open-nomad/scheduler/rank.go
Michael Schurter 3e50f72fad
core: merge reserved_ports into host_networks (#13651)
Fixes #13505

This fixes #13505 by treating reserved_ports like we treat a lot of jobspec settings: merging settings from more global stanzas (client.reserved.reserved_ports) "down" into more specific stanzas (client.host_networks[].reserved_ports).

As discussed in #13505 there are other options, and since it's totally broken right now we have some flexibility:

Treat overlapping reserved_ports on addresses as invalid and refuse to start agents. However, I'm not sure there's a cohesive model we want to publish right now since so much 0.9-0.12 compat code still exists! We would have to explain to folks that if their -network-interface and host_network addresses overlapped, they could only specify reserved_ports in one place or the other?! It gets ugly.
Use the global client.reserved.reserved_ports value as the default and treat host_network[].reserverd_ports as overrides. My first suggestion in the issue, but @groggemans made me realize the addresses on the agent's interface (as configured by -network-interface) may overlap with host_networks, so you'd need to remove the global reserved_ports from addresses shared with a shared network?! This seemed really confusing and subtle for users to me.
So I think "merging down" creates the most expressive yet understandable approach. I've played around with it a bit, and it doesn't seem too surprising. The only frustrating part is how difficult it is to observe the available addresses and ports on a node! However that's a job for another PR.
2022-07-12 14:40:25 -07:00

869 lines
27 KiB
Go

package scheduler
import (
"fmt"
"math"
"github.com/hashicorp/nomad/lib/cpuset"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// binPackingMaxFitScore is the maximum possible bin packing fitness score.
// This is used to normalize bin packing score to a value between 0 and 1
binPackingMaxFitScore = 18.0
)
// Rank is used to provide a score and various ranking metadata
// along with a node when iterating. This state can be modified as
// various rank methods are applied.
type RankedNode struct {
Node *structs.Node
FinalScore float64
Scores []float64
TaskResources map[string]*structs.AllocatedTaskResources
TaskLifecycles map[string]*structs.TaskLifecycleConfig
AllocResources *structs.AllocatedSharedResources
// Proposed is used to cache the proposed allocations on the
// node. This can be shared between iterators that require it.
Proposed []*structs.Allocation
// PreemptedAllocs is used by the BinpackIterator to identify allocs
// that should be preempted in order to make the placement
PreemptedAllocs []*structs.Allocation
}
func (r *RankedNode) GoString() string {
return fmt.Sprintf("<Node: %s Score: %0.3f>", r.Node.ID, r.FinalScore)
}
func (r *RankedNode) ProposedAllocs(ctx Context) ([]*structs.Allocation, error) {
if r.Proposed != nil {
return r.Proposed, nil
}
p, err := ctx.ProposedAllocs(r.Node.ID)
if err != nil {
return nil, err
}
r.Proposed = p
return p, nil
}
func (r *RankedNode) SetTaskResources(task *structs.Task,
resource *structs.AllocatedTaskResources) {
if r.TaskResources == nil {
r.TaskResources = make(map[string]*structs.AllocatedTaskResources)
r.TaskLifecycles = make(map[string]*structs.TaskLifecycleConfig)
}
r.TaskResources[task.Name] = resource
r.TaskLifecycles[task.Name] = task.Lifecycle
}
// RankIterator is used to iteratively yield nodes along
// with ranking metadata. The iterators may manage some state for
// performance optimizations.
type RankIterator interface {
// Next yields a ranked option or nil if exhausted
Next() *RankedNode
// Reset is invoked when an allocation has been placed
// to reset any stale state.
Reset()
}
// FeasibleRankIterator is used to consume from a FeasibleIterator
// and return an unranked node with base ranking.
type FeasibleRankIterator struct {
ctx Context
source FeasibleIterator
}
// NewFeasibleRankIterator is used to return a new FeasibleRankIterator
// from a FeasibleIterator source.
func NewFeasibleRankIterator(ctx Context, source FeasibleIterator) *FeasibleRankIterator {
iter := &FeasibleRankIterator{
ctx: ctx,
source: source,
}
return iter
}
func (iter *FeasibleRankIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil {
return nil
}
ranked := &RankedNode{
Node: option,
}
return ranked
}
func (iter *FeasibleRankIterator) Reset() {
iter.source.Reset()
}
// StaticRankIterator is a RankIterator that returns a static set of results.
