open-nomad/client/rpcproxy/rpcproxy.go

780 lines
26 KiB
Go

// Package rpcproxy provides a proxy interface to Nomad Servers. The
// RPCProxy periodically shuffles which server a Nomad Client communicates
// with in order to redistribute load across Nomad Servers. Nomad Servers
// that fail an RPC request are automatically cycled to the end of the list
// until the server list is reshuffled.
//
// The rpcproxy package does not provide any external API guarantees and
// should be called only by `hashicorp/nomad`.
package rpcproxy
import (
"fmt"
"log"
"math/rand"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// clientRPCJitterFraction determines the amount of jitter added to
// clientRPCMinReuseDuration before a connection is expired and a new
// connection is established in order to rebalance load across Nomad
// servers. The cluster-wide number of connections per second from
// rebalancing is applied after this jitter to ensure the CPU impact
// is always finite. See newRebalanceConnsPerSecPerServer's comment
// for additional commentary.
//
// For example, in a 10K Nomad cluster with 5x servers, this default
// averages out to ~13 new connections from rebalancing per server
// per second.
clientRPCJitterFraction = 2
// clientRPCMinReuseDuration controls the minimum amount of time RPC
// queries are sent over an established connection to a single server
clientRPCMinReuseDuration = 600 * time.Second
// Limit the number of new connections a server receives per second
// for connection rebalancing. This limit caps the load caused by
// continual rebalancing efforts when a cluster is in equilibrium. A
// lower value comes at the cost of increased recovery time after a
// partition. This parameter begins to take effect when there are
// more than ~48K clients querying 5x servers or at lower server
// counts when there is a partition.
//
// For example, in a 100K Nomad cluster with 5x servers, it will take
// ~5min for all servers to rebalance their connections. If 99,995
// agents are in the minority talking to only one server, it will
// take ~26min for all servers to rebalance. A 10K cluster in the
// same scenario will take ~2.6min to rebalance.
newRebalanceConnsPerSecPerServer = 64
// rpcAPIMismatchLogRate determines the rate at which log entries are
// emitted when the client and server's API versions are mismatched.
rpcAPIMismatchLogRate = 3 * time.Hour
)
// NomadConfigInfo is an interface wrapper around this Nomad Agent's
// configuration to prevents a cyclic import dependency.
type NomadConfigInfo interface {
Datacenter() string
RPCMajorVersion() int
RPCMinorVersion() int
Region() string
}
// Pinger is an interface wrapping client.ConnPool to prevent a
// cyclic import dependency
type Pinger interface {
PingNomadServer(region string, apiMajorVersion int, s *ServerEndpoint) (bool, error)
}
// serverList is an array of Nomad Servers. The first server in the list is
// the active server.
//
// NOTE(sean@): We are explicitly relying on the fact that serverList will be
// copied onto the stack by atomic.Value. Please keep this structure light.
type serverList struct {
L []*ServerEndpoint
}
// RPCProxy is the manager type responsible for returning and managing Nomad
// addresses.
type RPCProxy struct {
// activatedList manages the list of Nomad Servers that are eligible
// to be queried by the Client agent.
activatedList atomic.Value
activatedListLock sync.Mutex
// primaryServers is a list of servers found in the last heartbeat.
// primaryServers are periodically reshuffled. Covered by
// serverListLock.
primaryServers serverList
// backupServers is a list of fallback servers. These servers are
// appended to the RPCProxy's serverList, but are never shuffled with
// the list of servers discovered via the Nomad heartbeat. Covered
// by serverListLock.
backupServers serverList
// serverListLock covers both backupServers and primaryServers. If
// it is necessary to hold serverListLock and listLock, obtain an
// exclusive lock on serverListLock before listLock.
serverListLock sync.RWMutex
leaderAddr string
numNodes int
// rebalanceTimer controls the duration of the rebalance interval
rebalanceTimer *time.Timer
// shutdownCh is a copy of the channel in nomad.Client
shutdownCh chan struct{}
logger *log.Logger
configInfo NomadConfigInfo
// rpcAPIMismatchThrottle regulates the rate at which warning
// messages are emitted in the event of an API mismatch between the
// clients and servers.
rpcAPIMismatchThrottle map[string]time.Time
// connPoolPinger is used to test the health of a server in the
// connection pool. Pinger is an interface that wraps
// client.ConnPool.
