes.length > 50;
|
|
}
|
|
|
|
dataForNode(node) {
|
|
return {
|
|
node,
|
|
datacenter: node.datacenter,
|
|
memory: node.resources.memory,
|
|
cpu: node.resources.cpu,
|
|
allocations: [],
|
|
isSelected: false,
|
|
};
|
|
}
|
|
|
|
dataForAllocation(allocation, node) {
|
|
const jobId = allocation.belongsTo('job').id();
|
|
return {
|
|
allocation,
|
|
node,
|
|
jobId,
|
|
groupKey: JSON.stringify([jobId, allocation.taskGroupName]),
|
|
memory: allocation.allocatedResources.memory,
|
|
cpu: allocation.allocatedResources.cpu,
|
|
memoryPercent: allocation.allocatedResources.memory / node.memory,
|
|
cpuPercent: allocation.allocatedResources.cpu / node.cpu,
|
|
isSelected: false,
|
|
};
|
|
}
|
|
|
|
@action
|
|
buildTopology() {
|
|
const nodes = this.args.nodes;
|
|
const allocations = this.args.allocations;
|
|
|
|
// Wrap nodes in a topo viz specific data structure and build an index to speed up allocation assignment
|
|
const nodeContainers = [];
|
|
const nodeIndex = {};
|
|
nodes.forEach(node => {
|
|
const container = this.dataForNode(node);
|
|
nodeContainers.push(container);
|
|
nodeIndex[node.id] = container;
|
|
});
|
|
|
|
// Wrap allocations in a topo viz specific data structure, assign allocations to nodes, and build an allocation
|
|
// index keyed off of job and task group
|
|
const allocationIndex = {};
|
|
allocations.forEach(allocation => {
|
|
const nodeId = allocation.belongsTo('node').id();
|
|
const nodeContainer = nodeIndex[nodeId];
|
|
|
|
// Ignore orphaned allocations
|
|
if (!nodeContainer) return;
|
|
|
|
const allocationContainer = this.dataForAllocation(allocation, nodeContainer);
|
|
nodeContainer.allocations.push(allocationContainer);
|
|
|
|
const key = allocationContainer.groupKey;
|
|
if (!allocationIndex[key]) allocationIndex[key] = [];
|
|
allocationIndex[key].push(allocationContainer);
|
|
});
|
|
|
|
// Group nodes into datacenters
|
|
const datacentersMap = nodeContainers.reduce((datacenters, nodeContainer) => {
|
|
if (!datacenters[nodeContainer.datacenter]) datacenters[nodeContainer.datacenter] = [];
|
|
datacenters[nodeContainer.datacenter].push(nodeContainer);
|
|
return datacenters;
|
|
}, {});
|
|
|
|
// Turn hash of datacenters into a sorted array
|
|
const datacenters = Object.keys(datacentersMap)
|
|
.map(key => ({ name: key, nodes: datacentersMap[key] }))
|
|
.sortBy('name');
|
|
|
|
const topology = {
|
|
datacenters,
|
|
allocationIndex,
|
|
selectedKey: null,
|
|
heightScale: scaleLinear()
|
|
.range([15, 40])
|
|
.domain(extent(nodeContainers.mapBy('memory'))),
|
|
};
|
|
this.topology = topology;
|
|
}
|
|
|
|
@action
|
|
captureElement(element) {
|
|
this.element = element;
|
|
this.determineViewportColumns();
|
|
}
|
|
|
|
@action
|
|
showNodeDetails(node) {
|
|
if (this.activeNode) {
|
|
set(this.activeNode, 'isSelected', false);
|
|
}
|
|
|
|
this.activeNode = this.activeNode === node ? null : node;
|
|
|
|
if (this.activeNode) {
|
|
set(this.activeNode, 'isSelected', true);
|
|
}
|
|
|
|
if (this.args.onNodeSelect) this.args.onNodeSelect(this.activeNode);
|
|
}
|
|
|
|
@action showTooltip(allocation, element) {
|
|
const bbox = element.getBoundingClientRect();
|
|
this.highlightAllocation = allocation;
|
|
this.tooltipProps = {
|
|
left: window.scrollX + bbox.left + bbox.width / 2,
|
|
top: window.scrollY + bbox.top,
|
|
};
|
|
}
|
|
|
|
@action hideTooltip() {
|
|
this.highlightAllocation = null;
|
|
}
|
|
|
|
@action
|
|
associateAllocations(allocation) {
|
|
if (this.activeAllocation === allocation) {
|
|
this.activeAllocation = null;
|
|
this.activeEdges = [];
|
|
|
|
if (this.topology.selectedKey) {
|
|
const selectedAllocations = this.topology.allocationIndex[this.topology.selectedKey];
|
|
if (selectedAllocations) {
|
|
selectedAllocations.forEach(allocation => {
|
|
set(allocation, 'isSelected', false);
|
|
});
|
|
}
|
|
set(this.topology, 'selectedKey', null);
|
|
}
|
|
} else {
|
|
if (this.activeNode) {
|
|
set(this.activeNode, 'isSelected', false);
|
|
}
|
|
this.activeNode = null;
|
|
this.activeAllocation = allocation;
|
|
const selectedAllocations = this.topology.allocationIndex[this.topology.selectedKey];
|
|
if (selectedAllocations) {
|
|
selectedAllocations.forEach(allocation => {
|
|
set(allocation, 'isSelected', false);
|
|
});
|
|
}
|
|
|
|
set(this.topology, 'selectedKey', allocation.groupKey);
|
|
const newAllocations = this.topology.allocationIndex[this.topology.selectedKey];
|
|
if (newAllocations) {
|
|
newAllocations.forEach(allocation => {
|
|
set(allocation, 'isSelected', true);
|
|
});
|
|
}
|
|
|
|
// Only show the lines if the selected allocations are sparse (low count relative to the client count).