// This is largely only useful for testing.
type StaticRankIterator struct {
ctx Context
nodes []*RankedNode
offset int
seen int
}
// NewStaticRankIterator returns a new static rank iterator over the given nodes
func NewStaticRankIterator(ctx Context, nodes []*RankedNode) *StaticRankIterator {
iter := &StaticRankIterator{
ctx: ctx,
nodes: nodes,
}
return iter
}
func (iter *StaticRankIterator) Next() *RankedNode {
// Check if exhausted
n := len(iter.nodes)
if iter.offset == n || iter.seen == n {
if iter.seen != n {
iter.offset = 0
} else {
return nil
}
}
// Return the next offset
offset := iter.offset
iter.offset += 1
iter.seen += 1
return iter.nodes[offset]
}
func (iter *StaticRankIterator) Reset() {
iter.seen = 0
}
// BinPackIterator is a RankIterator that scores potential options
// based on a bin-packing algorithm.
type BinPackIterator struct {
ctx Context
source RankIterator
evict bool
priority int
jobId structs.NamespacedID
taskGroup *structs.TaskGroup
memoryOversubscription bool
scoreFit func(*structs.Node, *structs.ComparableResources) float64
}
// NewBinPackIterator returns a BinPackIterator which tries to fit tasks
// potentially evicting other tasks based on a given priority.
func NewBinPackIterator(ctx Context, source RankIterator, evict bool, priority int, schedConfig *structs.SchedulerConfiguration) *BinPackIterator {
algorithm := schedConfig.EffectiveSchedulerAlgorithm()
scoreFn := structs.ScoreFitBinPack
if algorithm == structs.SchedulerAlgorithmSpread {
scoreFn = structs.ScoreFitSpread
}
iter := &BinPackIterator{
ctx: ctx,
source: source,
evict: evict,
priority: priority,
memoryOversubscription: schedConfig != nil && schedConfig.MemoryOversubscriptionEnabled,
scoreFit: scoreFn,
}
iter.ctx.Logger().Named("binpack").Trace("NewBinPackIterator created", "algorithm", algorithm)
return iter
}
func (iter *BinPackIterator) SetJob(job *structs.Job) {
iter.priority = job.Priority
iter.jobId = job.NamespacedID()
}
func (iter *BinPackIterator) SetTaskGroup(taskGroup *structs.TaskGroup) {
iter.taskGroup = taskGroup
}
func (iter *BinPackIterator) Next() *RankedNode {
OUTER:
for {
// Get the next potential option
option := iter.source.Next()
if option == nil {
return nil
}
// Get the proposed allocations
proposed, err := option.ProposedAllocs(iter.ctx)
if err != nil {
iter.ctx.Logger().Named("binpack").Error("failed retrieving proposed allocations", "error", err)
continue
}
// Index the existing network usage.
// This should never collide, since it represents the current state of
// the node. If it does collide though, it means we found a bug! So
// collect as much information as possible.
netIdx := structs.NewNetworkIndex()
if err := netIdx.SetNode(option.Node); err != nil {
iter.ctx.SendEvent(&PortCollisionEvent{
Reason: err.Error(),
NetIndex: netIdx.Copy(),
Node: option.Node,
})
iter.ctx.Metrics().ExhaustedNode(option.Node, "network: invalid node")
continue
}
if collide, reason := netIdx.AddAllocs(proposed); collide {
event := &PortCollisionEvent{
Reason: reason,
NetIndex: netIdx.Copy(),
Node: option.Node,
Allocations: make([]*structs.Allocation, len(proposed)),
}
for i, alloc := range proposed {
event.Allocations[i] = alloc.Copy()
}
iter.ctx.SendEvent(event)
iter.ctx.Metrics().ExhaustedNode(option.Node, "network: port collision")
continue
}
// Create a device allocator
devAllocator := newDeviceAllocator(iter.ctx, option.Node)
devAllocator.AddAllocs(proposed)
// Track the affinities of the devices
totalDeviceAffinityWeight := 0.0
sumMatchingAffinities := 0.0
// Assign the resources for each task
total := &structs.AllocatedResources{
Tasks: make(map[string]*structs.AllocatedTaskResources,
len(iter.taskGroup.Tasks)),
TaskLifecycles: make(map[string]*structs.TaskLifecycleConfig,
len(iter.taskGroup.Tasks)),
Shared: structs.AllocatedSharedResources{
DiskMB: int64(iter.taskGroup.EphemeralDisk.SizeMB),
},
}
var allocsToPreempt []*structs.Allocation
// Initialize preemptor with node
preemptor := NewPreemptor(iter.priority, iter.ctx, &iter.jobId)
preemptor.SetNode(option.Node)
// Count the number of existing preemptions
allPreemptions := iter.ctx.Plan().NodePreemptions
var currentPreemptions []*structs.Allocation
for _, allocs := range allPreemptions {
currentPreemptions = append(currentPreemptions, allocs...)