connPoolPinger Pinger
}
// NewRPCProxy is the only way to safely create a new RPCProxy.
func NewRPCProxy(logger *log.Logger, shutdownCh chan struct{}, configInfo NomadConfigInfo, connPoolPinger Pinger) *RPCProxy {
p := &RPCProxy{
logger: logger,
configInfo: configInfo, // can't pass *nomad.Client: import cycle
connPoolPinger: connPoolPinger, // can't pass *nomad.ConnPool: import cycle
rebalanceTimer: time.NewTimer(clientRPCMinReuseDuration),
shutdownCh: shutdownCh,
}
l := serverList{}
l.L = make([]*ServerEndpoint, 0)
p.saveServerList(l)
return p
}
// activateEndpoint adds an endpoint to the RPCProxy's active serverList.
// Returns true if the server was added, returns false if the server already
// existed in the RPCProxy's serverList.
func (p *RPCProxy) activateEndpoint(s *ServerEndpoint) bool {
l := p.getServerList()
// Check if this server is known
found := false
for idx, existing := range l.L {
if existing.Name == s.Name {
newServers := make([]*ServerEndpoint, len(l.L))
copy(newServers, l.L)
// Overwrite the existing server details in order to
// possibly update metadata (e.g. server version)
newServers[idx] = s
l.L = newServers
found = true
break
}
}
// Add to the list if not known
if !found {
newServers := make([]*ServerEndpoint, len(l.L), len(l.L)+1)
copy(newServers, l.L)
newServers = append(newServers, s)
l.L = newServers
}
p.saveServerList(l)
return !found
}
// SetBackupServers sets a list of Nomad Servers to be used in the event that
// the Nomad Agent lost contact with the list of Nomad Servers provided via
// the Nomad Agent's heartbeat. If available, the backup servers are
// populated via Consul.
func (p *RPCProxy) SetBackupServers(addrs []string) error {
l := make([]*ServerEndpoint, 0, len(addrs))
for _, s := range addrs {
s, err := NewServerEndpoint(s)
if err != nil {
p.logger.Printf("[WARN] client.rpcproxy: unable to create backup server %+q: %v", s, err)
return fmt.Errorf("unable to create new backup server from %+q: %v", s, err)
}
l = append(l, s)
}
p.serverListLock.Lock()
p.backupServers.L = l
p.serverListLock.Unlock()
p.activatedListLock.Lock()
defer p.activatedListLock.Unlock()
for _, s := range l {
p.activateEndpoint(s)
}
return nil
}
// AddPrimaryServer takes the RPC address of a Nomad server, creates a new
// endpoint, and adds it to both the primaryServers list and the active
// serverList used in the RPC Proxy. If the endpoint is not known by the
// RPCProxy, appends the endpoint to the list. The new endpoint will begin
// seeing use after the rebalance timer fires (or enough servers fail
// organically). Any values in the primary server list are overridden by the
// next successful heartbeat.
func (p *RPCProxy) AddPrimaryServer(rpcAddr string) *ServerEndpoint {
s, err := NewServerEndpoint(rpcAddr)
if err != nil {
p.logger.Printf("[WARN] client.rpcproxy: unable to create new primary server from endpoint %+q: %v", rpcAddr, err)
return nil
}
k := s.Key()
p.serverListLock.Lock()
if serverExists := p.primaryServers.serverExistByKey(k); serverExists {
p.serverListLock.Unlock()
return s
}
p.primaryServers.L = append(p.primaryServers.L, s)
p.serverListLock.Unlock()
p.activatedListLock.Lock()
p.activateEndpoint(s)
p.activatedListLock.Unlock()
return s
}
// cycleServers returns a new list of servers that has dequeued the first
// server and enqueued it at the end of the list. cycleServers assumes the
// caller is holding the listLock. cycleServer does not test or ping
// the next server inline. cycleServer may be called when the environment
// has just entered an unhealthy situation and blocking on a server test is
// less desirable than just returning the next server in the firing line. If
// the next server fails, it will fail fast enough and cycleServer will be
// called again.
func (l *serverList) cycleServer() (servers []*ServerEndpoint) {
numServers := len(l.L)
if numServers < 2 {
return servers // No action required
}
newServers := make([]*ServerEndpoint, 0, numServers)
newServers = append(newServers, l.L[1:]...)