|
|
if (newAllocations.length < this.args.nodes.length * 0.75) {
|
|
this.computedActiveEdges();
|
|
} else {
|
|
this.activeEdges = [];
|
|
}
|
|
}
|
|
if (this.args.onAllocationSelect)
|
|
this.args.onAllocationSelect(this.activeAllocation && this.activeAllocation.allocation);
|
|
if (this.args.onNodeSelect) this.args.onNodeSelect(this.activeNode);
|
|
}
|
|
|
|
@action
|
|
determineViewportColumns() {
|
|
this.viewportColumns = this.element.clientWidth < 900 ? 1 : 2;
|
|
}
|
|
|
|
@action
|
|
computedActiveEdges() {
|
|
// Wait a render cycle
|
|
run.next(() => {
|
|
const path = line().curve(curveBasis);
|
|
// 1. Get the active element
|
|
const allocation = this.activeAllocation.allocation;
|
|
const activeEl = this.element.querySelector(`[data-allocation-id="${allocation.id}"]`);
|
|
const activePoint = centerOfBBox(activeEl.getBoundingClientRect());
|
|
|
|
// 2. Collect the mem and cpu pairs for all selected allocs
|
|
const selectedMem = Array.from(this.element.querySelectorAll('.memory .bar.is-selected'));
|
|
const selectedPairs = selectedMem.map(mem => {
|
|
const id = mem.closest('[data-allocation-id]').dataset.allocationId;
|
|
const cpu = mem
|
|
.closest('.topo-viz-node')
|
|
.querySelector(`.cpu .bar[data-allocation-id="${id}"]`);
|
|
return [mem, cpu];
|
|
});
|
|
const selectedPoints = selectedPairs.map(pair => {
|
|
return pair.map(el => centerOfBBox(el.getBoundingClientRect()));
|
|
});
|
|
|
|
// 3. For each pair, compute the midpoint of the truncated triangle of points [Mem, Cpu, Active]
|
|
selectedPoints.forEach(points => {
|
|
const d1 = pointBetween(points[0], activePoint, 100, 0.5);
|
|
const d2 = pointBetween(points[1], activePoint, 100, 0.5);
|
|
points.push(midpoint(d1, d2));
|
|
});
|
|
|
|
// 4. Generate curves for each active->mem and active->cpu pair going through the bisector
|
|
const curves = [];
|
|
// Steps are used to restrict the range of curves. The closer control points are placed, the less
|
|
// curvature the curve generator will generate.
|
|
const stepsMain = [0, 0.8, 1.0];
|
|
// The second prong the fork does not need to retrace the entire path from the activePoint
|
|
const stepsSecondary = [0.8, 1.0];
|
|
selectedPoints.forEach(points => {
|
|
curves.push(
|
|
curveFromPoints(...pointsAlongPath(activePoint, points[2], stepsMain), points[0]),
|
|
curveFromPoints(...pointsAlongPath(activePoint, points[2], stepsSecondary), points[1])
|
|
);
|
|
});
|
|
|
|
this.activeEdges = curves.map(curve => path(curve));
|
|
this.edgeOffset = { x: window.scrollX, y: window.scrollY };
|
|
});
|
|
}
|
|
}
|
|
|
|
function centerOfBBox(bbox) {
|
|
return {
|
|
x: bbox.x + bbox.width / 2,
|
|
y: bbox.y + bbox.height / 2,
|
|
};
|
|
}
|
|
|
|
function dist(p1, p2) {
|
|
return Math.sqrt(Math.pow(p2.x - p1.x, 2) + Math.pow(p2.y - p1.y, 2));
|
|
}
|
|
|
|
// Return the point between p1 and p2 at len (or pct if len > dist(p1, p2))
|
|
function pointBetween(p1, p2, len, pct) {
|
|
const d = dist(p1, p2);
|
|
const ratio = d < len ? pct : len / d;
|
|
return pointBetweenPct(p1, p2, ratio);
|
|
}
|
|
|
|
function pointBetweenPct(p1, p2, pct) {
|
|
const dx = p2.x - p1.x;
|
|
const dy = p2.y - p1.y;
|
|
return { x: p1.x + dx * pct, y: p1.y + dy * pct };
|
|
}
|
|
|
|
function pointsAlongPath(p1, p2, pcts) {
|
|
return pcts.map(pct => pointBetweenPct(p1, p2, pct));
|
|
}
|
|
|
|
function midpoint(p1, p2) {
|
|
return pointBetweenPct(p1, p2, 0.5);
|
|
}
|
|
|
|
function curveFromPoints(...points) {
|
|
return points.map(p => [p.x, p.y]);
|
|
}
|