}
preemptor.SetPreemptions(currentPreemptions)
// Check if we need task group network resource
if len(iter.taskGroup.Networks) > 0 {
ask := iter.taskGroup.Networks[0].Copy()
for i, port := range ask.DynamicPorts {
if port.HostNetwork != "" {
if hostNetworkValue, hostNetworkOk := resolveTarget(port.HostNetwork, option.Node); hostNetworkOk {
ask.DynamicPorts[i].HostNetwork = hostNetworkValue
} else {
iter.ctx.Logger().Named("binpack").Error(fmt.Sprintf("Invalid template for %s host network in port %s", port.HostNetwork, port.Label))
netIdx.Release()
continue OUTER
}
}
}
for i, port := range ask.ReservedPorts {
if port.HostNetwork != "" {
if hostNetworkValue, hostNetworkOk := resolveTarget(port.HostNetwork, option.Node); hostNetworkOk {
ask.ReservedPorts[i].HostNetwork = hostNetworkValue
} else {
iter.ctx.Logger().Named("binpack").Error(fmt.Sprintf("Invalid template for %s host network in port %s", port.HostNetwork, port.Label))
netIdx.Release()
continue OUTER
}
}
}
offer, err := netIdx.AssignPorts(ask)
if err != nil {
// If eviction is not enabled, mark this node as exhausted and continue
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node,
fmt.Sprintf("network: %s", err))
netIdx.Release()
continue OUTER
}
// Look for preemptible allocations to satisfy the network resource for this task
preemptor.SetCandidates(proposed)
netPreemptions := preemptor.PreemptForNetwork(ask, netIdx)
if netPreemptions == nil {
iter.ctx.Logger().Named("binpack").Debug("preemption not possible ", "network_resource", ask)
netIdx.Release()
continue OUTER
}
allocsToPreempt = append(allocsToPreempt, netPreemptions...)
// First subtract out preempted allocations
proposed = structs.RemoveAllocs(proposed, netPreemptions)
// Reset the network index and try the offer again
netIdx.Release()
netIdx = structs.NewNetworkIndex()
netIdx.SetNode(option.Node)
netIdx.AddAllocs(proposed)
offer, err = netIdx.AssignPorts(ask)
if err != nil {
iter.ctx.Logger().Named("binpack").Debug("unexpected error, unable to create network offer after considering preemption", "error", err)
netIdx.Release()
continue OUTER
}
}
// Reserve this to prevent another task from colliding
netIdx.AddReservedPorts(offer)
// Update the network ask to the offer
nwRes := structs.AllocatedPortsToNetworkResouce(ask, offer, option.Node.NodeResources)
total.Shared.Networks = []*structs.NetworkResource{nwRes}
total.Shared.Ports = offer
option.AllocResources = &structs.AllocatedSharedResources{
Networks: []*structs.NetworkResource{nwRes},
DiskMB: int64(iter.taskGroup.EphemeralDisk.SizeMB),
Ports: offer,
}
}
for _, task := range iter.taskGroup.Tasks {
// Allocate the resources
taskResources := &structs.AllocatedTaskResources{
Cpu: structs.AllocatedCpuResources{
CpuShares: int64(task.Resources.CPU),
},
Memory: structs.AllocatedMemoryResources{
MemoryMB: int64(task.Resources.MemoryMB),
},
}
if iter.memoryOversubscription {
taskResources.Memory.MemoryMaxMB = int64(task.Resources.MemoryMaxMB)
}
// Check if we need a network resource
if len(task.Resources.Networks) > 0 {
ask := task.Resources.Networks[0].Copy()
offer, err := netIdx.AssignTaskNetwork(ask)
if offer == nil {
// If eviction is not enabled, mark this node as exhausted and continue
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node,
fmt.Sprintf("network: %s", err))
netIdx.Release()
continue OUTER
}
// Look for preemptible allocations to satisfy the network resource for this task
preemptor.SetCandidates(proposed)
netPreemptions := preemptor.PreemptForNetwork(ask, netIdx)
if netPreemptions == nil {
iter.ctx.Logger().Named("binpack").Debug("preemption not possible ", "network_resource", ask)
netIdx.Release()
continue OUTER
}
allocsToPreempt = append(allocsToPreempt, netPreemptions...)