newServers = append(newServers, l.L[0])
return newServers
}
// serverExistByKey performs a search to see if a server exists in the
// serverList. Assumes the caller is holding at least a read lock.
func (l *serverList) serverExistByKey(targetKey *EndpointKey) bool {
var found bool
for _, server := range l.L {
if targetKey.Equal(server.Key()) {
found = true
}
}
return found
}
// removeServerByKey performs an inline removal of the first matching server
func (l *serverList) removeServerByKey(targetKey *EndpointKey) {
for i, s := range l.L {
if targetKey.Equal(s.Key()) {
copy(l.L[i:], l.L[i+1:])
l.L[len(l.L)-1] = nil
l.L = l.L[:len(l.L)-1]
return
}
}
}
// shuffleServers shuffles the server list in place
func (l *serverList) shuffleServers() {
for i := len(l.L) - 1; i > 0; i-- {
j := rand.Int31n(int32(i + 1))
l.L[i], l.L[j] = l.L[j], l.L[i]
}
}
// String returns a string representation of serverList
func (l *serverList) String() string {
if len(l.L) == 0 {
return fmt.Sprintf("empty server list")
}
serverStrs := make([]string, 0, len(l.L))
for _, server := range l.L {
serverStrs = append(serverStrs, server.String())
}
return fmt.Sprintf("[%s]", strings.Join(serverStrs, ", "))
}
// FindServer takes out an internal "read lock" and searches through the list
// of servers to find a "healthy" server. If the server is actually
// unhealthy, we rely on heartbeats to detect this and remove the node from
// the server list. If the server at the front of the list has failed or
// fails during an RPC call, it is rotated to the end of the list. If there
// are no servers available, return nil.
func (p *RPCProxy) FindServer() *ServerEndpoint {
l := p.getServerList()
numServers := len(l.L)
if numServers == 0 {
p.logger.Printf("[WARN] client.rpcproxy: No servers available")
return nil
}
// Return whatever is at the front of the list because it is
// assumed to be the oldest in the server list (unless -
// hypothetically - the server list was rotated right after a
// server was added).
return l.L[0]
}
// getServerList is a convenience method which hides the locking semantics
// of atomic.Value from the caller.
func (p *RPCProxy) getServerList() serverList {
return p.activatedList.Load().(serverList)
}
// saveServerList is a convenience method which hides the locking semantics
// of atomic.Value from the caller.
func (p *RPCProxy) saveServerList(l serverList) {
p.activatedList.Store(l)
}
// LeaderAddr returns the current leader address. If an empty string, then
// the Nomad Server for this Nomad Agent is in the minority or the Nomad
// Servers are in the middle of an election.
func (p *RPCProxy) LeaderAddr() string {
p.activatedListLock.Lock()
defer p.activatedListLock.Unlock()
return p.leaderAddr
}
// NotifyFailedServer marks the passed in server as "failed" by rotating it
// to the end of the server list.
func (p *RPCProxy) NotifyFailedServer(s *ServerEndpoint) {
l := p.getServerList()
// If the server being failed is not the first server on the list,
// this is a noop. If, however, the server is failed and first on
// the list, acquire the lock, retest, and take the penalty of moving
// the server to the end of the list.
// Only rotate the server list when there is more than one server
if len(l.L) > 1 && l.L[0] == s {
// Grab a lock, retest, and take the hit of cycling the first
// server to the end.
p.activatedListLock.Lock()
defer p.activatedListLock.Unlock()
l = p.getServerList()
if len(l.L) > 1 && l.L[0] == s {
l.L = l.cycleServer()
p.saveServerList(l)
}
}
}
// NumNodes returns the estimated number of nodes according to the last Nomad
// Heartbeat.
func (p *RPCProxy) NumNodes() int {
return p.numNodes
}
// NumServers takes out an internal "read lock" and returns the number of
// servers. numServers includes both healthy and unhealthy servers.
func (p *RPCProxy) NumServers() int {
l := p.getServerList()
return len(l.L)
}
// RebalanceServers shuffles the list of servers on this agent. The server
// at the front of the list is selected for the next RPC. RPC calls that
// fail for a particular server are rotated to the end of the list. This
// method reshuffles the list periodically in order to redistribute work
// across all known Nomad servers (i.e. guarantee that the order of servers
// in the server list is not positively correlated with the age of a server
// in the Nomad cluster). Periodically shuffling the server list prevents
// long-lived clients from fixating on long-lived servers.
