286 lines
7.8 KiB
Go
286 lines
7.8 KiB
Go
package nomad
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
"time"
|
|
|
|
"github.com/armon/go-metrics"
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
"github.com/hashicorp/nomad/scheduler"
|
|
)
|
|
|
|
const (
|
|
// backoffBaseline is the baseline time for exponential backoff
|
|
backoffBaseline = 20 * time.Millisecond
|
|
|
|
// backoffLimit is the limit of the exponential backoff
|
|
backoffLimit = 5 * time.Second
|
|
|
|
// dequeueTimeout is used to timeout an evaluation dequeue so that
|
|
// we can check if there is a shutdown event
|
|
dequeueTimeout = 500 * time.Millisecond
|
|
|
|
// raftSyncLimit is the limit of time we will wait for Raft replication
|
|
// to catch up to the evaluation. This is used to fast Nack and
|
|
// allow another scheduler to pick it up.
|
|
raftSyncLimit = 5 * time.Second
|
|
)
|
|
|
|
// Worker is a single threaded scheduling worker. There may be multiple
|
|
// running per server (leader or follower). They are responsible for dequeuing
|
|
// pending evaluations, invoking schedulers, plan submission and the
|
|
// lifecycle around making task allocations. They bridge the business logic
|
|
// of the scheduler with the plumbing required to make it all work.
|
|
type Worker struct {
|
|
srv *Server
|
|
logger *log.Logger
|
|
|
|
failures uint
|
|
}
|
|
|
|
// NewWorker starts a new worker associated with the given server
|
|
func NewWorker(srv *Server) (*Worker, error) {
|
|
w := &Worker{
|
|
srv: srv,
|
|
logger: srv.logger,
|
|
}
|
|
go w.run()
|
|
return w, nil
|
|
}
|
|
|
|
// run is the long-lived goroutine which is used to run the worker
|
|
func (w *Worker) run() {
|
|
for {
|
|
// Dequeue a pending evaluation
|
|
eval, shutdown := w.dequeueEvaluation(dequeueTimeout)
|
|
if shutdown {
|
|
return
|
|
}
|
|
|
|
// Check for a shutdown
|
|
if w.srv.IsShutdown() {
|
|
w.sendAck(eval.ID, false)
|
|
return
|
|
}
|
|
|
|
// Wait for the the raft log to catchup to the evaluation
|
|
if err := w.waitForIndex(eval.ModifyIndex, raftSyncLimit); err != nil {
|
|
w.sendAck(eval.ID, false)
|
|
continue
|
|
}
|
|
|
|
// Invoke the scheduler to determine placements
|
|
if err := w.invokeScheduler(eval); err != nil {
|
|
w.sendAck(eval.ID, false)
|
|
continue
|
|
}
|
|
|
|
// Complete the evaluation
|
|
w.sendAck(eval.ID, true)
|
|
}
|
|
}
|
|
|
|
// dequeueEvaluation is used to fetch the next ready evaluation.
|
|
// This blocks until an evaluation is available or a timeout is reached.
|
|
func (w *Worker) dequeueEvaluation(timeout time.Duration) (*structs.Evaluation, bool) {
|
|
// Setup the request
|
|
req := structs.EvalDequeueRequest{
|
|
Schedulers: w.srv.config.EnabledSchedulers,
|
|
Timeout: timeout,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: w.srv.config.Region,
|
|
},
|
|
}
|
|
var resp structs.SingleEvalResponse
|
|
|
|
REQ:
|
|
// Make a blocking RPC
|
|
start := time.Now()
|
|
err := w.srv.RPC("Eval.Dequeue", &req, &resp)
|
|
metrics.MeasureSince([]string{"nomad", "worker", "dequeue_eval"}, start)
|
|
if err != nil {
|
|
w.logger.Printf("[ERR] worker: failed to dequeue evaluation: %v", err)
|
|
if w.backoffErr() {
|
|
return nil, true
|
|
}
|
|
goto REQ
|
|
}
|
|
w.backoffReset()
|
|
|
|
// Check if we got a response
|
|
if resp.Eval != nil {
|
|
w.logger.Printf("[DEBUG] worker: dequeued evaluation %s", resp.Eval.ID)
|
|
return resp.Eval, false
|
|
}
|
|
|
|
// Check for potential shutdown
|
|
if w.srv.IsShutdown() {
|
|
return nil, true
|
|
}
|
|
goto REQ
|
|
}
|
|
|
|
// sendAck makes a best effort to ack or nack the evaluation.
|
|
// Any errors are logged but swallowed.
|
|
func (w *Worker) sendAck(evalID string, ack bool) {
|
|
defer metrics.MeasureSince([]string{"nomad", "worker", "send_ack"}, time.Now())
|
|
// Setup the request
|
|
req := structs.EvalSpecificRequest{
|
|
EvalID: evalID,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: w.srv.config.Region,
|
|
},
|
|
}
|
|
var resp structs.GenericResponse
|
|
|
|
// Determine if this is an Ack or Nack
|
|
verb := "ack"
|
|
endpoint := "Eval.Ack"
|
|
if !ack {
|
|
verb = "nack"
|
|
endpoint = "Eval.Nack"
|
|
}
|
|
|
|
// Make the RPC call
|
|
err := w.srv.RPC(endpoint, &req, &resp)
|
|
if err != nil {
|
|
w.logger.Printf("[ERR] worker: failed to %s evaluation '%s': %v",
|
|
verb, evalID, err)
|
|
} else {
|
|
w.logger.Printf("[DEBUG] worker: %s for evaluation %s", verb, evalID)
|
|
}
|
|
}
|
|
|
|
// waitForIndex ensures that the local state is at least as fresh
|
|
// as the given index. This is used before starting an evaluation,
|
|
// but also potentially mid-stream. If a Plan fails because of stale
|
|
// state (attempt to allocate to a failed/dead node), we may need
|
|
// to sync our state again and do the planning with more recent data.