// First subtract out preempted allocations
proposed = structs.RemoveAllocs(proposed, netPreemptions)
// Reset the network index and try the offer again
netIdx.Release()
netIdx = structs.NewNetworkIndex()
netIdx.SetNode(option.Node)
netIdx.AddAllocs(proposed)
offer, err = netIdx.AssignTaskNetwork(ask)
if offer == nil {
iter.ctx.Logger().Named("binpack").Debug("unexpected error, unable to create network offer after considering preemption", "error", err)
netIdx.Release()
continue OUTER
}
}
// Reserve this to prevent another task from colliding
netIdx.AddReserved(offer)
// Update the network ask to the offer
taskResources.Networks = []*structs.NetworkResource{offer}
}
// Check if we need to assign devices
for _, req := range task.Resources.Devices {
offer, sumAffinities, err := devAllocator.AssignDevice(req)
if offer == nil {
// If eviction is not enabled, mark this node as exhausted and continue
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node, fmt.Sprintf("devices: %s", err))
continue OUTER
}
// Attempt preemption
preemptor.SetCandidates(proposed)
devicePreemptions := preemptor.PreemptForDevice(req, devAllocator)
if devicePreemptions == nil {
iter.ctx.Logger().Named("binpack").Debug("preemption not possible", "requested_device", req)
netIdx.Release()
continue OUTER
}
allocsToPreempt = append(allocsToPreempt, devicePreemptions...)
// First subtract out preempted allocations
proposed = structs.RemoveAllocs(proposed, allocsToPreempt)
// Reset the device allocator with new set of proposed allocs
devAllocator := newDeviceAllocator(iter.ctx, option.Node)
devAllocator.AddAllocs(proposed)
// Try offer again
offer, sumAffinities, err = devAllocator.AssignDevice(req)
if offer == nil {
iter.ctx.Logger().Named("binpack").Debug("unexpected error, unable to create device offer after considering preemption", "error", err)
continue OUTER
}
}
// Store the resource
devAllocator.AddReserved(offer)
taskResources.Devices = append(taskResources.Devices, offer)
// Add the scores
if len(req.Affinities) != 0 {
for _, a := range req.Affinities {
totalDeviceAffinityWeight += math.Abs(float64(a.Weight))
}
sumMatchingAffinities += sumAffinities
}
}
// Check if we need to allocate any reserved cores
if task.Resources.Cores > 0 {
// set of reservable CPUs for the node
nodeCPUSet := cpuset.New(option.Node.NodeResources.Cpu.ReservableCpuCores...)
// set of all reserved CPUs on the node
allocatedCPUSet := cpuset.New()
for _, alloc := range proposed {
allocatedCPUSet = allocatedCPUSet.Union(cpuset.New(alloc.ComparableResources().Flattened.Cpu.ReservedCores...))
}
// add any cores that were reserved for other tasks
for _, tr := range total.Tasks {
allocatedCPUSet = allocatedCPUSet.Union(cpuset.New(tr.Cpu.ReservedCores...))