//
// Unhealthy servers are removed from the server list during the next client
// heartbeat. Before the newly shuffled server list is saved, the new remote
// endpoint is tested to ensure its responsive.
func (p *RPCProxy) RebalanceServers() {
var serverListLocked bool
p.serverListLock.Lock()
serverListLocked = true
defer func() {
if serverListLocked {
p.serverListLock.Unlock()
}
}()
// Early abort if there is nothing to shuffle
if (len(p.primaryServers.L) + len(p.backupServers.L)) < 2 {
return
}
// Shuffle server lists independently
p.primaryServers.shuffleServers()
p.backupServers.shuffleServers()
// Create a new merged serverList
type targetServer struct {
server *ServerEndpoint
// 'p' == Primary Server
// 's' == Secondary/Backup Server
// 'b' == Both
state byte
}
mergedList := make(map[EndpointKey]*targetServer, len(p.primaryServers.L)+len(p.backupServers.L))
for _, s := range p.primaryServers.L {
mergedList[*s.Key()] = &targetServer{server: s, state: 'p'}
}
for _, s := range p.backupServers.L {
k := s.Key()
_, found := mergedList[*k]
if found {
mergedList[*k].state = 'b'
} else {
mergedList[*k] = &targetServer{server: s, state: 's'}
}
}
l := &serverList{L: make([]*ServerEndpoint, 0, len(mergedList))}
for _, s := range p.primaryServers.L {
l.L = append(l.L, s)
}
for _, v := range mergedList {
if v.state != 's' {
continue
}
l.L = append(l.L, v.server)
}
// Release the lock before we begin transition to operations on the
// network timescale and attempt to ping servers. A copy of the
// servers has been made at this point.
p.serverListLock.Unlock()
serverListLocked = false
// Iterate through the shuffled server list to find an assumed
// healthy server. NOTE: Do not iterate on the list directly because
// this loop mutates the server list in-place.
var foundHealthyServer bool
for i := 0; i < len(l.L); i++ {
// Always test the first server. Failed servers are cycled
// and eventually removed from the list when Nomad heartbeats
// detect the failed node.
selectedServer := l.L[0]
ok, err := p.connPoolPinger.PingNomadServer(p.configInfo.Region(), p.configInfo.RPCMajorVersion(), selectedServer)
if ok {
foundHealthyServer = true
break
}
p.logger.Printf(`[DEBUG] client.rpcproxy: pinging server "%s" failed: %s`, selectedServer.String(), err)
l.cycleServer()
}
// If no healthy servers were found, sleep and wait for the admin to
// join this node to a server and begin receiving heartbeats with an
// updated list of Nomad servers. Or Consul will begin advertising a
// new server in the nomad service (Nomad server service).
if !foundHealthyServer {
p.logger.Printf("[DEBUG] client.rpcproxy: No healthy servers during rebalance, aborting")
return
}
// Verify that all servers are present. Reconcile will save the
// final serverList.
if p.reconcileServerList(l) {
p.logger.Printf("[TRACE] client.rpcproxy: Rebalanced %d servers, next active server is %s", len(l.L), l.L[0].String())
} else {
// reconcileServerList failed because Nomad removed the
// server that was at the front of the list that had
// successfully been Ping'ed. Between the Ping and
// reconcile, a Nomad heartbeat removed the node.
//
// Instead of doing any heroics, "freeze in place" and
// continue to use the existing connection until the next
// rebalance occurs.
}
return
}
// reconcileServerList returns true when the first server in serverList
// (l) exists in the receiver's serverList (p). If true, the merged
// serverList (l) is stored as the receiver's serverList (p). Returns
// false if the first server in p does not exist in the passed in list (l)
// (i.e. was removed by Nomad during a PingNomadServer() call. Newly added
// servers are appended to the list and other missing servers are removed
// from the list.
func (p *RPCProxy) reconcileServerList(l *serverList) bool {
p.activatedListLock.Lock()
defer p.activatedListLock.Unlock()
// newServerList is a serverList that has been kept up-to-date with
// join and leave events.
newServerList := p.getServerList()
// If a Nomad heartbeat removed all nodes, or there is no selected
// server (zero nodes in serverList), abort early.