|
|
func (w *Worker) waitForIndex(index uint64, timeout time.Duration) error {
|
|
start := time.Now()
|
|
defer metrics.MeasureSince([]string{"nomad", "worker", "wait_for_index"}, start)
|
|
CHECK:
|
|
// We only need the FSM state to be as recent as the given index
|
|
appliedIndex := w.srv.raft.AppliedIndex()
|
|
if index <= appliedIndex {
|
|
w.backoffReset()
|
|
return nil
|
|
}
|
|
|
|
// Check if we've reached our limit
|
|
if time.Now().Sub(start) > timeout {
|
|
return fmt.Errorf("sync wait timeout reached")
|
|
}
|
|
|
|
// Exponential back off if we haven't yet reached it
|
|
if w.backoffErr() {
|
|
return fmt.Errorf("shutdown while waiting for state sync")
|
|
}
|
|
goto CHECK
|
|
}
|
|
|
|
// invokeScheduler is used to invoke the business logic of the scheduler
|
|
func (w *Worker) invokeScheduler(eval *structs.Evaluation) error {
|
|
defer metrics.MeasureSince([]string{"nomad", "worker", "invoke_scheduler"}, time.Now())
|
|
// Snapshot the current state
|
|
snap, err := w.srv.fsm.State().Snapshot()
|
|
if err != nil {
|
|
return fmt.Errorf("failed to snapshot state: %v", err)
|
|
}
|
|
|
|
// Create the scheduler
|
|
sched, err := scheduler.NewScheduler(eval.Type, snap, w)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to instantiate scheduler: %v", err)
|
|
}
|
|
|
|
// Process the evaluation
|
|
err = sched.Process(eval)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to process evaluation: %v", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SubmitPlan is used to submit a plan for consideration. This allows
|
|
// the worker to act as the planner for the scheduler.
|
|
func (w *Worker) SubmitPlan(plan *structs.Plan) (*structs.PlanResult, scheduler.State, error) {
|
|
// Check for a shutdown before plan submission
|
|
if w.srv.IsShutdown() {
|
|
return nil, nil, fmt.Errorf("shutdown while planning")
|
|
}
|
|
defer metrics.MeasureSince([]string{"nomad", "worker", "submit_plan"}, time.Now())
|
|
|
|
// Setup the request
|
|
req := structs.PlanRequest{
|
|
Plan: plan,
|
|
WriteRequest: structs.WriteRequest{
|
|
Region: w.srv.config.Region,
|
|
},
|
|
}
|
|
var resp structs.PlanResponse
|
|
|
|
// Make the RPC call
|
|
if err := w.srv.RPC("Plan.Submit", &req, &resp); err != nil {
|
|
w.logger.Printf("[ERR] worker: failed to submit plan for evaluation %s: %v",
|
|
plan.EvalID, err)
|
|
return nil, nil, err
|
|
} else {
|
|
w.logger.Printf("[DEBUG] worker: submitted plan for evaluation %s", plan.EvalID)
|
|
}
|
|
|
|
// Look for a result
|
|
result := resp.Result
|
|
if result == nil {
|
|
return nil, nil, fmt.Errorf("missing result")
|
|
}
|
|
|
|
// Check if a state update is required. This could be required if we
|
|
// planning based on stale data, which is causing issues. For example, a
|
|
// node failure since the time we've started planning or conflicting task
|
|
// allocations.
|
|
var state scheduler.State
|
|
if result.RefreshIndex != 0 {
|
|
// Wait for the the raft log to catchup to the evaluation
|
|
if err := w.waitForIndex(result.RefreshIndex, raftSyncLimit); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// Snapshot the current state
|
|
snap, err := w.srv.fsm.State().Snapshot()
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("failed to snapshot state: %v", err)
|
|
}
|
|
state = snap
|
|
}
|
|
|
|
// Return the result and potential state update
|
|
return result, state, nil
|
|
}
|
|
|
|
// backoffErr is used to do an exponential back off on error. This is
|
|
// maintained statefully for the worker. Returns if attempts should be
|
|
// abandoneded due to shutdown.
|
|
// be made or abandoned.
|
|
func (w *Worker) backoffErr() bool {
|
|
backoff := (1 << (2 * w.failures)) * backoffBaseline
|
|
if backoff > backoffLimit {
|
|
backoff = backoffLimit
|
|
} else {
|
|
w.failures++
|
|
}
|
|
select {
|
|
case <-time.After(backoff):
|
|
return false
|
|
case <-w.srv.shutdownCh:
|
|
return true
|
|
}
|
|
}
|
|
|
|
// backoffReset is used to reset the failure count for
|
|
// exponential backoff
|
|
func (w *Worker) backoffReset() {
|
|
w.failures = 0
|
|
}
|