}
// set of CPUs not yet reserved on the node
availableCPUSet := nodeCPUSet.Difference(allocatedCPUSet)
// If not enough cores are available mark the node as exhausted
if availableCPUSet.Size() < task.Resources.Cores {
// TODO preemption
iter.ctx.Metrics().ExhaustedNode(option.Node, "cores")
continue OUTER
}
// Set the task's reserved cores
taskResources.Cpu.ReservedCores = availableCPUSet.ToSlice()[0:task.Resources.Cores]
// Total CPU usage on the node is still tracked by CPUShares. Even though the task will have the entire
// core reserved, we still track overall usage by cpu shares.
taskResources.Cpu.CpuShares = option.Node.NodeResources.Cpu.SharesPerCore() * int64(task.Resources.Cores)
}
// Store the task resource
option.SetTaskResources(task, taskResources)
// Accumulate the total resource requirement
total.Tasks[task.Name] = taskResources
total.TaskLifecycles[task.Name] = task.Lifecycle
}
// Store current set of running allocs before adding resources for the task group
current := proposed
// Add the resources we are trying to fit
proposed = append(proposed, &structs.Allocation{AllocatedResources: total})
// Check if these allocations fit, if they do not, simply skip this node
fit, dim, util, _ := structs.AllocsFit(option.Node, proposed, netIdx, false)
netIdx.Release()
if !fit {
// Skip the node if evictions are not enabled
if !iter.evict {
iter.ctx.Metrics().ExhaustedNode(option.Node, dim)
continue
}
// If eviction is enabled and the node doesn't fit the alloc, check if
// any allocs can be preempted
// Initialize preemptor with candidate set
preemptor.SetCandidates(current)
preemptedAllocs := preemptor.PreemptForTaskGroup(total)
allocsToPreempt = append(allocsToPreempt, preemptedAllocs...)
// If we were unable to find preempted allocs to meet these requirements
// mark as exhausted and continue
if len(preemptedAllocs) == 0 {
iter.ctx.Metrics().ExhaustedNode(option.Node, dim)
continue
}
}
if len(allocsToPreempt) > 0 {
option.PreemptedAllocs = allocsToPreempt
}
// Score the fit normally otherwise
fitness := iter.scoreFit(option.Node, util)
normalizedFit := fitness / binPackingMaxFitScore
option.Scores = append(option.Scores, normalizedFit)
iter.ctx.Metrics().ScoreNode(option.Node, "binpack", normalizedFit)
// Score the device affinity
if totalDeviceAffinityWeight != 0 {
sumMatchingAffinities /= totalDeviceAffinityWeight
option.Scores = append(option.Scores, sumMatchingAffinities)
iter.ctx.Metrics().ScoreNode(option.Node, "devices", sumMatchingAffinities)
}
return option
}
}
func (iter *BinPackIterator) Reset() {
iter.source.Reset()
}
// JobAntiAffinityIterator is used to apply an anti-affinity to allocating
// along side other allocations from this job. This is used to help distribute
// load across the cluster.
type JobAntiAffinityIterator struct {
ctx Context
source RankIterator
jobID string
taskGroup string
desiredCount int
}
// NewJobAntiAffinityIterator is used to create a JobAntiAffinityIterator that
// applies the given penalty for co-placement with allocs from this job.
func NewJobAntiAffinityIterator(ctx Context, source RankIterator, jobID string) *JobAntiAffinityIterator {
iter := &JobAntiAffinityIterator{
ctx: ctx,
source: source,
jobID: jobID,
}
return iter
}
func (iter *JobAntiAffinityIterator) SetJob(job *structs.Job) {
iter.jobID = job.ID
}
func (iter *JobAntiAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) {
iter.taskGroup = tg.Name
iter.desiredCount = tg.Count
}
func (iter *JobAntiAffinityIterator) Next() *RankedNode {
for {
option := iter.source.Next()
if option == nil {
return nil
}
// Get the proposed allocations
proposed, err := option.ProposedAllocs(iter.ctx)
if err != nil {
iter.ctx.Logger().Named("job_anti_affinity").Error("failed retrieving proposed allocations", "error", err)
continue
}
// Determine the number of collisions
collisions := 0
for _, alloc := range proposed {
if alloc.JobID == iter.jobID && alloc.TaskGroup == iter.taskGroup {
collisions += 1
}
}
// Calculate the penalty based on number of collisions
// TODO(preetha): Figure out if batch jobs need a different scoring penalty where collisions matter less
if collisions > 0 {
scorePenalty := -1 * float64(collisions+1) / float64(iter.desiredCount)
option.Scores = append(option.Scores, scorePenalty)
iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", scorePenalty)
} else {
iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", 0)
}
return option
}
}
func (iter *JobAntiAffinityIterator) Reset() {
iter.source.Reset()
}
// NodeReschedulingPenaltyIterator is used to apply a penalty to
// a node that had a previous failed allocation for the same job.