if len(newServerList.L) == 0 || len(l.L) == 0 {
return false
}
type targetServer struct {
server *ServerEndpoint
// 'b' == both
// 'o' == original
// 'n' == new
state byte
}
mergedList := make(map[EndpointKey]*targetServer, len(l.L))
for _, s := range l.L {
mergedList[*s.Key()] = &targetServer{server: s, state: 'o'}
}
for _, s := range newServerList.L {
k := s.Key()
_, found := mergedList[*k]
if found {
mergedList[*k].state = 'b'
} else {
mergedList[*k] = &targetServer{server: s, state: 'n'}
}
}
// Ensure the selected server has not been removed by a heartbeat
selectedServerKey := l.L[0].Key()
if v, found := mergedList[*selectedServerKey]; found && v.state == 'o' {
return false
}
// Append any new servers and remove any old servers
for k, v := range mergedList {
switch v.state {
case 'b':
// Do nothing, server exists in both
case 'o':
// Server has been removed
l.removeServerByKey(&k)
case 'n':
// Server added
l.L = append(l.L, v.server)
default:
panic("unknown merge list state")
}
}
p.saveServerList(*l)
return true
}
// RemoveServer takes out an internal write lock and removes a server from
// the activated server list.
func (p *RPCProxy) RemoveServer(s *ServerEndpoint) {
// Lock hierarchy protocol dictates serverListLock is acquired first.
p.serverListLock.Lock()
defer p.serverListLock.Unlock()
p.activatedListLock.Lock()
defer p.activatedListLock.Unlock()
l := p.getServerList()
k := s.Key()
l.removeServerByKey(k)
p.saveServerList(l)
p.primaryServers.removeServerByKey(k)
p.backupServers.removeServerByKey(k)
}
// refreshServerRebalanceTimer is only called once p.rebalanceTimer expires.
func (p *RPCProxy) refreshServerRebalanceTimer() time.Duration {
l := p.getServerList()
numServers := len(l.L)
// Limit this connection's life based on the size (and health) of the
// cluster. Never rebalance a connection more frequently than
// connReuseLowWatermarkDuration, and make sure we never exceed
// clusterWideRebalanceConnsPerSec operations/s across numLANMembers.
clusterWideRebalanceConnsPerSec := float64(numServers * newRebalanceConnsPerSecPerServer)
connReuseLowWatermarkDuration := clientRPCMinReuseDuration + lib.RandomStagger(clientRPCMinReuseDuration/clientRPCJitterFraction)
numLANMembers := p.numNodes
connRebalanceTimeout := lib.RateScaledInterval(clusterWideRebalanceConnsPerSec, connReuseLowWatermarkDuration, numLANMembers)
p.rebalanceTimer.Reset(connRebalanceTimeout)
return connRebalanceTimeout
}
// ResetRebalanceTimer resets the rebalance timer. This method exists for
// testing and should not be used directly.
func (p *RPCProxy) ResetRebalanceTimer() {
p.activatedListLock.Lock()
defer p.activatedListLock.Unlock()
p.rebalanceTimer.Reset(clientRPCMinReuseDuration)
}
// ServerRPCAddrs returns one RPC Address per server
func (p *RPCProxy) ServerRPCAddrs() []string {
l := p.getServerList()
serverAddrs := make([]string, 0, len(l.L))
for _, s := range l.L {
serverAddrs = append(serverAddrs, s.Addr.String())
}
return serverAddrs
}
// Run is used to start and manage the task of automatically shuffling and
// rebalancing the list of Nomad servers. This maintenance only happens
// periodically based on the expiration of the timer. Failed servers are
// automatically cycled to the end of the list. New servers are appended to
// the list. The order of the server list must be shuffled periodically to
// distribute load across all known and available Nomad servers.
func (p *RPCProxy) Run() {
for {
select {
case <-p.rebalanceTimer.C:
p.RebalanceServers()
p.refreshServerRebalanceTimer()
case <-p.shutdownCh:
p.logger.Printf("[INFO] client.rpcproxy: shutting down")
return
}
}
}
// RefreshServerLists is called when the Client receives an update from a
// Nomad Server. The response from Nomad Client Heartbeats contain a list of
// Nomad Servers that the Nomad Client should use for RPC requests.