// This is used when attempting to reschedule a failed alloc
type NodeReschedulingPenaltyIterator struct {
ctx Context
source RankIterator
penaltyNodes map[string]struct{}
}
// NewNodeReschedulingPenaltyIterator is used to create a NodeReschedulingPenaltyIterator that
// applies the given scoring penalty for placement onto nodes in penaltyNodes
func NewNodeReschedulingPenaltyIterator(ctx Context, source RankIterator) *NodeReschedulingPenaltyIterator {
iter := &NodeReschedulingPenaltyIterator{
ctx: ctx,
source: source,
}
return iter
}
func (iter *NodeReschedulingPenaltyIterator) SetPenaltyNodes(penaltyNodes map[string]struct{}) {
iter.penaltyNodes = penaltyNodes
}
func (iter *NodeReschedulingPenaltyIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil {
return nil
}
_, ok := iter.penaltyNodes[option.Node.ID]
if ok {
option.Scores = append(option.Scores, -1)
iter.ctx.Metrics().ScoreNode(option.Node, "node-reschedule-penalty", -1)
} else {
iter.ctx.Metrics().ScoreNode(option.Node, "node-reschedule-penalty", 0)
}
return option
}
func (iter *NodeReschedulingPenaltyIterator) Reset() {
iter.penaltyNodes = make(map[string]struct{})
iter.source.Reset()
}
// NodeAffinityIterator is used to resolve any affinity rules in the job or task group,
// and apply a weighted score to nodes if they match.
type NodeAffinityIterator struct {
ctx Context
source RankIterator
jobAffinities []*structs.Affinity
affinities []*structs.Affinity
}
// NewNodeAffinityIterator is used to create a NodeAffinityIterator that
// applies a weighted score according to whether nodes match any
// affinities in the job or task group.
func NewNodeAffinityIterator(ctx Context, source RankIterator) *NodeAffinityIterator {
return &NodeAffinityIterator{
ctx: ctx,
source: source,
}
}
func (iter *NodeAffinityIterator) SetJob(job *structs.Job) {
iter.jobAffinities = job.Affinities
}
func (iter *NodeAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) {
// Merge job affinities
if iter.jobAffinities != nil {
iter.affinities = append(iter.affinities, iter.jobAffinities...)
}
// Merge task group affinities and task affinities
if tg.Affinities != nil {
iter.affinities = append(iter.affinities, tg.Affinities...)
}
for _, task := range tg.Tasks {
if task.Affinities != nil {
iter.affinities = append(iter.affinities, task.Affinities...)
}
}
}
func (iter *NodeAffinityIterator) Reset() {
iter.source.Reset()
// This method is called between each task group, so only reset the merged list
iter.affinities = nil
}
func (iter *NodeAffinityIterator) hasAffinities() bool {
return len(iter.affinities) > 0
}
func (iter *NodeAffinityIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil {
return nil
}
if !iter.hasAffinities() {
iter.ctx.Metrics().ScoreNode(option.Node, "node-affinity", 0)
return option
}
// TODO(preetha): we should calculate normalized weights once and reuse it here
sumWeight := 0.0
for _, affinity := range iter.affinities {
sumWeight += math.Abs(float64(affinity.Weight))
}
totalAffinityScore := 0.0
for _, affinity := range iter.affinities {
if matchesAffinity(iter.ctx, affinity, option.Node) {
totalAffinityScore += float64(affinity.Weight)
}
}
normScore := totalAffinityScore / sumWeight
if totalAffinityScore != 0.0 {
option.Scores = append(option.Scores, normScore)
iter.ctx.Metrics().ScoreNode(option.Node, "node-affinity", normScore)
}
return option
}
func matchesAffinity(ctx Context, affinity *structs.Affinity, option *structs.Node) bool {
//TODO(preetha): Add a step here that filters based on computed node class for potential speedup
// Resolve the targets
lVal, lOk := resolveTarget(affinity.LTarget, option)
rVal, rOk := resolveTarget(affinity.RTarget, option)
// Check if satisfied
return checkAffinity(ctx, affinity.Operand, lVal, rVal, lOk, rOk)
}
// ScoreNormalizationIterator is used to combine scores from various prior
// iterators and combine them into one final score. The current implementation
// averages the scores together.