// RefreshServerLists does not rebalance its serverLists (that is handled
// elsewhere via a periodic timer). New Nomad Servers learned via the
// heartbeat are appended to the RPCProxy's activated serverList. Servers
// that are no longer present in the Heartbeat are removed immediately from
// all server lists. Nomad Servers speaking a newer major or minor API
// version are filtered from the serverList.
func (p *RPCProxy) RefreshServerLists(servers []*structs.NodeServerInfo, numNodes int32, leaderRPCAddr string) error {
// Merge all servers found in the response. Servers in the response
// with newer API versions are filtered from the list. If the list
// is missing an address found in the RPCProxy's server list, remove
// it from the RPCProxy.
p.serverListLock.Lock()
defer p.serverListLock.Unlock()
// Clear the backup server list when a heartbeat contains at least
// one server.
if len(servers) > 0 && len(p.backupServers.L) > 0 {
p.backupServers.L = make([]*ServerEndpoint, 0, len(servers))
}
// 1) Create a map to reconcile the difference between
// p.primaryServers and servers.
type targetServer struct {
server *ServerEndpoint
// 'b' == both
// 'o' == original
// 'n' == new
state byte
}
mergedPrimaryMap := make(map[EndpointKey]*targetServer, len(p.primaryServers.L)+len(servers))
numOldServers := 0
for _, s := range p.primaryServers.L {
mergedPrimaryMap[*s.Key()] = &targetServer{server: s, state: 'o'}
numOldServers++
}
numBothServers := 0
var newServers bool
for _, s := range servers {
// Filter out servers using a newer API version. Prevent
// spamming the logs every heartbeat.
//
// TODO(sean@): Move the logging throttle logic into a
// dedicated logging package so RPCProxy does not have to
// perform this accounting.
if int32(p.configInfo.RPCMajorVersion()) < s.RPCMajorVersion ||
(int32(p.configInfo.RPCMajorVersion()) == s.RPCMajorVersion &&
int32(p.configInfo.RPCMinorVersion()) < s.RPCMinorVersion) {
now := time.Now()
t, ok := p.rpcAPIMismatchThrottle[s.RPCAdvertiseAddr]
if ok && t.After(now) {
continue
}
p.logger.Printf("[WARN] client.rpcproxy: API mismatch between client version (v%d.%d) and server version (v%d.%d), ignoring server %+q", p.configInfo.RPCMajorVersion(), p.configInfo.RPCMinorVersion(), s.RPCMajorVersion, s.RPCMinorVersion, s.RPCAdvertiseAddr)
p.rpcAPIMismatchThrottle[s.RPCAdvertiseAddr] = now.Add(rpcAPIMismatchLogRate)
continue
}
server, err := NewServerEndpoint(s.RPCAdvertiseAddr)
if err != nil {
p.logger.Printf("[WARN] client.rpcproxy: Unable to create a server from %+q: %v", s.RPCAdvertiseAddr, err)
continue
}
// Nomad servers in different datacenters are automatically
// added to the backup server list.
if s.Datacenter != p.configInfo.Datacenter() {
p.backupServers.L = append(p.backupServers.L, server)
continue
}
k := server.Key()
_, found := mergedPrimaryMap[*k]
if found {
mergedPrimaryMap[*k].state = 'b'
numBothServers++
} else {
mergedPrimaryMap[*k] = &targetServer{server: server, state: 'n'}
newServers = true
}
}
// Short-circuit acquiring listLock if nothing changed
if !newServers && numOldServers == numBothServers {
return nil
}
p.activatedListLock.Lock()
defer p.activatedListLock.Unlock()
newServerCfg := p.getServerList()
for k, v := range mergedPrimaryMap {
switch v.state {
case 'b':
// Do nothing, server exists in both
case 'o':
// Server has been removed
// TODO(sean@): Teach Nomad servers how to remove
// themselves from their heartbeat in order to
// gracefully drain their clients over the next
// cluster's max rebalanceTimer duration. Without
// this enhancement, if a server being shutdown and
// it is the first in serverList, the client will
// fail its next RPC connection.
p.primaryServers.removeServerByKey(&k)
newServerCfg.removeServerByKey(&k)
case 'n':
// Server added. Append it to both lists
// immediately. The server should only go into
// active use in the event of a failure or after a
// rebalance occurs.
p.primaryServers.L = append(p.primaryServers.L, v.server)
newServerCfg.L = append(newServerCfg.L, v.server)
default:
panic("unknown merge list state")
}
}
p.numNodes = int(numNodes)
p.leaderAddr = leaderRPCAddr
p.saveServerList(newServerCfg)
return nil
}