type ScoreNormalizationIterator struct {
ctx Context
source RankIterator
}
// NewScoreNormalizationIterator is used to create a ScoreNormalizationIterator that
// averages scores from various iterators into a final score.
func NewScoreNormalizationIterator(ctx Context, source RankIterator) *ScoreNormalizationIterator {
return &ScoreNormalizationIterator{
ctx: ctx,
source: source}
}
func (iter *ScoreNormalizationIterator) Reset() {
iter.source.Reset()
}
func (iter *ScoreNormalizationIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil || len(option.Scores) == 0 {
return option
}
numScorers := len(option.Scores)
sum := 0.0
for _, score := range option.Scores {
sum += score
}
option.FinalScore = sum / float64(numScorers)
//TODO(preetha): Turn map in allocmetrics into a heap of topK scores
iter.ctx.Metrics().ScoreNode(option.Node, "normalized-score", option.FinalScore)
return option
}
// PreemptionScoringIterator is used to score nodes according to the
// combination of preemptible allocations in them
type PreemptionScoringIterator struct {
ctx Context
source RankIterator
}
// NewPreemptionScoringIterator is used to create a score based on net
// aggregate priority of preempted allocations.
func NewPreemptionScoringIterator(ctx Context, source RankIterator) RankIterator {
return &PreemptionScoringIterator{
ctx: ctx,
source: source,
}
}
func (iter *PreemptionScoringIterator) Reset() {
iter.source.Reset()
}
func (iter *PreemptionScoringIterator) Next() *RankedNode {
option := iter.source.Next()
if option == nil || option.PreemptedAllocs == nil {
return option
}
netPriority := netPriority(option.PreemptedAllocs)
// preemption score is inversely proportional to netPriority
preemptionScore := preemptionScore(netPriority)
option.Scores = append(option.Scores, preemptionScore)
iter.ctx.Metrics().ScoreNode(option.Node, "preemption", preemptionScore)
return option
}
// netPriority is a scoring heuristic that represents a combination of two factors.
// First factor is the max priority in the set of allocations, with
// an additional factor that takes into account the individual priorities of allocations
func netPriority(allocs []*structs.Allocation) float64 {
sumPriority := 0
max := 0.0
for _, alloc := range allocs {
if float64(alloc.Job.Priority) > max {
max = float64(alloc.Job.Priority)
}
sumPriority += alloc.Job.Priority
}
// We use the maximum priority across all allocations
// with an additional penalty that increases proportional to the
// ratio of the sum by max
// This ensures that we penalize nodes that have a low max but a high
// number of preemptible allocations
ret := max + (float64(sumPriority) / max)
return ret
}
// preemptionScore is calculated using a logistic function
// see https://www.desmos.com/calculator/alaeiuaiey for a visual representation of the curve.
// Lower values of netPriority get a score closer to 1 and the inflection point is around 2048
// The score is modelled to be between 0 and 1 because its combined with other
// scoring factors like bin packing
func preemptionScore(netPriority float64) float64 {
// These values were chosen such that a net priority of 2048 would get a preemption score of 0.5
// rate is the decay parameter of the logistic function used in scoring preemption options
const rate = 0.0048
// origin controls the inflection point of the logistic function used in scoring preemption options
const origin = 2048.0
// This function manifests as an s curve that asympotically moves towards zero for large values of netPriority
return 1.0 / (1 + math.Exp(rate*(netPriority-origin)))
}